Characterization of the RET protooncogene transmembrane domain mutation S649L associated with nonaggressive medullary thyroid carcinoma

Mario Colombo-Benkmann, Zhenpeng Li, Burkhard Riemann, Karin Hengst, Hermann Herbst, Roger Keuser, Ute Groß, Susanne Rondot, Friedhelm Raue, Norbert Senninger, Brigitte M Pützer and Karin Frank-Raue

Department of General Surgery, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany, Department of Vectorology and Experimental Gene Therapy, Rostock University, 18057 Rostock, Germany, Department of Nuclear Medicine, Gerhard-Domagk-Institute of Pathology, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany, Praxis für Innere Medizin, Koblenz, Germany, Endokrinologikum Hamburg, 22767 Hamburg, Germany and Endokrinologisch-Humangenetische Gemeinschaftspraxis, Brückenstrasse 21, 69120 Heidelberg, Germany

(Correspondence should be addressed to K Frank-Raue; Email: karin.frankraue@raue-endokrinologie.de)

Abstract

Context: For rare and novel RET mutations associated with hereditary medullary thyroid carcinoma (MTC), clinical and functional studies are needed to classify the RET mutation into one of the three clinical risk groups.

Objective: We analyzed proliferative properties and clinical implications associated with the RET protooncogene transmembrane domain mutation S649L.

Design: The transforming potential and mitogenic properties of S649L mutation were investigated clinically and by evaluating kinase activity, cell proliferation, and colony formation.

Patients: Fifteen individuals from five kindreds were identified as carriers of a RET protooncogene mutation in exon 11 codon 649 (TCGSer → TTGLeu). In two out of five index patients, a second RET mutation (C634W or V804L) was detected.

Results: Eight gene carriers were operated on. Histology revealed MTC and C-cell hyperplasia in three index and three screening patients respectively. In all other gene carriers (aged 41–64 years), calcitonin levels were in the normal range, and pentagastrin-stimulated calcitonin levels were <100 pg/ml. Therefore, thyroidectomy had not yet been performed. In one index patient carrying the S649L mutation, hyperparathyroidism was confirmed histologically. RET\textsubscript{S649L}-expressing NIH3T3 cells exhibited a clear increase of phosphotyrosine and proliferation rate when compared with parental NIH3T3 cells but a significantly lower kinase activity and cell growth rate when compared with RET\textsubscript{C634R}-expressing cells.

When compared with RET\textsubscript{C634R}, the S649L mutant showed moderate transforming potential with small-sized colonies.

Conclusions: Our clinical and in vitro findings indicate that the transmembrane RET S649L mutation is associated with late-onset non-aggressive disease. Recommendations for prophylactic thyroidectomy should be individualized depending on stimulated calcitonin levels.
Informed consent was obtained from all subjects. Fifteen individuals were identified as mutant RET gene carriers (S649L). The study population consisted of five index and ten screening patients.

Calcitonin levels were measured by chemiluminescence assay (Nichols Institute, Bad Vilbel, Germany). The normal basal levels were <10.3 and <4.3 pg/ml for males and females respectively. After total thyroidectomy, no increment in calcitonin after pentagastrin administration (0.5 mg/kg body weight i.v.) was considered normal.

In all patients, germline RET mutation analysis was performed as described previously (7). Allele-specific PCR for the linkage analysis of exon 11 mutations was performed with normal (5'-GAAGGCAGACAGCAGCACCG-3') or mutant (5'-GAAGGCAGACAGCAGCACCA-3') codon 649-specific primers and exon 11 forward as a counterprimer. The product was sequenced as previously described (7).

Histology

CCH was defined as 50 C-cells per low-power field. Tumor staging was performed according to the International Union Against Cancer tumor-node-metastasis (TNM) classification from 1997.

In vitro studies

The RET51 mutant S649L was generated from the pJ7U RET51wt plasmid (a kind gift from M Bilaud) by site-directed mutagenesis using the QuikChange II XL kit (Stratagene, La Jolla, CA, USA). NIH3T3 stable cell lines expressing RET S649L and C634R were obtained and analyzed for equal RET protein expression as described previously (8). The cell growth rate and transforming potential were determined as described (8). For the XTT assay, cells seeded in 96-well plates were incubated with TACS-XTT labeling mixture (Trevigen Inc., Gaithersburg, MD, USA) for 4 h. Conversion of XTT to formazan was quantified by measuring the absorbance at 450 nm.

