High incidence of low O6-methylguanine DNA methyltransferase expression in invasive macroadenomas of Cushing's disease

Akira Takeshita1,5, Naoko Inoshita2, Manabu Taguchi1, Chikao Okuda3, Noriaki Fukuhara4, Kenichi Oyama4, Kenichi Ohashi2, Toshiaki Sano2,6, Yasuhiro Takeuchi1,5 and Shozo Yamada4,5

1Department of Endocrinology and Metabolism, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan, Departments of 2Pathology, 3Gastroenterology and 4Hypothalamic and Pituitary Surgery, Toranomon Hospital, Tokyo 105-8470, Japan, 5Okinaka Memorial Institute for Medical Research, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan and 6Department of Pathology, The University of Tokushima Graduate School of Medicine, Tokushima 770-8503, Tokyo, Japan

(Correspondence should be addressed to A Takeshita at Department of Endocrinology and Metabolism, Toranomon Hospital and Okinaka Memorial Institute for Medical Research; Email: coactivator@mac.com)

Abstract

Context: Crooke's cell adenoma (CCA), characterized by massive Crooke's hyaline change in corticotroph adenoma, causes a rare subtype of Cushing's disease. In contrast to ordinary corticotroph adenomas, CCAs are generally aggressive and present as invasive macroadenomas, which are refractory to both surgery and radiotherapy and have a high-recurrence rate. Moreover, some patients with CCA present with distant or craniospinal metastases. Currently, there are no effective standard therapies for CCA.

Objective: We report a patient with Crooke's cell carcinoma who presented with local invasion and liver metastases, which was refractory to conventional therapeutic modalities including transsphenoidal surgery, radiosurgery, medications, and hepatic transcatheter arterial embolization. After all these treatments failed, the patient had monthly temozolomide administrations, resulting in gradual clinical improvement and biochemical data that were consistent with tumor shrinkage. In glioblastoma, low O6-methylguanine DNA methyltransferase (MGMT) expression is associated with epigenetic gene silencing and predicts a better response to temozolomide.

Methods: We thus investigated MGMT expression, immunohistochemically, in seven CCAs (five invasive macroadenomas and two invasive microadenomas) and 17 ordinary-type adenomas (OTAs; three noninvasive macroadenomas, 12 noninvasive microadenomas, and two invasive microadenomas) from patients with Cushing's disease.

Results: In seven CCAs, all five invasive macroadenomas exhibited low MGMT expression, defined as <5% nuclear MGMT staining. In 17 OTAs, only one adenoma showed low MGMT expression.

Conclusion: In Cushing's disease, invasive macroadenomas including CCA usually have low-MGMT expression. Temozolomide thus may be a new therapeutic option for invasive macroadenomas such as CCA particularly when conventional treatments are ineffective.

Introduction

Crooke's cell adenoma (CCA), a histologic variant type of ACTH-producing adenoma, is characterized by Crooke's hyaline change in most corticotroph adenoma cells. Although CCAs are a rare subtype of Cushing's disease with estimated prevalence of 4.4–14% in all corticotroph adenomas, CCAs are generally aggressive presenting as invasive macroadenomas, and resistant to surgery and radiotherapy with high-recurrence rate (1–3). Corticotroph carcinomas developed in preexisting CCA are not unusual and have been reported in the literatures (1, 4).

Pituitary carcinomas are defined as pituitary tumors with craniospinal and/or systemic metastases. Pituitary carcinomas are rare, making up 0.1–0.2% of all pituitary tumors. The majority of carcinomas arise from corticotroph adenomas or prolactinomas. Pituitary carcinomas usually do not respond well to radiation therapy or systemic chemotherapy. Consequently, most patients die within 1 year of the diagnosis of pituitary carcinoma (reviewed in (5, 6)).

Lim et al. first reported the successful use of temozolomide in a 72-year-old man with a prolactin (PRL)-producing pituitary carcinoma (7). They observed a decrease in serum PRL levels with clinical
improvement and significant tumor shrinkage. Since then, there have been several case reports showing the beneficial antitumor effects of temozolomide in the treatment of invasive pituitary tumors including pituitary carcinomas (8–11) and a case of Nelson’s syndrome (12). Recently, Mohammed et al. reported two cases of CCA treated with temozolomide (13).

