Abstract

Objectives: Although several lines of evidence suggest that the overall effects of the ACTH receptor, melanocortin 2 receptor (MC2-R), mediated signal transduction on adrenocortical growth and tumorigenesis are anti-proliferative, activation of MC2-R induces mitogens like jun, fos, and myc and activates the MAPK pathway. In vivo, potential effects of endogenous ACTH on adrenal tumorigenesis can not be separated from effects of other POMC derived peptides.

Methods: Murine adrenocortical tumor cells that lack MC2-R expression (Y6pcDNA) and Y6 cells stably transfected with MC2-R (Y6MC2-R) were generated. Presence of functional MC2-R was demonstrated by RT-PCR and Western blot using an antibody for phosphorylated CREB. As a syngenic tumor model, LaHeF1/J mice simultaneously received 10^7 Y6MC2-R and Y6pcDNA subcutaneously, giving rise to MC2-R positive and negative tumors within the same animal. Animals were treated for 3 weeks in groups of 12 according to the following schedule: group A, control animals receiving saline injection; group B, animals receiving 5.7 ng/injection of a slow release formula of ACTH 1-24 administered i.p. three times a week (aiming at a low physiologic dose); and group C, animals receiving 57 ng/injection of ACTH 1-24 (high physiological dose).

Results: Twenty days of ACTH 1-24 treatment did not significantly affect corticosterone levels, endogenous ACTH levels or adrenal and thymus weight compared with saline injection. However, ACTH 1-24 treatment of group B and C mice significantly reduced tumor weight in MC2-R positive tumors in a dose dependent manner (P = 0.03), while no significant difference in tumor mass was observed in MC2-R negative tumors. PCNA and TUNEL staining, together with morphological characterization, demonstrated that these in vivo effects were due to reduced proliferation, while apoptosis and cellular hypertrophy within the tumor remained unchanged.

Conclusion: MC2-R expression is associated with a less aggressive adrenal tumor phenotype and antiproliferative effects can be amplified through stimulation with physiological doses of ACTH.
adenylate cyclase inhibitory G-proteins, has been found in some adrenocortical tumors, while these findings could not be confirmed in another series of adrenocortical tumors (7, 9). In addition, an association between loss of heterozygosity (LOH) of the MC2-R gene, resulting in reduced expression of MC2-R mRNA with an advanced tumor stage, and a more rapid clinical course than in carcinoma patients without LOH has been demonstrated (10–12). While these data suggest that allelic loss of the MC2-R gene in adrenocortical tumors is associated with loss of differentiation, a characteristic feature of human tumorigenesis, it is not clear whether the lack of MC2-R expression is a causative event resulting in a growth advantage and clonal expansion of a malignant cell clone.

In vivo, inactivating mutations of the MC2-R are the cause of isolated familial glucocorticoid deficiency, which is characterized by ACTH insensitivity and adrenal hypoplasia (13). Accordingly, hypophysectomy and suppression of endogenous ACTH by glucocorticoid treatment results in decreased adrenal volume (14). Conversely, ACTH supplementation can prevent adrenal atrophy following hypophysectomy (14) and administration of high doses of ACTH leads to hypertrophy of the adrenal cortex (15, 16), a fact that is clinically relevant in patients with congenital adrenal hyperplasia. Moreover, ACTH treatment has been demonstrated to result in increased adrenocortical cell proliferation in guinea pigs (17, 18) and rats (19). However, there is compelling evidence indicating that ACTH is not the only proopiomelanocortin (POMC)-derived peptide with effects on adrenocortical growth and a mitogenic peptide resides in the pro-γ-melanocyte stimulating hormone (MSH) fraction of the POMC peptide (20, 21). Although the pro-γ-MSH peptide itself does not have mitogenic potential, it has been suggested that the specific cleavage of 1-76 POMC after its secretion from the pituitary is required to release shorter fragments that exhibit potent mitogenic actions on adrenal cells (20–23).

In vitro experiments evaluating effects of ACTH on adrenocortical tumor growth have been performed since the early 1970s utilizing the murine adrenocortical tumor cell line Y1. These experiments have demonstrated the growth inhibiting effect of ACTH (24–26) and similar results have been obtained in rat, bovine and human primary cell cultures (27–30). However, these findings have been challenged by other in vitro experiments demonstrating ACTH induced increase in DNA synthesis and cell growth in human (31–33) and rat (32–34) primary adrenal cells, while biphasic effects on cellular hypertrophy and proliferation have been found under special experimental conditions (2, 34). As further indirect evidence of growth promoting effects upon ACTH treatment, ACTH has been shown to induce potential oncogenes like jun and fos (35, 36). Because cell culture conditions, ACTH prep-

arations, dosage of ACTH and observational periods varied between the different studies and these experiments are poorly comparable and show limited predictive value for in vivo outcome on adrenal tumorigenesis.