In vitro kinase activity assay

Subconfluent NIH3T3 cells, and stable cell lines expressing RET C634R or RET S649L were lysed in lysis buffer (150 mM NaCl, 0.5 mM EDTA, 1 mM dithiothreitol (DTT), 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 100 mM sodium vanadate, 50 mM Tris; pH 8.0) supplemented with protease inhibitors. Whole RET protein was immunoprecipitated from cell extracts containing 500 mg total protein with RET 51 (Santa Cruz, Biotechnology, Heidelberg, Germany) polyclonal antibody. Immunoprecipitation was carried out overnight at 4°C, and immunocomplexes were harvested by addition of A/G agarose beads. After extensive washing, immunocomplexes were eluted in tyrosine kinase (TK) buffer (60 mM HEPES (pH 7.5), 5 mM MgCl2, 5 mM MnCl2, 3 mM Na3VO4, 1.25 mM DTT, and 200 mM ATP) and TK activity was measured using a TK activity assay kit (Chemicon, Temecula, CA, USA) according to the manufacturer’s protocol.

Results

Fifteen individuals from five kindreds (male:female ratio 6:9; median age 44 years, range 20–75 years) were

<table>
<thead>
<tr>
<th>Family</th>
<th>Age</th>
<th>Sex</th>
<th>RET mutations</th>
<th>Index</th>
<th>Preoperatively basal/stimulated</th>
<th>Histology</th>
<th>pTNM</th>
<th>Cured</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II,5</td>
<td>29</td>
<td>M</td>
<td>649 + 634</td>
<td>Index</td>
<td>500/—</td>
<td>MTC, Pheo</td>
<td>pT2N0M0</td>
<td>Yes</td>
</tr>
<tr>
<td>I,1</td>
<td>64</td>
<td>F</td>
<td>649</td>
<td></td>
<td>0.7/1</td>
<td>CCH, PTC</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>I,2</td>
<td>60</td>
<td>F</td>
<td>649</td>
<td></td>
<td>2/4</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>II,1</td>
<td>44</td>
<td>M</td>
<td>649</td>
<td></td>
<td>3/19</td>
<td>CCH</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>III,1</td>
<td>20</td>
<td>F</td>
<td>649</td>
<td></td>
<td>0.7/0.7</td>
<td>CCH</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I,1</td>
<td>69</td>
<td>F</td>
<td>649</td>
<td>Index</td>
<td>—/—</td>
<td>MTC</td>
<td>pT2N0M0</td>
<td>Yes</td>
</tr>
<tr>
<td>II,1</td>
<td>47</td>
<td>M</td>
<td>649</td>
<td></td>
<td>1.5/15</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>II,3</td>
<td>44</td>
<td>M</td>
<td>649</td>
<td></td>
<td>17/81</td>
<td>No MTC</td>
<td>No CCH</td>
<td>—</td>
</tr>
<tr>
<td>II,4</td>
<td>43</td>
<td>F</td>
<td>649</td>
<td></td>
<td>—/—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>II,5</td>
<td>40</td>
<td>M</td>
<td>649</td>
<td></td>
<td>—/—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I,1</td>
<td>47</td>
<td>F</td>
<td>649 + 804</td>
<td>Index</td>
<td>—/—</td>
<td>MTC</td>
<td>pT2N0M0</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I,1</td>
<td>43</td>
<td>F</td>
<td>649</td>
<td>Index</td>
<td>11/65</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>I,7</td>
<td>75</td>
<td>F</td>
<td>649</td>
<td></td>
<td>3/7</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>II,2</td>
<td>41</td>
<td>F</td>
<td>649</td>
<td></td>
<td>3/8</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II,1</td>
<td>24</td>
<td>M</td>
<td>649</td>
<td>Index</td>
<td>Normal/—</td>
<td>HPT</td>
<td>—</td>
<td>Yes</td>
</tr>
</tbody>
</table>

MTC, medullary thyroid carcinoma; CCH, C-cell hyperplasia; PTC, papillary thyroid cancer; Pheo, pheochromocytoma; HPT, primary hyperparathyroidism.
identified as carriers of a RET protooncogene mutation in exon 11 codon 649 (TCG^{Ser} → TTG^{Leu}; Table 1). In two out of the five index patients, a second mutation (C634W or V804L) was detected.