Here, we describe a case of metastatic Crooke’s cell carcinoma, which was refractory to any conventional treatment. Temozolomide administration successfully controlled ACTH hypersecretion and tumor growth. Previous studies reported that patients with glioblastoma containing O6-methylguanine DNA methyltransferase (MGMT) methylation of the gene promoter had a better response to temozolomide than those without methylated MGMT promoter (reviewed in (14)). MGMT gene promoter hypermethylation has been associated with epigenetic inactivation of the gene and the subsequent loss of the MGMT protein that plays an important role in the repair of DNA damage induced by alkylating agents such as temozolomide (reviewed in (15)). These observations suggest that low MGMT expression in CCAs may predict a better response to temozolomide treatment. Thus, we examined immunohistochemical expression of MGMT in CCAs as well as other corticotroph tumors from Cushing’s disease patients.

Case report

In 1998, a 46-year-old woman was diagnosed with Cushing’s disease. Although transsphenoidal surgery (TSS) was performed, the infiltrating tumor remained in her left cavernous sinus. She underwent γ-knife radiosurgery twice in 2000 and 2002, and a second TSS in 2003, without any significant clinical improvement.

In January 2004, the patient was referred to Toranomon Hospital for further evaluation. Laboratory data showed elevated plasma ACTH (182 pg/ml at 0800 h, reference range of 9–52 pg/ml) and serum cortisol (43.1 µg/dl, reference range of 4.5–21 µg/dl) with loss of their diurnal rhythm, and increased urinary free cortisol excretion (230.7 µg/day). A third TSS was performed in March 2004, but the patient remained hypercortisolemic. Medical therapies such as cabergoline, thiazolidinedione (pioglitazone), and octreotide failed to reduce ACTH and cortisol levels or prevent tumor invasion of the left cavernous sinus. Additional CyberKnife radiosurgery was undertaken in February 2006, without significant tumor shrinkage. Figure 1 shows the patient’s blood ACTH and cortisol concentration over the course of treatment since 2004. TSS, transsphenoidal surgery; TAE, hepatic transcatheter arterial embolization.

In April 2005, multiple liver metastases were found by computed tomography (CT) scan (Fig. 2A(a)). Histopathology of a hepatic biopsy confirmed metastases of pituitary tumor having Crooke’s hyaline change (Fig. 2C(a and b)). Hepatic transcatheter arterial embolization was repeated thrice, resulting in approximately one-third decrease in tumor size.

Persistent hypercortisolemia resulted in multiple clinical complications, including diabetes requiring insulin therapy, severe hypertension, massive lower leg edema with cutaneous ulcer and cellulitis, brain infarction, and spinal compression fractures due to osteoporosis. Metyrapone treatment could temporally control her serum cortisol at ~ 20 µg/dl. In April 2005, metyrapone therapy was substituted for mitotane at a daily dose of 2–3 g. After April 2007, the cortisol level fell below 10 µg/dl, probably due to the adrenolytic effect of mitotane. On the other hand, plasma ACTH concentrations rose to a peak of 15 000 pg/ml at that time, suggesting that the mitotane treatment induced Nelson’s syndrome. When mitotane was discontinued,

Figure 1 Changes of plasma ACTH and serum cortisol levels over the course of treatment since 2004. TSS, transsphenoidal surgery; TAE, hepatic transcatheter arterial embolization.

Pituitary magnetic resonance imaging (MRI) showed the tumor extending into the left sphenoid sinus (Fig. 2D(a)). In July 2007, the patient started on a dose of temozolomide 200 mg (150 mg/m²) daily for 5 days in monthly cycles. Then the daily dose was increased to 260 mg (190 mg/m²) from the second cycle. We adopted the standard schedule of temozolomide treatment widely used for malignant glioma at a dose of 150–200 mg/m² once daily for days 1–5 of a 28-day cycle (16). Three months after treatment initiation, plasma ACTH fell to 1008 pg/ml. In parallel with reduced ACTH, serial MRI scans have shown a reduction in pituitary tumor volume in the left sphenoid sinus (Fig. 2D(b)). Liver metastases were hardly detectable in abdominal CT after the six cycles of treatment (Fig. 2B(b)). Her clinical features of Cushing’s disease gradually improved, so medications for her hypertension, diabetes, and edema were discontinued. After 1 year, the monthly temozolomide treatment was reduced to every other month at a dose of 200 mg per day for 5 days. In a recent visit in June 2009, her ACTH and cortisol were found to be 20.8 pg/ml and <0.2 μg/dl respectively. Since bimonthly temozolomide treatment during the second year effectively sustained a favorable response, we decided to further decrease the frequency of temozolomide treatment to trimonthly from the third year. Currently, we plan to continue the trimonthly treatment as a maintenance therapy to prevent relapse because there are two case reports describing recurrence of pituitary carcinoma after discontinuation of temozolomide treatment (9, 13). She has continued to take dexamethasone to prevent adrenal insufficiency. Throughout her temozolomide treatments, the patient tolerated the medication well, without significant nausea, vomiting, myelosuppression, or other adverse events.

