Management of children with idiopathic short stature

Leo Dunkel

Kuopio University and University Hospital, PO Box 1777, 70211 Kuopio, Finland

(Correspondence should be addressed to L Dunkel; Email: leo.dunkel@kuh.fi)

Abstract

The Food and Drug Administration (FDA) approved the use of biosynthetic GH for the treatment of children with idiopathic short stature (ISS) in the US in 2003. Primarily, the decision was based on two studies: a randomized placebo-controlled study and a dose–response study, both demonstrating an increase in adult height over the predicted height at baseline and over placebo-treated controls by an average of 4–7 cm. Despite these data and FDA approval of GH treatment for ISS, there is still a significant controversy among paediatric endocrinologists about how, and to what extent, GH should be used in this indication. GH is clearly efficacious in several growth disorders and has the potential to alleviate debilitating short stature. However, it has been questioned whether ISS should be considered a condition warranting pharmacological treatment, whether the degree of morbidity of untreated ISS is clinically significant, and whether improved psychosocial status or well-being is achieved through GH treatment and height gain. The benefits must outweigh treatment costs and risks to justify GH treatment in ISS. The safety of GH treatment in ISS has been the main subject in two recent articles from pharmaceutical companies that conducted the pioneering studies mentioned earlier. No new safety concerns were observed in the ISS populations, but there were some limitations in study designs that prevent clinicians, their patients and families from ‘resting assured’. Studies addressing these controversial issues are needed before the widespread use of GH treatment in ISS is warranted.

European Journal of Endocrinology (2006) 155 S35–S38

Introduction

The specific aetiology for short stature in children is sometimes difficult to identify. If a healthy but small child has normal growth hormone (GH) responses to provocation tests, the condition may be termed idiopathic short stature (ISS) or non-GH-deficient short stature (1, 2). In a survey by the Lawson Wilkins Pediatric Endocrine Society, 94% of paediatric endocrinologists recommended GH therapy for some children with ISS, despite normal GH secretion (3). By now, thousands of children with ISS have received GH therapy (4, 5).

Efficacy of GH treatment in ISS

Several randomized trials have demonstrated that GH administration accelerates growth in the short term (6–8). Furthermore, most, but not all, non-randomized long-term studies suggest that GH increases adult height of children with idiopathic short stature (9–18). Thus, in the past, many children with idiopathic short stature received GH treatment despite a lack of definitive evidence for its efficacy. A meta-analysis (19), which included one small randomized trial (20) and three studies with non-randomized, untreated controls, reported a 5–6 cm difference in adult height between treatment (mean GH dose, 0.31 mg/kg per week) and control groups.

Two recent studies, a randomized placebo-controlled study (21) and a dose–response study (22) have provided firm, if not conclusive, evidence for the efficacy of GH treatment in ISS. In the randomized placebo-controlled study (21), adult height measurements were available for 33 of 68 subjects who received either GH with a dose of 0.22 mg/kg per week for 4.4 years (mean) or placebo. The efficacy analysis demonstrated that the GH group achieved a significantly greater adult height than the placebo group (−1.81 vs −2.32 SDS respectively) by 0.51 SDS (3.7 cm; P=0.02; 95% confidence interval (CI)=0.10–0.92 SDS). Many subjects lacked adult height measurements, but two modified intent-to-treat analyses showed that height SDS gave a GH treatment effect similar to the primary efficacy analysis (0.52 SDS; 3.8 cm).
At adult height measurement, or at last observation for analyses that included patients without adult height measurements, there were no statistically significant differences between treatment groups in treatment duration, chronological age or bone age. Mean height velocity was significantly greater in the GH group compared with the placebo group during the first 2 years of therapy, and consequently, height SDS increased in GH-treated patients compared with controls, whereas bone age progression was similar.

In the dose–response study (22), subjects were treated with GH at 0.24 mg/kg per week, 0.24 mg/kg per week for the first year and 0.37 mg/kg per week thereafter (0.24/0.37), or 0.37 mg/kg per week. Final height measurements were available for 50 patients at study completion (mean treatment duration, 6.5 years). For these 50 subjects, mean height SDS increased by 1.55, 1.52 and 1.85 for the dose groups of 0.24, 0.24/0.37 and 0.37 mg/kg per week respectively. For the primary comparison between 0.37 mg/kg per week and 0.24 mg/kg per week dose groups, the mean treatment difference (adjusted for differences in baseline-predicted height SDS) was 0.37 SDS (3.6 cm; \(P = 0.025 \)). Mean overall height gains (final height minus baseline-predicted height) were 7.2 and 5.4 cm for 0.37 and 0.24 mg/kg per week dose groups respectively.

