CLINICAL STUDY

Metformin and placebo therapy both improve weight management and fasting insulin in obese insulin-resistant adolescents: a prospective, placebo-controlled, randomized study

Susanna Wiegand, Dagmar l’Allemand, Hanna Hübel, Heiko Krude, Mareike Bürmann, Peter Martus, Annette Grüters and Reinhard W Holl

Department of Pediatric Endocrinology and Diabetology, Charité Children’s Hospital, Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany, 1Children’s Hospital of Eastern Switzerland, 9000 St Gallen, Switzerland, 2Department of Epidemiology, Universitätsmedizin Berlin, 10117 Berlin, Germany and 3Department of Epidemiology, University of Ulm, 89081 Ulm, Germany

(Correspondence should be addressed to S Wiegand; Email: susanna.wiegand@charite.de)

Abstract

Objective: To study whether metformin reduces obesity, homeostasis model assessment for insulin resistance index (HOMA-IR), and the metabolic syndrome (MtS) in obese European adolescents in addition to previous unsuccessful lifestyle intervention.

Design and methods: After 6 months of multiprofessional lifestyle intervention, 70 out of 86 adolescents without improvement in body mass index (BMI) and HOMA-IR were randomized into either the placebo (n = 34) or the metformin group (2 × 500 mg/day, n = 36) in addition to ongoing lifestyle intervention for another 6 months.

Results: Age was 13.8 years, BMI was 33.1 kg/m², 65% were female, and 89% were Caucasians. During lifestyle intervention alone, BMI and HOMA-IR deteriorated significantly. In the subsequent medication period, HOMA-IR and fasting insulin improved similarly in the placebo and metformin groups (HOMA-IR decreased 73 vs 54% respectively in metformin versus placebo; P = 0.048), but BMI remained unchanged. The insulin sensitivity index, however, only improved in the metformin group. High fasting insulin is correlated with a subsequent BMI increase irrespective of the medication. MtS remained unchanged.

Conclusions: Obese European adolescents’ insulin sensitivity improved without weight change during placebo or metformin intervention in addition to lifestyle intervention. Most differences did not reach statistical significance, probably due to improved compliance with lifestyle intervention as a placebo effect. In addition, the metformin dose may be too low.

European Journal of Endocrinology 163 585–592

Introduction

The obesity epidemic challenges health care systems worldwide. Weight loss is known to improve cardiovascular risk factors (1). However, most therapeutic approaches do not induce sustained weight loss for all participants, even in well-established multiprofessional programs (2). The increase in childhood obesity due to environmental factors (i.e. increased consumption of processed food and physical inactivity) has led to a rising prevalence of the metabolic syndrome (MtS) and type 2 diabetes not only in minority groups but also in the general population (3). In obese adults with impaired glucose regulation, 5% per year convert to type 2 diabetes (4). Increased fasting insulin levels and insulin resistance (IR) during adolescence are major predictors of type 2 diabetes later in life (5). In the Diabetes Prevention Program in the United States (U. S. DPP), metformin was effective in preventing type 2 diabetes in adults with impaired glucose tolerance, but lifestyle intervention was even better. Also in children and adolescents, weight loss is known to decrease cardiovascular risk factors (6–9). Results for metformin therapy in overweight adolescents are conflicting. Individual effects of the intensive lifestyle intervention and of metformin have not been compared with the combination of both interventions being used simultaneously. In two small placebo-controlled pediatric trials, metformin was tested in obese non-diabetic adolescents (10, 11): both the studies demonstrated significantly greater weight loss and reduced fasting insulin levels in the metformin group. More recently, a study with 28 obese adolescents reported a beneficial effect of metformin on body mass index (BMI), body composition, and fasting insulin but not on insulin sensitivity (12). Thus far, two studies considered the effect of metformin in addition to
a lifestyle intervention program. The combination proved to be effective in reducing BMI and IR in a placebo-controlled study in obese Turkish adolescents with IR (13). In contrast, in a group of obese adolescents predominantly from ethnic groups at risk for type 2 diabetes, this ‘add on’ design showed no significant changes in metabolic parameters or BMI. Weight loss was significant only in girls with good metformin adherence and reported lifestyle changes (14).

A most recent meta-analysis (15) of these studies ascertained a moderate beneficial metformin effect on obesity outcomes among hyperinsulinemic children and adolescents but proposed to establish the role of metformin therapy in larger cohorts across different populations. In contrast to the conflicting results of controlled clinical studies, in clinical practice, metformin is used more and more in obese non-diabetic adolescents without licensed indication. For these reasons, we performed a double-blind, randomized controlled clinical trial in obese European adolescents at high risk for type 2 diabetes in addition to a previous unsuccessful lifestyle intervention.

