LETTER TO EDITOR

Lack of imatinib-induced thyroid dysfunction in a cohort of non-thyroidectomized patients

José Miguel Dora, Murilo Anderson Leie, Bruno Netto, Laura Maria Fogliatto¹, Lucia Silla¹, Felipe Torres² and Ana Luiza Maia

Endocrine Division, Thyroid Section, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; ¹Hematology Division and ²Radiology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil

(Correspondence should be addressed to A L Maia who is now at Serviço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, 90035-003 Porto Alegre, RS, Brazil; Email: almaia@ufrgs.br)

To the Editor

Understanding the role of tyrosine kinase (TK) proteins in the pathogenesis of various tumors triggered the development of drugs that specifically block TK actions (1). Imatinib, one of the drugs in that class, has favorably altered the natural history of chronic myeloid leukemia (CML) and gastrointestinal stromal tumors (1). However, given the short experience with these drugs, the full spectrum of adverse effects remains unknown. Cardiotoxicity (2) and bone metabolism alterations (3) have been reported in association with TK inhibitor therapy. Recently, high rates of hypothyroidism have been described in patients receiving sunitinib (4, 5). In addition, adjustment of thyroid hormone replacement in thyroidectomized patients under sunitinib or imatinib therapy, with the need of up to 350% increase in levothyroxine dose, has also been reported (6). Due to similar mechanisms, it is possible that imatinib is also associated with thyroid dysfunction in non-thyroidectomized patients. Because of the widespread use of this drug, we sought to evaluate the impact of imatinib therapy on thyroid function.

Patients with CML under imatinib therapy, followed at the Hematological Division of Hospital de Clínicas de Porto Alegre (Porto Alegre, Brazil), between March and October 2007, were eligible for the study. Patients who used drugs with potential interference in thyroid function tests 6 months prior to the study entry or with known previous thyroid dysfunction were excluded. All measurements were performed using ECLI A (Roche). Inters assay coefficients of variation were as follows: thyrotophin (TSH), 1.6%; thyroxine (T₄), 3.5%; (free T₄), 3.0%; triiodothyronine (T₃), 3.4%; Tg, 1.9%; and anti-TPO, 7.1%. Fifty-four patients underwent thyroid ultrasound (US) for thyroid volume estimation. Eleven patients underwent a 24-h radioactive iodine uptake (RAIU).

A total of 70 patients were eligible to enter in the study. Two patients were excluded because of a previous diagnosis of hypothyroidism. Thus, 68 patients were included. Table 1 shows the clinical and laboratory characteristics of study participants. All study subjects displayed levels of T₄, T₃, and T₄ in the normal range. Serum TSH was in the normal range of 63/68 (92.6%) and slightly elevated in 5 patients (range 5.08–12.55 mU/l). The serum TSH levels before and after imatinib therapy, available for a subgroup of ten patients, were similar (2.39 (1.82–3.05) vs 2.71 (1.71–3.25) mU/l, P=0.64). Furthermore, there was no correlation between serum TSH levels and dose (r=-0.043, P=0.73), duration of therapy (r=-0.084, P=0.50), or cumulative dose of imatinib (r=-0.105, P=0.39). Because of a previous study report supporting thyroiditis in patients under sunitinib therapy (4, 7), Tg and anti-TPO were also measured. Serum Tg was at normal levels and only one patient displayed positivity for anti-TPO.

Thyroid volume and RAIU were in the normal range. The power calculation of our study was the following: for correlations, considering an α error of 0.05 and a β error of 0.20, estimations of r values of 0.3, 0.4, and 0.5 resulted in calculated required samples of 84, 46, and 29 patients respectively (NCSS Statistical & Power Analysis Software 2007, Kaysville, UT USA).

Despite previous positive reports, here we found no influence of imatinib on thyroid function. The lack of correlation between TSH levels with dose, duration, or cumulative dose of imatinib therapy suggests that this drug has no adverse effect on thyroid function. In addition, the prevalence of subclinical hypothyroidism in this sample was ~10.0%, similar to that reported for our population (8).

Imatinib exerts its effects through inhibition of multiple TKs, including Bcr-Abl, platelet-derived growth factor receptors α and β, c-Fms, and c-kit (1). The increased demand for levothyroxine induced by imatinib in patients under levothyroxine replacement (6) might indicate increased peripheral metabolism of thyroid hormones. As suggested by others (6), induction of hepatic conjugation with glucuronates and sulfates would be a possible explanatory mechanism. Another potential explanation could be increased hormonal deiodination to reverse T₃ through enhanced deiodinase type 3 (D3) activity. Because both metabolic pathways would imply an increase in thyroid hormone output to overcome the increased peripheral clearance, it would be expected to find borderline-low values of T₄ and T₃ and borderline-high values of TSH in non-thyroidectomized patients.
Thyroid function

Imatinib therapy

percentage of the administered dose; reference values are 15–35%.

nanograms per dl, divide by 0.01536. Radioiodine uptake is expressed as the

mechanism of destructive thyroiditis. Reduction in

that sunitinib induces hypothyroidism through a

hypothyroidism in 6 out of 15 patients, suggesting

all patients. However, the sample size was calculated to

size and lack of TSH values before imatinib therapy for

EGF. Our study has some limitations such as sample

inhibition presented by sunitinib or imatinib might

explain their divergent effects on thyroid function. Of

inhibition. However, it does not seem to be the case,

have shown induction of hypothyroidism in nearly one-

individuals. However, it does not seem to be the case,

since all patients displayed normal T4 and T3 values.

A reasonable explanation would be that imatinib

interferes with the gastrointestinal absorption of LT4,

but this remains to be clarified.