Clinical and histological findings

Out of the 15 gene carriers, 8 have been operated on (Table 1). Histology revealed MTC in three index patients, including a patient carrying the RET S649L mutation and two others carrying both the S649L mutations and a second mutation (C634W or V804L). Two index patients were cured: a 69-year-old woman carrying the S649L mutation (histology showed pT2N0M0) and a 29-year-old man carrying S649L and C634W mutations (histology showed pT2N0M0). The third index patient operated on, a woman having both S649L and V804L mutations located on the same allele and tumor stage pT2N0M0 at primary operation, was not cured. In this patient, pentagastrin stimulated a calcitonin increase to 39 pg/ml postoperatively and no tumor tissue could be localized.

In three screening patients of family 1, total thyroidec-tomy was performed and CCH was detected. In one of these patients, multifocal papillary thyroid cancer was detected. In one screening patient of family 2, histology was completely normal. In all other gene carriers, calcitonin was in the normal range, and stimulated values were < 100 pg/ml despite age range of 41–64 years. Therefore, thyroidectomy has not yet been performed.

Modes of diagnosis of the five index cases

The index patient of family 1 (I 1 II, 5) was diagnosed with multiple endocrine neoplasia type 2 (MEN2A) before surgery (Fig. 1). Diagnostic work-up of chronic diarrhea unveiled pathological carcinoembryonic antigen (CEA) and basal calcitonin levels with nodular goiter. Subsequently, the patient was diagnosed as being a heterozygous carrier of a RET C634W mutation in coincidence with a S649L mutation. Mutant allele-specific PCR followed by sequencing confirmed that the mutations at C634W and S649L are located on different alleles. Furthermore, the patient had elevated urinary catecholamines and underwent right adrenalectomy for pheochromocytoma. Calcium and parathyroid hormone levels were within normal limits. Molecular genetic screening of the parents of this patient for C634W revealed no such mutation. Sequencing unveiled a heterozygous S649L mutation in the patient’s mother but no further mutation. Therefore, the C634W mutation is de novo in this patient.

For the index patients of families 2 and 3, operation of nodular goiter revealed MTC (Fig. 1). In family 4, calcitonin determination in a patient with a small thyroid nodule showed slight elevation, but pentagastrin-stimulated calcitonin was < 100 pg/ml. In family 5, the index case was diagnosed at 24 years of age in the work-up of an operation for primary hyperparathyroidism.

Functional characterization of the S649L mutation

To determine whether the RET S649L mutation is capable of converting RET into a dominantly transforming oncogene, NIH3T3 cells were transfected with mutant cDNA to generate stable cell lines. Comparable expression of RET S649L mutant proteins (C634R and S649L) in NIH3T3 stable cell lines is shown in Fig. 2A. The cell growth rate was evaluated by direct counting of cell numbers at the indicated time points, after exclusion of dead cells by trypan blue staining. As shown in Fig. 2B, cells expressing RET S649L (a predominant mutation in MEN2A) grew rapidly, reaching 1.03×10^6 cells after 4 days. RET S649L-expressing NIH3T3 cells showed a decreased proliferation rate (8×10^5 cells after 4 days) compared with cells expressing RET C634R.

To confirm these data, the viabilities of NIH3T3 cell lines expressing the various RET S649L mutants were determined by XTT assay. Relative cell viability was calculated after standardization with parental NIH3T3 cells. As shown in Fig. 2C, all RET S649L mutants exhibited comparable cell growth during the initial 3-day
observation time. At day 4, there were more viable cells expressing \textit{RET}51 C634R than cells expressing \textit{RET} S649L, which is most likely due to the lower proliferation rates of cells expressing the S649L mutant.

Moreover, the transforming capacities of the mutant \textit{RET} proteins were assessed by their abilities to promote anchorage-independent growth of NIH3T3 cells (Fig. 2D). A strong transforming activity was observed for the \textit{RET} C634R mutation, resulting in a high number of large colonies. The S649L mutant showed a moderate transforming potential with small-sized colonies.

The TK activity of \textit{RET} S649L and C634R was validated by an \textit{in vitro} kinase assay (Fig. 3). In both NIH3T3 clones, RET was constitutively active and exhibited a clear increase of phosphotyrosine when compared with parental NIH3T3 cells. Comparison of both the mutants revealed a significantly higher kinase activity for C634R ($P=0.041$).