Methods

Lifestyle intervention

Two hundred and seventy-eight obese children and adolescents (BMI > 97th percentile according to German references (16)) were referred by general pediatricians to two pediatric obesity centers (Berlin, Germany and St Gallen, Switzerland). All the patients presented with obesity-related comorbidities, namely features of the MtS. Owing to additional factors, e.g. low education level (parental or personal), dysfunctional families, school problems, and an immigrant background, it was not feasible for these patients to participate in standardized obesity group programs. Instead, the patients and their families were invited to take part in a multiprofessional family-based individualized obesity treatment similar in both centers. They were asked to participate in a standardized program based on individual goal setting with compulsory participation of parents. Initially, a structured interview was performed to evaluate nine topics relating to weight reduction: five topics dealing with nutrition and eating behavior, two about physical activity, one dealing with media use (e.g. TV and computer), one each focussing on psychosocial and family problems. The interview was followed by basic information on healthy lifestyle appropriate for children and adolescents. This basic educational component was also adapted to these nine topics. Patients and families were subsequently assisted in one to three individually chosen tasks (goals) for a 1–2-month period (e.g. reducing TV watching from 4 to 2 h/day, walking to school 10 min instead of taking the school bus, and drinking tea without added sugar).

The lifestyle changes were recorded in simple ‘token’ systems adapted to adolescents with low education and language problems to support the maintenance of the goals. Multiprofessional reinforcement sessions took place every 4–8 weeks depending on the resources of the adolescents and their families. Regarding physical activity, the patients and families were to attend specialized sport classes for obese children and adolescents. Two sport classes per week (45 min each) was recommended, in addition to the regular sport classes at school. This lifestyle intervention was designed as a low-threshold service and was maintained throughout the entire duration of the trial, even after the medication was introduced.

Study design

Two hundred and seventy-eight obese adolescents at risk of developing type 2 diabetes according to American Diabetes Association (ADA) criteria (obesity, acanthosis nigricans, signs of the MtS, impaired fasting glucose, and positive family history of type 2 diabetes) (17), or with impaired glucose tolerance, applied for the individualized weight loss program and were screened. Eighty-six patients met the inclusion criteria (obese, 10–17 years, homeostasis model assessment for IR index (HOMA-IR)) > 3 or > 95th percentile according to Allard et al. (18), non-diabetic, and normal liver and kidney function) and were enrolled in the study. Exclusion criteria included pre-existing diabetes, pregnancy, liver enzymes above 1.5 times the upper limit of normal or elevated creatinine > 1.5 mg/dl, and severe chronic or mental illness. After ongoing participation in the weight loss program for at least 6 months from baseline (T1–T2), the 86 patients were reexamined. Fourteen patients reduced their body weight significantly (ΔBMI > 2 kg/m²) and/or no longer insulin resistant. Two patients dropped out for unknown reasons. The remaining 70 patients with unsuccessful lifestyle intervention (defined as reduction of obesity by ΔBMI < 2 kg/m² and persistent IR expressed as HOMA-IR > 3 or > 95th percentile according to Allard et al. (18)) were enrolled in the medication phase of the study (T2–T4). The sample patients were randomized for age, sex, and pubertal stage, and received either metformin 500 mg twice/day or placebo for 6 months between 05/2006 and 12/2006 (administered in a double-blind way). Placebo or metformin tablets were dispensed by the local pharmacy, and unused pills were counted after 3 (T3) and 6 months (T4) to assess compliance. At 3 months of medication, a clinical and biochemical assessment of health status and side effects was conducted. After 6 months of medication, the patients were retested. The multiprofessional individualized lifestyle intervention continued for the whole study period (‘Add on’ design between T2 and T4). Informed consent was obtained from the study subjects and parents. The protocol for this randomized, double-blind,
placebo-controlled clinical trial was approved by the local ethic committees (Charité Berlin, Germany; St Gallen Switzerland), monitored by the local centers for clinical studies, and registered at the European Study Council (Eudra-CT-Nr 2004-003816-47) (Fig. 1).