Herein, we present an in vivo model for the investigation of effects of MC2-R dependent pathways on adrenal tumor growth using the Y6 cell line, which have been demonstrated to lack MC2-R expression (37). While resistant to ACTH, Y6 cells retain signaling induced by forskolin and signal transduction pathways have been reported to be intact as transfection of an MC2-R expression led to expression of functional receptors (38). Using this well defined and controlled tumor model, we provide evidence that physiological doses of ACTH inhibit adrenal tumor growth defining ACTH and its receptor as a possible tumor suppressor genes for adrenocortical carcinoma.

Materials and methods

Generation of MC2-R expressing Y6 cells

Cloning of the full length coding sequence of the human MC2-R gene (kind gift of R Cone) into the mammalian expression vector pcDNA 3.1 (Invitrogen, Karlsruhe, Germany) was performed via XhoI and NotI restriction sites and T4 ligase (Promega, Mannheim, Germany) and orientation and sequence was verified by direct sequencing. Murine adrenocortical Y6 cells (kind gift of B Schimmer) were transfected with the expression plasmid encoding hMC2-R (pcDNA-MC2-R) or with the empty vector (pcDNA 3.1) using ExGen reagent (Fermentas, St Leon Roth, Germany) following the instructions of the manufacturer. After 2 days in standard medium, cells were kept under selection medium containing 50 mg/ml neomycin (Geneticin, Invitrogen). Resistant cell clones were picked, expanded and diluted three times to ensure monoclonality. After dilution five clones were further maintained and one clone, with the highest MC2R expression indicated by rounding of the cells upon ACTH treatment, was selected for further experiments.

Isolation of RNA and reverse transcription-polymerase chain reaction (RT-PCR)

Total RNA was extracted from cells and tumor tissues, respectively, using the SV40 total RNA kit (Promega, Mannheim, Germany). One µg of RNA was reverse transcribed with Superscript II MMLV reverse transcriptase and dT18 primers (Invitrogen). One hundred ng cDNA were subjected to PCR amplification with PCR conditions as follows: 5 min at 95 °C, followed by 35 cycles with 1 min at 95 °C, 1 min at 60 °C, and 1 min at 72 °C and final extension for 5 min at 72 °C. Primers were 5’CATGGGTATCTCAAGGCAAC3’ and 5’GAGATCTTTTCTGGTGGGAT3’ for human MC2-R and
5’GCCTGTCAAGCATTAAGTGACAA3’ and 5’CTGCCAG-
GAGGCTTAAGATAAC3’ for mouse MC2-R. β2 micro-
globulin served as a control for intact RNA and was
amplified using the primers 5’GCTATCCAGAAACCC-
CTCAA3’ and 5’CATGCTCGATCCCAGTAGAAGGT3’. DNA contamination was excluded by control exper-
iments without reverse transcription.

Expression of melanocortin receptor 1 was investi-
gated by RT-PCR with primers as published previously
(39). PCR conditions were the same as described
above, but annealing temperature was 57°C. PCR pro-
ducts were loaded onto a 1% agarose gel and analyzed
after ethidium bromide staining.

Western blot

For determination of MC2-R function in transfected
cells, Y6MC2-R and Y6PDNA were grown in six well
plates. Cells were incubated in 1 mM isobutylmethyl-
xantine (IBMX) for 1 h and thereafter 10⁻⁶ M ACTH
1-24, 10⁻⁵ M forskolin or phosphate buffered saline
was added. After 15 min, cells were harvested in RIPA
buffer and the lysate was rocked for 2 h and heated to
95°C for 10 min. 20 µg protein were load on a 12% SDS polyacrylamide gel and blotted to a nitrocellulose
membrane. Blots were blocked in 5% non fat milk
powder, and incubated overnight with an antibody
for phosphorylated CREB (Sigma, Munich, Germany)
or total CREB (Cell Signaling Technology, Beverly,
MA, USA). Horseradish peroxidase linked anti rabbit
antibody (Amersham, Freiburg, Germany) was used
as a secondary antibody followed by detection with the ECL plus kit (Amersham).