Materials and methods

Patients and tumor pathology

We reviewed all tumor samples from 103 patients with clinically active Cushing’s disease who underwent TSS between January 2004 and February 2009. The samples were studied by routine histological methods such as hematoxylin and eosin staining, and immunohistochemical staining using antibodies for anterior pituitary hormones (ACTH, GH, PRL, TSH, FSH, LH) and cytokeratin (CAM 5.2) as previously described (17, 18). The samples were classified as CCA whenever the percentage of Crooke’s hyaline change of tumor cells was greater than 50%, and the remaining tumor samples were considered as ordinary-type adenomas (OTAs) (1). The samples were reviewed by two pathologists (N I and T S) independently, and differences were resolved by consensus in each equivocal case.
Seven tumor samples were identified as CCAs from 103 samples, and they were compared with randomly selected 17 tumor samples of OTAs obtained from 2007 to 2008. Informed consent was obtained from all patients of which we assessed MGMT expression for investigational purposes, and tissue collection was approved by Institutional Review Board of Toranomon Hospital. Tumor size and invasiveness were defined on the basis of preoperative radiological findings and operative findings. Microadenomas were defined as tumors <10 mm in maximal diameter, whereas macroadenomas were larger than 10 mm. Tumor invasion was defined by evidence of bony destruction and/or tumor within the sphenoid and/or cavernous sinuses and/or into the brain, which was confirmed at the time of surgery. Patients were considered as in surgical remission on the basis of the postoperative serum cortisol levels <3 μg/dl (19).

MGMT immunoexpression and analysis

Sections of formalin-fixed, paraffin-embedded specimens of tumors underwent heat-induced antigen retrieval for 40 min at 95 °C in Target Retrieval Solution (Dako, Glostrup, Denmark). Sections were incubated overnight at 4 °C with a mouse monoclonal anti-MGMT antibody (clone MT3.1; Novus Biologicals, Littleton, CO, USA) at 1:300 dilution. The slides were stained using a EnVision + System-HRP Kit (Dako). Immunohistochemical reactions were developed with diaminobenzidine, and slides were counterstained with hematoxylin. The level of MGMT protein expression was defined semiquantitatively by visual impression according to the fraction of positive nuclear staining and was scored as low (few endothelial cells immunostained and <5% of tumor cells immunostained), moderate (5–20% of tumor cells immunostained), or high (>20% of tumor cells immunostained). Nonneoplastic cells (vascular endothelial cells and lymphocytes) served as an internal positive control in all tissue sections. The results of the MGMT immunostaining were scored separately by two independent pathologists (N I and T S) who were blinded to the subtype of the tumors. In case of disparate scoring, the results were discussed by three of us (N I, T S, and A T) using a multiheaded microscope to obtain a final consensus in each equivocal case.

Results

Patient characteristics

The clinical and morphological characteristics of the tumors examined are summarized in Table 1. The tumor from the temozolomide-responsive patient in the case report is shown as case 1. In seven CCAs, five were macroadenomas and two were microadenomas. All seven CCAs exhibited cavernous sinus invasion, and four cases were from reoperations. Two cases of macroadenoma failed to achieve surgical remission. In 17 OTAs, three were macroadenomas and 14 were microadenomas. Two microadenomas had cavernous sinus invasion, and four were from reoperated cases. All 17 cases of OTAs achieved surgical remission.

Immunohistochemical analysis of MGMT

In a surgical specimen of normal pituitary tissue adjacent to pituitary tumor, more than half of the cell nuclei were immunostained using a specific MAB against MGMT (Fig. 3A). Results of immunohistochemical expression of MGMT in corticotroph tumors are referenced in Table 1. Moderate or high expression of MGMT was found in 18/24 (75%) of the tumors, whereas MGMT expression was low in 6/24 (25%) of the tumors. The tumor from temozolomide-responsive patient (case 1) showed low-MGMT expression, although vascular endothelial cells were positively stained with anti-MGMT antibody (Fig. 3B). Importantly, all five invasive CCA macroadenomas exhibited low-MGMT expression (cases 1–5). Thus, among the six tumors to show low-MGMT staining, five were CCAs. Among 17 OTAs, only one adenoma (case 8) showed low MGMT expression.