Derived from the placebo-controlled and the dose–response study, Fig. 1 provides an approach to estimate the overall efficacy of a 0.37 mg/kg per week dose in ISS. The incremental effect of 0.37 compared to 0.24 mg/kg per week, estimated from the dose–response study was 3.6 cm (22). The overall effect of the 0.24 mg/kg per week dosage can be estimated roughly to be 3.7 cm from the results of the slightly lower dosage of the placebo-controlled study (21). These data together suggest that the overall treatment effect of 0.37 mg/kg per week is approximately, 3.6 ± 3.7 = 7.3 cm.

The Food and Drug Administration (FDA) approved the use of biosynthetic GH for the treatment of children with idiopathic short stature (ISS) in the US in 2003, based primarily on these two studies (21, 22) demonstrating an increase in adult height over the predicted height at baseline and over placebo-treated controls by an average of 4–7 cm.

Safety of GH treatment in ISS

Most of the published data on the safety of GH treatment in ISS derive from large post-marketing research programmes. These observational studies have reported safety data for approximately 9000 patients with ISS, representing approximately 27,000 patient-years of GH exposure. Overall, adverse event (AE) rates for these patients with ISS have been similar to, or in some cases, lower than AE rates for patients with other GH-treated conditions (23, 24). For example, patients with ISS comprised 17.1% of the total National Cooperative Growth Study population, but accounted for only 4.6% of all serious AEs and 3.4% of deaths, the fewest of any of the patient populations (23). Similarly, patients with ISS had the lowest overall AE rate of all patient groups examined in the Kabi International Growth Study (5).

One report provides safety data from the two randomized registration studies in patients with ISS that formed the basis of the FDA approval for GH treatment of this form of short stature (25). In this report, a perspective of GH safety is provided in ISS relative to other patient groups for whom GH treatment is well established. The ISS AE data were compared with the AE data derived from registration studies of GH deficiency (GHD) and Turner syndrome (TS). In the ISS studies (21, 22), serious AEs (mainly hospitalizations for accidental injury or acute illness unrelated to GH exposure) were reported for 13–14% of GH-treated patients. Overall, AE rates (serious and non-serious) as well as rates of potentially GH-related
AIs were combined in the GHD, TS and ISS studies (for ISS studies combined: otitis media 8%; scoliosis 3%; hypothyroidism, 0.7%; changes in carbohydrate metabolism 0.7% and hypertension 0.4%). Measures of carbohydrate metabolism were not affected by GH treatment in patients with ISS. There was no significant GH effect on fasting blood glucose in either study (GH dose range, 0.22–0.37 mg/kg per week) or insulin sensitivity (placebo-controlled study only).

Overall, the data on the dearth of severe adverse events found in all safety studies are important and reassuring. However, there are some limitations in the approaches used in these studies (24). The approach of assessing GH safety in ISS by comparing this population (which, by definition, does not have co-morbid conditions) with children, who have disorders with intrinsic heightened health risks (Turner syndrome; classical GH deficiency) is potentially problematic. The drug exposure was approximately 4 years on average in one study (21) and, in the other, a maximum of 7 years exposure was reported in cohorts assessed for efficacy (the average drug exposure in the full cohort was not specified) (22). Some patients included in the safety analyses had only one GH injection and others ceased study participation before receiving any GH. Limited drug exposure potentially underestimates risk assessment. Furthermore, in a situation of relatively short drug exposure for many subjects, expression of data in terms of patient-years of exposure can be confusing and misinterpreted. In both studies (21, 22), there was considerable subject attrition, potentially further limiting the ability to assess the frequency of adverse events.