Animal experiments

All experiments involving animals were performed in
accordance with institutionally approved and current
animal care guidelines. LaHeF1/J mice were generated
as F1 hybrids from male AHe/J and female C57L/J mice
(Jackson Laboratory, Bar Harbor, MN, USA), and mice
with an average age of 4.5 months and with an weight
of 26–34 g were used for the study. All animals were
maintained under standard conditions of temperature
(22°C) and lighting (12L: 12D) and food and water
was given ad libidum. 10⁷ cells Y6MC2-R and Y6PDNA
respectively, were injected subcutaneously to the right
and left side of the neck on day 0. ACTH 1-24 in a slow
release formula (Synacthen depot, Novartis, Erlangen,
Germany) was injected at two dosages (5.7 and
57 ng/injection) i.p. on days 1, 2 and 3 and then three
times a week, corresponding to a low and high physi-
ological dosage, respectively. Control mice received i.p.
saline injections accordingly. 12 mice per group were
studied. On day 20, mice were euthanized between
0800h and 1100h using isoflurant and blood was
drawn by cardiac puncture within 60 s of initial hand-
ling. Tumors were dissected from adjacent tissue,

Figure 1 (A) Effects of exogenous ACTH 1-24 treatment on corti-
costerone levels, (B) endogenous plasma ACTH levels, (C) adre-
nal weight and (D) thymus weight, suggesting lack of significant
changes on the assessed markers. On day 20, 48h after the last
injection, the tumor bearing mice were euthanized and blood
was drawn for measurement of corticosterone and ACTH. Adre-
nals and thymus glands were dissected and weight was
determined.
weighed and snap-frozen in liquid nitrogen or fixed in 4% paraformaldehyde. As in vivo controls of ACTH bioactivity, adrenal and thymus weight were determined after preparation of the organs.

Hormone measurements

Plasma ACTH concentration, as depicted in Fig. 1, was measured using a commercial two site assay (Nichols Advantage, ACTH Assay, Nichols Institute Diagnostics, San Clemente, CA, USA) which has a cross reactivity of approximately 1% with synthetic ACTH 1-24. In addition, for dose finding studies, total ACTH plasma levels were measured with an assay that detects murine endogenous and synthetic ACTH 1–24 with a specificity of 100% (DSL-2300, Webster, TX, USA). Plasma corticosterone was determined by radioimmunoassay (RIA) using an 125I RIA kit according to the manufacturer’s protocols (ICN Biomedical, Costa Mesa, CA, USA).

Cell counts

Hematoxylin–eosin stained tumor sections were examined with a standard light microscope using 400× magnification. Cell nuclei of three independent tumor sections from three different animals per group were counted under standardized conditions. Cell counts were expressed as cell number/high power field (HPF).

Immunohistochemistry

For PCNA immunohistochemistry, paraffin embedded tumor sections were rehydrated and incubated overnight with a rabbit polyclonal antibody (Santa-Cruz Biotechnology, Santa Cruz, CA, USA) in a dilution of 1:100 in blocking buffer containing 3% bovine serum albumin (BioRad, Munich, Germany), 5% goat serum (DAKO, Hamburg, Germany), and 0.5% Tween 20. Bound antibody was detected by horseradish peroxidase linked anti-rabbit-IgG (Amersham) and staining with DAB (Sigma) after blockage of endogenous peroxidase with 0.6 hydrogen peroxide in methanol. Sections treated accordingly, but without incubation with primary antibody served as a negative control. Sections were lightly counter-stained with hematoxylin and percentage of positive cells was determined counting 5 HPFs per section.

Detection of apoptotic cells in paraffin embedded tumor sections was performed using the dead-end TUNEL assay (Promega) following the instructions of the manufacturer.

Statistical analysis

All results are expressed as mean±S.E.M. Statistical comparisons were analyzed by ANOVA and Fisher’s protective least significant difference test using Stat View (SAS Institute, Cary, NC, USA). Statistical significance was defined as \(P < 0.05 \) and is indicated as a asterisk (*) or cross (†) in the figures.

Figure 2 (A) RT-PCR demonstrating expression of human ACTH receptor (hMC2-R) mRNA in Y6 cells following stable transfection (Y6hMC2-R) while endogenous murine MC2-R (mMC2-R) is not expressed. A mouse adrenal cDNA (m. adr.) served as a positive control. DNA contamination was excluded by samples without reverse transcription (-RT). Y6pcDNA denotes control cells transfected with empty vector. (B) Western blotting demonstrating induction of phosphorylated CREB (P-CREB) only in Y6hMC2-R cells after ACTH treatment, indicating restoration of MC2-R function. In MC2-R negative cells (Y6pcDNA) forskolin served as a positive control.