Discussion

We have described a case of Cushing’s disease due to an ACTH-secreting invasive pituitary carcinoma that metastasized to the liver 7 years after the initial diagnosis. Both pituitary tumor and metastatic lesions showed similar histologic features that were compatible with CCA. George et al. reported 36 cases of CCAs in which they defined tumor as CCA when more than 50% of the adenoma cells exhibited Crooke’s hyaline change (1). They also found that 81% of the CCAs were macroadenomas and 72% were invasive. Moreover, 60% of 25 follow-up cases developed recurrent tumor and 24% had multiple recurrences. Three of these 25 patients died due to their tumor; one due to multiple local recurrences and two from pituitary carcinoma. They concluded that these tumors are innately aggressive and represent a distinct clinicopathologic entity that should be separated from ordinary corticotroph adenomas, although the latter usually contain Crooke’s hyaline change to some extent. CCA is also classified as a variant histologic entity of ACTH-producing adenoma in 2004 WHO classification of tumors of endocrine organs (20). Several other case reports (2–4, 13) and our own experience with cases of CCA confirm the aggressive clinical features observed in CCA.

Pituitary carcinoma is rapidly progressive and usually refractory to current available therapies including classic chemotherapeutic agents (21). In contrast, the alkylating compound, temozolomide, which was
Table 1 Summary of patient characteristics.