It is interesting that previous studies with sunitinib

have shown induction of hypothyroidism in nearly one-

third of chronic users (4, 5). TSH suppression was

demonstrated prior to the development of overt

hypothyroidism in 6 out of 15 patients, suggesting

that sunitinib induces hypothyroidism through a

mechanism of destructive thyroiditis (4). Reduction in

RAIU concomitant with elevation in TSH levels has also

been reported, suggesting that reduction in thyroid

iodine incorporation may be involved in sunitinib-

induced hypothyroidism (9). The distinct patterns of TK

inhibition presented by sunitinib or imatinib might

explain their divergent effects on thyroid function. Of

note, imatinib has inhibitory activity neither against

vascular endothelial growth factor (VEGF) nor against

EGF (1). Our study has some limitations such as sample

size and lack of TSH values before imatinib therapy for

all patients. However, the sample size was calculated to

detect correlations of moderate significance and

previous TSH measurements would be critical if an

association between imatinib and TSH had emerged

from this study.

In conclusion, imatinib does not seem to be associated

with hypothyroidism induction in non-thyroidecto-

mized individuals. This information implies that routine

screening of thyroid function in patients receiving

imatinit should be precluded.

Acknowledgements

Grant Support: Conselho Nacional de Desenvolvimento

Científico e Tecnológico (CNPq), Fundação de Amparo

Pesquisa do Estado do Rio Grande do Sul (FAPERGS),

and Fundo de Incentivo a Pesquisa (FIPE), Brazil.

References

1 Krause DS & Van Etten RA. Tyrosine kinases as targets for cancer

2 Kerkela R, Grauette L, Yaocbi R, Blescu C, Patten R, Beahm C,

Walters B, Shevtsiv S, Pesant S, Clibun FJ, Rosenzweig A, Salomon RN,

Van Etten RA, Alroy J, Durand JB & Force T. Cardiotoxicity of the

908–916.

3 Berman E, Nicolaides M, Maki RG, Fleisher M, Chanel S, Scheu K,

Wilson BA, Heller G & Sauter NP. Altered bone and mineral

metabolism in patients receiving imatinib mesylate.

4 Desai J, Yassa L, Marqusee E, George S, Frates MC, Chen MH,

Morgan JA, Dychter SS, Larsen PR, Demetri GD & Alexander EK.

Hypothyroidism after sunitinib treatment for patients with

gastrointestinal stromal tumors. Annals of Internal Medicine 2006

145 660–664.

5 Rini BI, Tamaslakar I, Shaheen P, Salas R, Garcia J, Wood L, Reddy S,

Dreicer R & Bukowski RM. Hypothyroidism in patients with metastatic

renal cell carcinoma treated with sunitinib. Journal of the National

6 De Groot JW, Zonnenberg BA, Plukker JT, Van Der Graaf WT &

Links TP. Imatinib induces hypothyroidism in patients receiving

levothyroxine. Clinical Pharmacology and Therapeutics 2005 78

433–438.

7 Faris JE, Moore AF & Daniels GH. Sunitinib (sustained)-induced

thyrotoxicosis due to destructive thyroiditis: a case report. Thyroid

2007 17 1147–1149.

8 Sichieri R, Baima J, Marante T, De Vasconcellos MT, Moura AS &

Vaisman M. Low prevalence of hypothyroidism among black and

Mulatto people in a population-based study of Brazilian women.

9 Mannava D, Coco P, Vannucchi G, Bertuelli R, Carletto M,

Casali PG, Beck-Peccon P & Fugazzola L. A novel tyrosine-kinase

selective inhibitor, sunitinib, induces transient hypothyroidism by

blocking iodine uptake. Journal of Clinical Endocrinology and

Metabolism 2007 92 3531–3534.

Table 1 Clinical and laboratory characteristics of the 68 patients

under imatinib therapy.

<table>
<thead>
<tr>
<th>Epidemiology</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (men/women), n (%)</td>
<td>39 (57.3)/29 (42.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>48.4 ± 17.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White, n (%)</td>
<td>63 (92.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time from diagnosis (months)</td>
<td>47 (21–74)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECOG performance status, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>46 (67.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>20 (29.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥2</td>
<td>2 (2.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><0.015</td>
<td>0 (0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imatinib therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration (months)</td>
<td>23 (6–33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dose (mg)</td>
<td>400 (400–600)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cumulative dose (g)</td>
<td>10.5 (2.0–17.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyroid function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSH (mU/l)</td>
<td>1.78 (1.28–3.19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4 (nmol/l)</td>
<td>114.5 ± 20.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3 (nmol/l)</td>
<td>16.2 ± 2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyroglobulin (ng/ml)</td>
<td>15.7 (10.6–31.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive anti-TPO, n (%)</td>
<td>1 (1.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyroid ultrasonography</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume (ml)</td>
<td>8.7 ± 4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radioiodine uptake</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 h (%)</td>
<td>15.7 ± 5.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TCO, Eastern Cooperative Oncology Group. Data are presented as

mean ± s.d. or median (percentiles 25–75). The reference ranges for

laboratory values are: T4, 65.6–181.5 nmol/l (5.1–14.1 μg/dl); free T4,

12.0–21.9 pmol/l (0.93–1.70 ng/dl); T3, 1.23–3.07 nmol/l (80–200 ng/dl);

and TSH, 0.4–4.5 mU/l. To convert T4 values to micrograms per dl and

free T4 values to nanograms per dl, divide by 12.87. To convert T3 values to

nanograms per dl, divide by 0.01536. Radioiodine uptake is expressed as the

percentage of the administered dose; reference values are 15–35%.

* = n=54 patients for this variable.

** = n=11 patients for this variable.

www.eje-online.org