Investigations

During visits at T1, T2, and T4 (Fig. 1), family history for type 2 diabetes and MtS, ethnicity, anthropometric data, blood pressure, and pubertal status were recorded. Body weight and height were measured with calibrated instruments (Soehnle digital scale: Germany and wall mounted stadiometer; Keller, Germany) to the nearest 0.1 kg and 0.5 cm respectively. BMI was calculated (weight in kilograms divided by the square of the height in meters) using German reference data for the definition of overweight (> 90 BMI percentile and ≤ 97% and obesity (> 97%) (15), Blood pressure was measured in a supine position after 5 min rest to the nearest 2 mmHg using a Dinamap model, and results were interpreted using percentiles for age and sex (19). Pubertal status was assessed according to Tanner’s criteria (20, 21).

After a 12-h overnight fast, these participants underwent an oral glucose tolerance test (OGTT) at 0800 h. Baseline samples were obtained for measurement of fasting glucose, fasting insulin, lipids (cholesterol (chol.), high-density lipoprotein cholesterol (HDL-chol.), low-density lipoprotein cholesterol (LDL-chol.), and triglycerides), aspartate aminotransferase, alanine aminotransferase, and creatinine. Glucose was administered orally (1.75 g/kg, up to a maximum of 75 g glucose). Blood samples were drawn after 30, 60, 90, and 120 min. Glucose and insulin concentrations were determined and categorized using World Health Organization criteria (22). All the participants followed a diet consisting of at least 250 g carbohydrates/day for 3 days before the study.

Biochemical analyses

Glucose was measured by the glucose oxidase method with venous whole blood being immediately deproteinized with perchloric acid. Insulin was measured with the AutoDELFIA Insulin assay (Perkin Elmer, Turku, Finland). The cross-reactivity with C-peptide was < 0.18%, and with proinsulin was < 1%. The intra- and inter-assay coefficients of variation for insulin were 3.4 and 2.8%, respectively. The lipid levels were determined by an enzymatic colorimetric test (analyzer 704/717 Roche-Hitachi). To measure liver and kidney functions, the standardized assay procedures at the Children’s Hospitals were used.

Two approaches were used to characterize insulin sensitivity: the HOMA-IR (23), an inverse surrogate parameter of insulin sensitivity validated in obese and non-obese children and adults (17, 24, 25), was estimated using the formula:

$$\text{HOMA-IR} = \frac{\text{fasting insulin (mIU/l)} \times \text{fasting glucose (mmol/l)}}{22.5}$$

Insulin sensitivity was determined by the insulin sensitivity index (ISI) from Matsuda & De Fronzo (26).

$$\text{ISI} = \frac{10,000}{\sqrt{\text{fasting glucose} \times \text{fasting insulin} \times \text{(mean glucose \times mean insulin during OGTT)}}}$$

where glucose is measured in mmol/l and insulin in mIU/l.

For HOMA-IR, values above the 95th percentile for age and gender were used as cutoff (18). For ISI, normal values for children and adolescents are not available.

Statistical methods

The primary hypothesis of this study was the improvement of IR measured by HOMA-IR at T4 in comparison to T1 and T2. Secondary endpoints were anthropometric measurements (BMI and waist-to-hip ratio), cardiovascular risk parameters (systolic and diastolic blood pressure), lipid profile (total-, LDL-, HDL-chol., and triglycerides), and other metabolic parameters (glucose tolerance and fasting insulin). In addition, covariates included age, gender, and pubertal stage. Since a clinically significant effect was defined as a decrease in HOMA-IR by −1, two groups of 37 patients had to be included in the study to achieve a power of 0.9 with a value of 0.05. Descriptive analysis included means, s.d., medians, quartiles, and ranges for each variable separately in both the study arms. For each of the parameters, normal distribution was examined, and, if necessary, a log transformation was applied. For both primary and secondary endpoints, the primary analysis was the analysis of covariance with baseline as the continuous covariate and each study arm as the factor. Additionally, the influence of potential predictors for change in HOMA-IR was analyzed using analysis of covariance. The α-level was set at 0.05 (two-sided) for all statistical tests, only the primary analysis was strictly confirmatory. The analyses were done using SAS release 9.1 (SAS Institute, Cary, NC, USA) and SPSS 15.0 (SPSS Inco, Chicago, IL, USA).
Results

Eighty-six obese insulin-resistant adolescents consented to participate in the study (Fig. 2, mean age 13.8±2.1 years; mean BMI 33.1±4.6 kg/m²). In comparison to patients who were not enrolled, the study cohort was predominantly female, older, and further advanced in puberty. Fasting insulin as well as systolic blood pressure was significantly higher in the study cohort (Table 1).