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Histological finding</th>
<th>MGMT</th>
<th>Sex</th>
<th>Age at operation</th>
<th>Age at diagnosis</th>
<th>Size</th>
<th>Cavernous sinus invasion</th>
<th>Prior TSS</th>
<th>Preoperative values</th>
<th>Postoperative values</th>
<th>Postoperative outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CCA</td>
<td>L</td>
<td>F</td>
<td>52</td>
<td>46</td>
<td>M</td>
<td>+</td>
<td>2</td>
<td>182.0</td>
<td>43.1</td>
<td>230.7</td>
</tr>
<tr>
<td>2</td>
<td>CCA</td>
<td>L</td>
<td>F</td>
<td>41</td>
<td>40</td>
<td>M</td>
<td>+</td>
<td>1</td>
<td>444.7</td>
<td>30.4</td>
<td>82.8</td>
</tr>
<tr>
<td>3</td>
<td>CCA</td>
<td>L</td>
<td>M</td>
<td>37</td>
<td>37</td>
<td>M</td>
<td>+</td>
<td>0</td>
<td>221.0</td>
<td>30.2</td>
<td>1351.2</td>
</tr>
<tr>
<td>4</td>
<td>CCA</td>
<td>L</td>
<td>F</td>
<td>44</td>
<td>44</td>
<td>M</td>
<td>+</td>
<td>0</td>
<td>96.0</td>
<td>16.5</td>
<td>579.0</td>
</tr>
<tr>
<td>5</td>
<td>CCA</td>
<td>L</td>
<td>F</td>
<td>57</td>
<td>55</td>
<td>M</td>
<td>+</td>
<td>2</td>
<td>285.1</td>
<td>9.7</td>
<td>91.0</td>
</tr>
<tr>
<td>6</td>
<td>CCA</td>
<td>H</td>
<td>F</td>
<td>58</td>
<td>58</td>
<td>m</td>
<td>+</td>
<td>0</td>
<td>87.4</td>
<td>17.4</td>
<td>405.6</td>
</tr>
<tr>
<td>7</td>
<td>CCA</td>
<td>M</td>
<td>M</td>
<td>46</td>
<td>20</td>
<td>m</td>
<td>+</td>
<td>1</td>
<td>20.4</td>
<td>14.8</td>
<td>234.0</td>
</tr>
<tr>
<td>8</td>
<td>OTA</td>
<td>L</td>
<td>F</td>
<td>20</td>
<td>20</td>
<td>m</td>
<td>-</td>
<td>0</td>
<td>35.4</td>
<td>17.8</td>
<td>407.0</td>
</tr>
<tr>
<td>9</td>
<td>OTA</td>
<td>M</td>
<td>F</td>
<td>68</td>
<td>67</td>
<td>m</td>
<td>-</td>
<td>0</td>
<td>72.9</td>
<td>27.7</td>
<td>583.0</td>
</tr>
<tr>
<td>10</td>
<td>OTA</td>
<td>H</td>
<td>F</td>
<td>43</td>
<td>42</td>
<td>M</td>
<td>-</td>
<td>0</td>
<td>22.0</td>
<td>13.7</td>
<td>241.1</td>
</tr>
<tr>
<td>11</td>
<td>OTA</td>
<td>M</td>
<td>F</td>
<td>19</td>
<td>15</td>
<td>m</td>
<td>+</td>
<td>2</td>
<td>56.0</td>
<td>16.4</td>
<td>383.8</td>
</tr>
<tr>
<td>12</td>
<td>OTA</td>
<td>H</td>
<td>F</td>
<td>70</td>
<td>70</td>
<td>m</td>
<td>+</td>
<td>0</td>
<td>116.9</td>
<td>13.1</td>
<td>147.4</td>
</tr>
<tr>
<td>13</td>
<td>OTA</td>
<td>M</td>
<td>F</td>
<td>56</td>
<td>53</td>
<td>M</td>
<td>-</td>
<td>0</td>
<td>28.5</td>
<td>17.7</td>
<td>319.1</td>
</tr>
<tr>
<td>14</td>
<td>OTA</td>
<td>H</td>
<td>F</td>
<td>39</td>
<td>37</td>
<td>M</td>
<td>-</td>
<td>1</td>
<td>109.6</td>
<td>27.8</td>
<td>1076.9</td>
</tr>
<tr>
<td>15</td>
<td>OTA</td>
<td>H</td>
<td>F</td>
<td>46</td>
<td>46</td>
<td>m</td>
<td>-</td>
<td>0</td>
<td>93.3</td>
<td>24.5</td>
<td>368.7</td>
</tr>
<tr>
<td>16</td>
<td>OTA</td>
<td>H</td>
<td>F</td>
<td>57</td>
<td>56</td>
<td>m</td>
<td>-</td>
<td>0</td>
<td>135.0</td>
<td>25.6</td>
<td>321.0</td>
</tr>
<tr>
<td>17</td>
<td>OTA</td>
<td>H</td>
<td>F</td>
<td>57</td>
<td>57</td>
<td>m</td>
<td>-</td>
<td>0</td>
<td>63.8</td>
<td>19.8</td>
<td>464.8</td>
</tr>
<tr>
<td>18</td>
<td>OTA</td>
<td>H</td>
<td>M</td>
<td>44</td>
<td>44</td>
<td>m</td>
<td>-</td>
<td>1</td>
<td>129.6</td>
<td>21.0</td>
<td>1875.7</td>
</tr>
<tr>
<td>19</td>
<td>OTA</td>
<td>H</td>
<td>F</td>
<td>40</td>
<td>40</td>
<td>m</td>
<td>-</td>
<td>0</td>
<td>93.6</td>
<td>32.3</td>
<td>2228.0</td>
</tr>
<tr>
<td>20</td>
<td>OTA</td>
<td>H</td>
<td>F</td>
<td>58</td>
<td>33</td>
<td>m</td>
<td>-</td>
<td>2</td>
<td>116.2</td>
<td>16.7</td>
<td>175.9</td>
</tr>
<tr>
<td>21</td>
<td>OTA</td>
<td>H</td>
<td>F</td>
<td>42</td>
<td>42</td>
<td>m</td>
<td>-</td>
<td>0</td>
<td>101.0</td>
<td>54.7</td>
<td>1710.0</td>
</tr>
<tr>
<td>22</td>
<td>OTA</td>
<td>H</td>
<td>F</td>
<td>43</td>
<td>43</td>
<td>m</td>
<td>-</td>
<td>0</td>
<td>41.2</td>
<td>14.2</td>
<td>313.2</td>
</tr>
<tr>
<td>23</td>
<td>OTA</td>
<td>H</td>
<td>F</td>
<td>37</td>
<td>36</td>
<td>m</td>
<td>-</td>
<td>0</td>
<td>53.3</td>
<td>20.9</td>
<td>412.0</td>
</tr>
<tr>
<td>24</td>
<td>OTA</td>
<td>H</td>
<td>F</td>
<td>33</td>
<td>32</td>
<td>m</td>
<td>-</td>
<td>0</td>
<td>68.9</td>
<td>18.0</td>
<td>331.1</td>
</tr>
</tbody>
</table>

CCA, Crooke’s cell adenoma; OTA, ordinary-type adenoma; MGMT, low (L), moderate (M), high (H); Sex, female (F), male (M); Size, macroadenoma (M), microadenoma (m); TSS, transsphenoidal surgery.