Results

Transfection of hMC2-R expression vector reconstitutes functional MC2-R in Y6 cells

Transfection of Y6 cells with a human MC2-R encoding cDNA resulted in stable expression of hMC2-R mRNA in Y6hMC2-R, while expression of endogenous MC2-R was excluded in both Y6hMC2-R and Y6pcDNA by RT-PCR (Fig. 2A). Functionality of the transfected receptor was demonstrated by stimulation of the cells with ACTH 1-24 and subsequent detection of phosphorylated CREB (pCREB) by western blotting. As expected, increase in pCREB protein levels was induced upon stimulation with ACTH in Y6hMC2-R, while pCREB remained undetectable in ACTH treated Y6pcDNA cells (Fig. 2B). As a positive control, increase in intracellular cAMP levels by forskolin treatment demonstrated increase in CREB phosphorylation.

Applied ACTH treatment regimes do not result in overt hypercortisolism

During the observation period of 20 days, ACTH 1-24 was injected intra-peritoneally with two different
dosages, while control animals received saline injections at the same intervals. While 12 animals were assigned to every group, one mouse receiving 5.7 ng ACTH 1-24 showed signs of suffering and was euthanized before completion of the study. Preliminary dose finding studies were performed to titrate synacthen doses that would result in low or high physiological ACTH levels. Plasma ACTH levels, which were determined with an assay that detects both endogenous and 1-24 ACTH, increased over baseline (180 pg/ml) over the 48 h observation period after injection of 57 ng ACTH1-24 (high physiological dose) with a peak value around 24 h after injection (376 pg/ml) and substantial decrease thereafter (79 ± 5 pg/ml).

In accordance with these results, ACTH treatment regimens aiming at low and high physiological doses did not significantly affect corticosterone and ACTH levels measured 48 h after the last injection (5.7 ng, 208.8 ± 24.3 ng/ml (P = 0.61); 57 ng, 204.2 ± 26.2 ng/ml (P = 0.69)) vs 191.0 ± 18.2 ng/ml in saline treated animals and 5.7 ng, 191.0 ± 22.5 ng/ml (P = 0.98); 57 ng, 230.6 ± 28.1 ng/ml (P = 0.35) vs 191.9 ± 34.5 ng/ml in saline treated animals, respectively; Figs 1A and B). To further explore the possible long term biological effects of ACTH 1-24 treatment regimens, adrenal weight (as a measure of ACTH induced adrenal hypertrophy) and thymus weight (as a measure of glucocorticoid excess) were monitored. In accordance with the comparable hormone levels between the groups, ACTH 1-24 treatment had no significant effect on adrenal weights (5.7 ng, 8.6 ± 0.5 mg (P = 0.45); 57 ng, 8.0 ± 0.8 mg (P = 0.67) vs 7.3 ± 0.9 mg in saline treated animals; Fig. 1C) or thymus weights (5.7 ng, 36 ± 3 mg (P = 0.9); 57 ng, 34 ± 3 mg (P = 0.8) vs 35 ± 8 mg in saline treated animals; Fig. 1D). Taken together, these results indicate that the amount of injected ACTH 1-24, which was calculated to aim at low and high physiological levels, did not induce significant perturbation of the HPA axis or overt hypercortisolism.

ACTH treatment results in lower weight of MC2-R expressing tumors

Subcutaneous injection of MC2-R positive and negative cells into the neck of LaHeF1/J mice resulted in palpable tumors within 20 days (Fig. 3A). Overall, MC2-R expression in Y6 derived tumors was associated with a lower tumor weight (saline, 1242 ± 160 mg (Y6MC2-R) vs 1692 ± 219 mg (Y6pcDNA) (P = 0.09); 5.7 ng ACTH 1-24, 748 ± 147 mg vs 1416 ± 147 mg, (P = 0.02); 57 ng ACTH 1-24, 657 ± 140 mg vs 1398 ± 275 mg (P = 0.007); Fig. 3B). In addition, ACTH 1-24 treatment further reduced tumor weight in MC2-R positive tumors (5.7 ng ACTH 1-24, 748 ± 147 mg (P = 0.07); 57 ng ACTH 1-24, 657 ± 140 mg (P = 0.03) vs saline, 1242 ± 160 mg) while weight of MC2-R negative tumors was not significantly affected by ACTH treatment (5.7 ng ACTH 1-24, 1416 ± 147 mg (P = 0.31); 57 ng ACTH 1-24, 1398 ± 275 mg, P = 0.27 vs saline, 1692 ± 219 mg; Fig. 3B). Taken together, these results demonstrate an association with a less aggressive phenotype in adrenal tumors expressing MC2-R in comparison to MC2-R negative tumors which can be further amplified by exogenous ACTH treatment.