After 6 months of lifestyle intervention, 70 patients who did not significantly reduce BMI or IR were randomized to either metformin (n=36) or placebo (n=34) group. The groups did not differ significantly by gender (female 72 vs 62%; P=0.35), age (15.1 vs 15.0 years; P=0.98), ethnicity (Caucasian 87.3 vs 91.2%; P=0.11), pubertal stage (Tanner > III 87.1 vs 90.5%; P=0.71), or BMI (34.3 vs 35.5 kg/m²; P=0.35).

Adherence to lifestyle intervention prior to and during medication

For the study population, the adherence to the lifestyle intervention program was significantly improved during the total medication period (between T2 and T4; Fig. 1) in comparison to the lifestyle intervention alone (between T1 and T2). Appointments for clinical visits and educational sessions were kept in 62% of the cases in the first 6 months without medication. The adherence rate increased to 88% (P=0.001; metformin group) and 92% (P=0.001; placebo group) after randomization. While the clinical setting of lifestyle intervention and the intensity of care did not change throughout the study, individual goals were diverse before and after randomization, with the majority of participants choosing to reduce their soft drink consumption during the medication period. During the lifestyle intervention alone, 32% reported that they used water to quench their thirst, in contrast to 74% during medication plus lifestyle intervention (P<0.001). Concerning energy expenditure, the adherence to regular physical activity also increased significantly between T2 and T4 (medication plus lifestyle intervention): significantly, more adolescents (61% in the metformin group and 70% in the placebo group) reported performing at least one sport session of 45–90 min/week in addition to school physical education, compared with 23% (P<0.001) and 28% (P<0.001) respectively between T1 and T2 (exclusive lifestyle intervention). Self-reported media time of more than 3 h/day was present in 67% during lifestyle alone (between T1 and T2) and in 43% during medication plus lifestyle intervention (between T2 and T4; P=0.032).

Side effects, adherence to medication, and drop out

In general, metformin and placebo were well tolerated. Gastrointestinal symptoms were reported in 20% of the participants (metformin n=5; placebo n=9). Specific treatment was not necessary. These side effects caused 6% of the participants to drop out of the study (metformin n=1; placebo n=3; Fig. 2). Additionally, 10% of the participants (metformin n=3; placebo n=4) reported unspecific side effects such as weakness or fatigue for a short time, with spontaneous remission.

Three participants were excluded from the study due to insufficient adherence based on pill counts (intake <70%; metformin n=1; placebo n=2). Therefore, the total dropout rate after randomization was 10% (n=7), five in the placebo group and two in the metformin group (Fig. 2).

Anthropometric and metabolic parameters

Between T1 and T2, the participants gained weight (n=70; BMI 33.1±4.7 to 34.9±5.4 kg/m²; P<0.001), and fasting blood glucose (n=70; 87.7±6.7 to 94.7±10.6 mg/dl; P<0.001) as well as HOMA-IR (n=70; 5.0±2.7 to 5.9±3.1; P<0.001) increased significantly. The effects of metformin and the placebo in addition to the ongoing lifestyle intervention are shown in Table 2. In both the groups, the primary outcome parameter, HOMA-IR, increased between T1 and T2 (exclusive lifestyle intervention), and significantly improved between T2 and T4 (added medication) (Fig. 2).

Though a reduction in BMI could be observed in 53% (metformin) and 36% (placebo) of the patients, changes between T2 and T4 and group differences were not significant (intergroup P=0.054; Table 2). This was also the case for waist-to-hip ratio and body composition. (Bioimpedance analysis, data not shown). Concerning the metabolic parameters (Table 2), fasting insulin decreased significantly, both with metformin (23.3 to 18.8 µU/ml) and with the placebo (27.7 to 22.2 µU/ml). HOMA-IR also dropped in both the groups significantly (metformin 5.35–4.8 and placebo 5.4–4.9 µU/ml).

Figure 2 Enrolment of the patients and completion of the study.
Significantly correlated to BMI at T4 (IR indices, HOMA-IR and fasting insulin at T1 were and T4 (Table 2).

The significant improvements in HOMA-IR and fasting insulin as well as in better weight regulation during medication both in the study and the placebo groups suggest a strong indirect placebo effect. Patients could have been highly motivated through enrolment, as they became significantly more engaged in the obesity program and were ready to undertake individual changes in nutritional habits and physical activity. Especially, the reduction in soft drink consumption as an individual goal potentially influenced metabolic parameters due to the reduced sucrose, glucose, and fructose intake (27). This might also modulate central appetite regulation (28). Self-reported lifestyle changes only reflect the subjective appraisals of patients and families. This limits the force of expression concerning the significant differences between lifestyle alone and medication plus lifestyle, independent of metformin or placebo.