*Preoperative medication could influence preoperative values of plasma ACTH, serum cortisol, and urinary free cortisol.
Consistent with these observations, our case showed low MGMT expression. Large-scale multi-institutional clinical trials including pathological MGMT expression analysis will be necessary to prove the relationship of MGMT status to the extent of temozolomide response. Several studies have evaluated MGMT expression status by immunohistochemistry and/or methylation-specific PCR in pituitary adenomas (11, 23, 24). However, to our knowledge, this is the first report of immunohistochemical analysis of MGMT expression in corticotroph tumors from patients with Cushings disease in which a large number of tumor samples was classified according to histologic types. Previous studies have not found significant differences in MGMT expression between invasive and noninvasive pituitary adenomas, or between recurrent and nonrecurrent adenomas in their examined materials (11, 24). These results are different from our finding that low MGMT expression was more common in invasive macroadenomas, including CCA, compared with microadenomas in Cushing’s disease. The difference may be due to different histological samples used in each study since the previous studies were mainly performed in nonfunctioning pituitary adenomas whereas our study focused on CCAs. Indeed, the issue we actually want to address is how to manage patients with CCAs refractory to conventional therapeutic modalities. Our observations suggest that such patients have tumors that usually have low MGMT expression, and thus may be sensitive to temozolomide chemotherapy. It would have been of interest to know the methylation status of the promoter in CCAs, as well.

Direct evaluation of MGMT protein expression using immunohistochemistry is the most feasible technique to estimate MGMT expression in tumor samples. Pituitary tumors are composed of relatively homogenous tumor cells with few nonneoplastic cells, providing favorable features for the reliable assessment of MGMT expression by immunohistochemistry. However, immunohistochemical stains may be prone to false negative staining for a variety of reasons, including differences in antibodies, preservation, fixation, or processing. Given the potential clinical significance of negative MGMT immunostaining, we have used endothelial cells as a reliable internal positive control since they are scattered throughout all pituitary tumors (11). Standardization of techniques to assess MGMT status will be beneficial to allow more accurate predictions of the clinical outcome of treatment with temozolomide in a patient with refractory pituitary tumor.

In summary, low-MGMT expression appears to be common in invasive macroadenomas of Cushing’s disease, including CCA. Our findings suggest that MGMT status could be a predictive marker to identify patients who are likely to respond to treatment with temozolomide. The favorable outcome of our present case supports the view that when conventional therapies fail, temozolomide may be administered to

![Figure 3](A) MGMT staining of normal pituitary (magnification, \times 200). More than half of the cell nuclei were immunostained. (B–D) Representative microscopy of semiquantitative assessment of MGMT immunoexpression in ACTH-producing pituitary adenomas according to the percentage of stained tumor cells: (B) low (case 1 of Table 1), <5% of tumor cells immunostained (stained endothelial cells (arrow) served as a positive control); (C) moderate (case 9 of Table 1), from 5 to 20% of tumor cells immunostained; and (D) high (case 12 of Table 1), >20% of tumor cells immunostained (magnification, \times 100 and \times 400 for insets).
patients with invasive and aggressive CCA if their tumors have low-MGMT expression. It also appears that this promising drug can reduce both tumor size and circulating ACTH levels substantially. Further studies will be necessary to substantiate the efficacy of this medication in a larger sample of patients with CCA who are refractory to standard therapies.

Declaration of interest

The authors declare that there is no conflict of interest.

Funding

This work was supported by Okinaka Memorial Institute for Medical Research, Tokyo, Japan.

Acknowledgements

We are grateful for critical review and editing of the manuscript by Paul M Yen, MD, Department of Medicine, Johns Hopkins Bayview Medical Center, Baltimore, MD, USA. We also thank Professors Kalman Kovacs, MD, and Eva Horvath, PhD, Department of Laboratory Medicine and Pathobiology, St Michael’s Hospital, Toronto, Canada, for their kind help in making the diagnosis of Crooke’s cell adenoma by electron microscopy.

References

Accepted 8 July 2009

Received 24 June 2009

www.eje-online.org