Both studies included many patients, who received GH in lower doses than those approved by the FDA, now raising questions about data applicability to future safety. Thus, it is unclear whether either study has the statistical power to detect increased risks. The power to detect small increases in risk with drug use depends on statistical power to detect increased risks. The power to detect small increases in risk with drug use depends on statistical power to detect increased risks with drug use depends on statistical power to detect increased risks. The power to detect small increases in risk with drug use depends on statistical power to detect increased risks with drug use depends on statistical power to detect increased risks with drug use depends on statistical power to detect increased risks with drug use depends on statistical power to detect increased risks with drug use depends on statistical power to detect increased risks with drug use depends on statistical power to detect increased risks with drug use depends on statistical power to detect increased risks with drug use depends on statistical power to detect increased risks with drug use.
12 Wit JM, Kamp GA & Rikken B. Spontaneous growth and response
to growth hormone treatment in children with growth hormone
deficiency and idiopathic short stature. Pediatric Research 1996 39
295–302.
13 Loche S, Cambiasso P, Setta S, Carta D, Marini R, Borrelli P & Cappa M.
Final height after growth hormone therapy in non-growth-
196–200.
14 Zadik A & Amnon Z. Final height after growth hormone therapy in
short children: correlation with siblings’ height. Hormone Research
MH. Comparison of final heights of growth hormone-treated vs.
untreated children with idiopathic growth failure. Journal of
16 López-Sigüero JP, García-Garcia E, Carralero I & Martínez-Aedo MJ.
Adult height in children with idiopathic short stature treated with
growth hormone. Journal of Pediatric Endocrinology and Metabolism
17 Coutant R, Rouleau S, Despert F, Magontier N, Loisel D & Limal J-M.
Growth and adult height in GH-treated children with nonacquired
GH deficiency and idiopathic short stature: the influence of pituitary
magnetic resonance imaging findings. Journal of Clinical Endocri-
nology and Metabolism 2001 86 4649–4654.
18 Hindmarsh PC & Brook CGD. Final height of short normal children
19 Finkelstein BS, Imperiale TF, Speroff T, Marrero U, Radcliffe D &
Cutler L. Effect of Growth hormone therapy on height in children
with idiopathic short stature. Archives of Pediatrics and Adolescent
20 McCaughey ES, Mulligan J, Voss LD & Betts PR. Randomised
trial of growth hormone in short normal girls. Lancet 1998 351
940–944.
21 Leschek EW, Rose SR, Yanovsky JA, Troendle JF, Quigley CA,
Chipman JJ, Crowe BJ, Ross JL, Cassorla FG, Blum WF, Cutler GB Jr
& Baron J. Effect of growth hormone treatment on adult height in
peripubertal children with idiopathic short stature: a randomized,
double-blind, placebo-contro trial. Journal of Clinical Endocrinology
and Metabolism 2004 89 3140–3148.
22 Wit JM, Rekers-Mombarg LTM, Cutler DG Jr, Crowe B, Beck TB,
Roberts K, Gill A, Chauussin JL, Frisch H, Yturriaga R & Attanasio AE.
Growth hormone (GH) treatment to final height in children with
idiopathic short stature: evidence for a dose effect. Journal of Pediatrics
2005 146 45–53.
23 Maneatis T, Baptista J, Connelly K & Blethen S. Growth hormone
safety update from the National Cooperative Growth Study. Journal of
Pediatric Endocrinology and Metabolism 2000 13
1035–1044.
24 Quigley CA, Gill AM, Crowe BJ, Robling K, Chipman JJ, Rose SR,
Ross JL, Cassorla FG, Wolka AM. Wit JM, Rekers-Mombarg LTM &
Cutler DG Jr. Safety of growth hormone treatment in pediatric
patients with idiopathic short stature. Journal of Clinical Endo-
nocrinology and Metabolism 2005 90 5188–5196.
25 Brewer T & Colditz GA. Postmarketing surveillance and adverse
drug reactions – current perspectives and future needs. JAMA
1999 281 824–829.
26 Sandberg DE, Bukowski WM, Fung CM & Noll RB. Height and
social adjustment: are extremes a cause for concern and action? Pediat-
rics 2004 114 744–750.
27 Downie AB, Mulligan J, McCaughey ES, Stratford RJ, Betts PR &
Voss LD. Psychological response to growth hormone treatment in
short normal children. Archives of Disease in Childhood 1996 75
32–35.

Received 20 April 2006
Accepted 4 July 2006