While most differences between metformin and placebo did not reach statistical significance, significant improvement of insulin sensitivity was observed only in the metformin group. As an indicator, ISI particularly reflects the peripheral insulin sensitivity, which is primarily deteriorated in obese children and adolescents. Therefore, this points to a notable metformin effect in this field. In relation to adult studies, the values for ISI are relatively very low, suggesting severe IR in this group. As most patients are in the puberty stage, this is an additional condition with physiological IR. This supports the well-known efficacy of metformin therapy on glucose metabolism and its effects in countereacting IR, but the dose of 1000 mg metformin/day was probably too low for the body mass of these adolescents to reveal effects in addition to

Table 1 Baseline characteristics of the study cohort.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Patients enrolled in the metformin study at T1 n=86</th>
<th>Patients at risk of diabetes not enrolled n=192</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>30 (34.9%)</td>
<td>98 (51%)</td>
<td>0.012</td>
</tr>
<tr>
<td>Female</td>
<td>56 (65.1%)</td>
<td>94 (49%)</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>13.77±2.13</td>
<td>12.88±3.17</td>
<td>0.007</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>80 (93%)</td>
<td>173 (90.1%)</td>
<td>0.585</td>
</tr>
<tr>
<td>Others</td>
<td>6 (7%)</td>
<td>18 (9.9%)</td>
<td></td>
</tr>
<tr>
<td>Pubertal stage (Tanner)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prepubertal (I)</td>
<td>6 (7.1%)</td>
<td>43 (22.4%)</td>
<td></td>
</tr>
<tr>
<td>Early puberty (II and III)</td>
<td>23 (27.4%)</td>
<td>69 (35.9%)</td>
<td></td>
</tr>
<tr>
<td>Late puberty (IV and V)</td>
<td>55 (65.5%)</td>
<td>80 (41.7%)</td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>33.06±6.64</td>
<td>32.93±6.56</td>
<td>0.851</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>4.9 (3.9–5.98)</td>
<td>4.58 (3.05–7.10)</td>
<td>0.139</td>
</tr>
<tr>
<td>Fasting insulin (µU/ml)</td>
<td>23.8 (19.1–28.5)</td>
<td>21.10 (13.78–31.83)</td>
<td>0.015</td>
</tr>
<tr>
<td>Fasting blood glucose (mg/dl)</td>
<td>84.28±15.58</td>
<td>89.40±8.41</td>
<td>0.06</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>128.68±10.59</td>
<td>124.42±13.87</td>
<td>0.008</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
<td>67.67±8.58</td>
<td>69.39±9.55</td>
<td>0.175</td>
</tr>
</tbody>
</table>

Data are shown as means±s.d., medians (1–3 quartile), or number n (%) in percent of total. BMI, body mass index; HOMA-IR, homeostasis model assessment of insulin resistance, refer to Methods. To convert values for insulin to picomoles per liter, multiply by 7.17. To convert values for glucose to millimoles per liter, multiply by 0.05551. Significant differences of values P<0.05 are indicated in bold.

6.65–5.6). ISI improved significantly only in the metformin group (0.70–1.1; P=0.008). Overall, IR indices (HOMA-IR or ISI) improved in 73% of the metformin-treated patients and in 54% of the placebo group (intergroup P=0.048).

Cardiovascular risk parameters remained unchanged in the metformin and the placebo groups between T2 and T4 (Table 2).

Regarding the changes of adiposity over time and IR indices, HOMA-IR and fasting insulin at T1 were significantly correlated to BMI at T4 (r=0.44, P<0.001 and r=0.42, P=0.001 respectively; corrected for age and pubertal stage) but not to BMI at T2. No other significant correlations were observed.