\begin{figure}
\centering
\includegraphics[width=\textwidth]{Figure2}
\caption{\textit{RET} kinase activity and the influence on cell proliferation. (A) Expression of \textit{RET}51 mutant proteins (C634R and S649L) in NIH3T3 cells. (B) Growth rates of cells expressing \textit{RET} mutant proteins. (C) Cell viability (white bars, NIH3T3; black bars, \textit{RET}51 C634R; grey bars, \textit{RET} S649L: *$P<0.05$, **$P<0.01$). (D) Colony formation of cells expressing \textit{RET} mutant proteins; upper panel, single colony size; bottom panel, number of colonies.}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{Figure3}
\caption{\textit{In vitro} tyrosine kinase assay. Protein extracts from NIH3T3 transfectants stably expressing mutated forms of \textit{RET} were immunoprecipitated with anti-\textit{RET} and subjected to a kinase activity assay. The kinase activity was determined by differences in absorbance at OD 450 nm. Data represent three independent experiments, bar \pm S.D. Student’s t-test was performed to compare the kinase activity of \textit{RET} mutants with parental NIH3T3 cells. *$P<0.01$.}
\end{figure}
Discussion

We describe the clinical data of five families carrying a rare and not yet well-defined mutation in the transmembrane domain of the RET proto-oncogene in exon 11 codon 649 (TG^{Ser}→TTG^{Leu}) and the in vitro characterization of this mutation.

Other RET transmembrane domain mutations have been identified in codons 640 (9) and 643 (9, 10); however, affected individuals carried additional, highly penetrant germline missense RET mutations. Moreover, a germline substitution in codon 648 coinciding with a codon 634 mutation has not shown oncogenic activity clinically (11). Thus, the phenotypic expression of mutations in the RET transmembrane domain has remained obscure.

The present data indicate that the RET S649L mutation harbors a low but still significant risk of MTC. Four of our patients carrying S649L alone had MTC or CCH. Moreover, in one index patient hyperparathyroidism was the leading symptom.

Gene carriers harboring two RET mutations simultaneously may have a more aggressive disease than those with the 649 RET mutation alone. In our series, the two patients with the double RET mutation showed the same tumor stage of MTC as the patient with 649 RET mutation, but age at diagnosis was more advanced in the 649 RET mutation carrier. Therefore, we conclude that disease phenotype in double RET mutation is dominated by the more severe mutations, like 634 RET mutation. In our series, there is no aggravation of disease in the patients carrying double RET mutations.

Our findings are supported by other reports of RET S649L mutations (12, 13). In these publications, the MTC-carrying index patients were 44 and 47 years old when first diagnosed. One 22-year-old mutation carrier had normal thyroid sonography and pentagastrin-stimulated calcitonin levels. Like other level 1 mutations identified in patients with hereditary MTC, the S649L mutation displayed a low transforming potential and limited constitutive TK activity, although it did stimulate the growth of NIH3T3 cells.

In patients with MTC or MEN2A, mutations of cysteine residues in the extracellular juxtamembrane region of the RET receptor TK cause the formation of covalent receptor dimers linked by intermolecular disulfide bonds between unpaired cysteines, followed by oncogenic activation of the RET kinase. Recent observations support an active role of the transmembrane domain in non-covalent receptor–receptor interactions that may contribute to keeping receptor molecules in close proximity to each other, allowing RET homodimers to be formed by MEN2A mutations or ligand binding.

Mutations in the RET transmembrane domain such as S645A, S649A, and S653A lead to impaired self-association (14). When introduced in the context of C634R mutation, A639G/A641R mutations were also shown to abrogate RET transmembrane domain interactions, significantly reducing dimer formation and transforming activity of this highly oncogenic mutant. However, NIH3T3 cells expressing the S649L mutant exhibit accelerated proliferation and display a moderate transforming potential, consistent with the oncogenic activity of RET S649L in patients. Therefore, the oncogenic mechanism for the RET S649L mutation might be similar to the model derived for erythropoietin and epidermal growth factor receptors, in which activation of preformed, inactive receptor dimers is achieved via rotational changes of transmembrane and intracellular domains that bring kinases into a preferred orientation for signaling (15, 16).

Our clinical and in vitro data support the classification of the RET transmembrane domain mutation S649L as a level 1 mutation (6). The optimal timing for surgery in patients carrying level 1 RET mutations remains controversial. In the decision-making process, the risk of early metastases and the small risk of surgical sequelae in young children must be balanced against the biological behavior of MTC in other family members. There is good evidence in favor of thyroidectomy before the age of 6 years in patients carrying level 2 mutations, especially for a mutation in RET codon 634 (4–6). However, the decision for thyroidectomy in level 1 mutation carriers depends on personal experience and must be individualized until more data are available (17).

The results of this study suggest that recommendations for prophylactic thyroidectomy in patients carrying RET mutation S649L should be individualized depending on levels of stimulated calcitonin. Further studies are necessary to confirm and extend these findings.

References

Received 20 January 2008
Accepted 16 February 2008