Discussion

Subjects included in the present study represent a high risk group of extremely obese, late pubertal, and predominantly female European adolescents with significantly higher systolic blood pressure and fasting insulin levels than the patients who were not enrolled in the outpatient obesity clinic. Moreover, it has to be borne in mind that the study was conducted in a population with a physiologically high IR due to pubertal development (18), which might be reflected by the slight increase in fasting glucose over the whole study period in both the study arms. During individualized multiprofessional lifestyle intervention alone, BMI and IR deteriorated significantly in the study cohort. During both the placebo and metformin therapy in addition to lifestyle intervention, however, insulin sensitivity improved without weight change.
Table 2 Mean±S.D. or medians (1–3 quartile) of clinical, metabolic and biochemical parameters.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>T1 (n=34)</th>
<th>T2 (n=36)</th>
<th>T4 (n=30)</th>
<th>P value (T1/T2)</th>
<th>P value (T2/T4)</th>
</tr>
</thead>
</table>
| Clinical and metabolic parameters at baseline (T1) and after lifestyle therapy alone (T2) for 6 months, and addition of placebo or metformin treatment (2500 mg/day in a randomized, placebo-controlled, double-blind study in 90 obese Turkish adolescents regarding BMI, fasting insulin, and HOMA-IR. This study population was less obese (mean BMI 28.5 kg/m²). Burge et al. (30) tested the metabolic and cardiovascular effects of 1500 mg metformin in extremely obese non-diabetic adolescents (randomized, placebo-controlled and double-blind) in a 4-month trial. This short-term use of metformin had a beneficial effect on BMI and the autonomous nerve system (heart), but seemed to benefit insulin sensitivity only slightly. The correlation between initial fasting insulin levels and the weight outcome stresses the importance to treat hyperinsulinemia as a prerequisite for efficacious weight management. Insulin sensitization might be achieved by qualitative improvement of diet and activity, as in the present study, and/or by metformin in those unable to adhere to lifestyle modifications.

The lack of significant difference in HOMA-IR and BMI in the metformin-treated group versus placebo group does not support the use of metformin in the fixed dose of 1000 mg in childhood to improve IR in addition to a multiprofessional obesity program, and thus further studies are necessary (15). The effectiveness of metformin, however, does not outrank that of behavioral interventions in reducing BMI. A meta-analysis showed that the latter results in a BMI reduction of $-3.04 \text{kg/m}^2 (-3.14 \text{to} -2.94)$ at 6 months, an effect that could still be observed at the 12-month follow-up (Oude Luttikhuis et al. (2009) (2)). Also when compared with other drugs licensed for the treatment of obesity, metformin only brings about a relatively moderate weight reduction (15).
The present study, however, reveals a beneficial ‘side-effect’: there is a strong placebo effect being endorsed by the higher prevalence of side effects in the placebo group than in the metformin group. This placebo effect shows how important the belief in therapy effects and self-efficacy may be (31), as it strengthens the motivation for lifestyle changes in obese adolescents and enhances adherence to a healthy lifestyle.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

The study was supported in part by BMBF Research grant 01 GS 0825 and by MERCK SANTE S.A.S. Lyon, France (10'000,- Euro); metformin, purchased at Hexal AG, Holzkirchen, Germany. The study protocol is registered at the European Study Council (Eudra-CT-Nr 2004-003816-47).

Acknowledgements

The authors wish to thank all the patients, families, investigators, and staff who participated in the study.

References

21 Marshall T. Variations in patterns of pubertal changes in boys. *Archives of Disease in Childhood* 1979 45 13–23. (doi:10.1136/adc.45.2.13)
25 Bonora E, Targher G, Alberiche M, Bonadonna RC, Saggiani F, Zennere MB, Monnaui T & Muggeo M. Homeostasis model assessment closely mirrors the glucose clamp technique in the...
assessment of insulin sensitivity: studies in subjects with various
degrees of glucose tolerance and insulin sensitivity. Diabetes Care
2000 23 57–63. (doi:10.2337/diacare.23.1.57)
26 Matsuda M & DeFronzo RA. Insulin sensitivity indices obtained
from oral glucose tolerance testing: comparison with the
(doi:10.2337/diacare.22.9.1462)
27 Stanhope KL & Havel PJ. Endocrine and metabolic effects
of consuming beverages sweetened with fructose, glucose,
sucrose, or high-fructose corn syrup. American Journal of Clinical
25825D)
Rippe JM. High-fructose corn syrup, energy intake, and
29 Kasa-Vubu JZ. Metformin as a weight-loss tool in "at-risk" obese
152 750–752. (doi:10.1016/j.jpeds.2008.03.006)
30 Burgert TS, Duran EJ, Goldberg-Gell R, Dziura J, Yeckel CW, Katz S,
Tamborlane WV & Caprio S. Short-term metabolic and cardio-
vascular effects of metformin in markedly obese adolescents with
31 Lippke S, Wiedemann AU, Ziegelmann JP, Reuter T & Schwarzer R.
Self-efficacy moderates the mediation of intentions into behavior

Received 4 July 2010
Accepted 16 July 2010