ACTH treatment inhibits proliferation in MC2-R expressing tumors

Since ACTH 1-24 induced reduction in tumor weight could be due to suppression of proliferation, induction of apoptosis or reduction of cell volume, PCNA immunohistochemistry, TUNEL staining and cell counts per HPF were analyzed in the different tumor samples. While the number of PCNA positive cells was not affected in MC2R negative tumors (5.7 ng ACTH 1-24, 56.5 ± 2.5% (P = 0.16); 57 ng ACTH 1-24, 59.3 ± 2.3% (P = 0.61) vs saline, 58.0 ± 2.1%; Fig. 4A–E), PCNA expression was significantly reduced with increasing doses of ACTH in MC2-R expressing tumors (5.7 ng ACTH 1-24, 51.2 ± 3.3% (P = 0.56); 57 ng ACTH 1-24, 39.6 ± 1.4%
apoptosis was not affected by MC2-R expression or ACTH treatment in a significant manner (Y6pcDNA: 5.7 ng ACTH 1-24, 5.4±2.0% (P = 0.95); 57 ng ACTH 1-24, 5.0±0.9% (P = 0.84) vs saline, 5.6±1.8%; Y6MC2-R: 5.7 ng ACTH 1-24, 5.0±0.7% (P = 0.83); 57 ng ACTH 1-24, 6.8±1.1% (P = 0.46) vs saline, 5.4±1.8%; Fig. 4F–J). Similarly, cell number per HPF as a marker of cellular hypertrophy was not affected by MC2-R expression or ACTH treatment (Y6pcDNA: 5.7 ng ACTH 1-24, 115.0±3.2% (P = 0.12); 57 ng ACTH 1-24, 127.8±3.1% (P = 0.8) vs saline, 125.4±5.3%; Y6MC2-R: 5.7 ng ACTH 1-24, 121.4±1.3% (P = 0.17); 57 ng ACTH 1-24, 125.0±9.0% (P = 0.09) vs saline, 108.2±5.6%; Fig. 4K–O). Taken together, these results indicate that the observed effects of ACTH on tumor growth are mainly mediated by suppression of cellular proliferation.

Transfected Y6 derived tumors retain MC2-R expression but lose MC1-R expression

As regain of endogenous MC2-R expression in Y6 cells after passage in mice has been reported (37) and to assess possible changes in the expression pattern in the tumor samples that would affect ACTH responsiveness, expression of MC2-R and MSH receptor (melanocortin 1 receptor (MC1-R)) was evaluated in a subset of tumors. Analysis of the tumors for human and mouse MC2-R expression excluded loss of human MC2R expression after passage in the animals, whereas murine MC2-R mRNA expression remained undetectable (Fig. 5A) in all tumor samples studied. In addition, although the parent Y6 cell lines used in our experiments showed expression of MC1-R, this expression was lost in both the MC2-R positive and MC2-R negative tumor lines.

Figure 4

A–E: PCNA staining in untreated (A, C) and ACTH treated (B, D) tumors expressing (C, D) or lacking (A, B) MC2-R expression and quantification demonstrating significant decrease in PCNA positive nuclei only in ACTH treated MC2-R expressing tumors (E). (F–J) No significant changes in TUNEL staining independent of ACTH treatment and MC2-R expression was detectable. (K–O) No differences in cell number per high power field (HPF) was assessed in treated and untreated tumors independently of MC2-R expression.
samples after in vivo growth. Taken together, these results indicate, that although retaining their expression pattern with regards to the transfected MC2-R, the tumors display changes in expression pattern of endogenous MC1-R possibly reflecting genetic instability of the tumor clone.

Discussion

While the mechanisms of steroid hormone production have been characterized in quite some detail, little is known about the regulatory factors that are responsible for the proliferation and differentiation of steroidogenic cells. As for the adrenal cortex, there is an increasing body of evidence suggesting that ACTH, in addition to its role in the regulation of steroidogenesis, has an impact on adrenal differentiation and growth also in the context of adrenal tumorigenesis. Accordingly, adrenocortical carcinoma frequently lack MC2-R expression, a phenotype which is associated with a more aggressive tumor growth and poor prognosis (4, 11, 12, 40). To date, it is not clear, however, whether this loss of MC2-R expression plays a causative role in adrenal tumorigenesis or is the mere result of the development of advanced tumor stages with an overall less differentiated phenotype. Herein, we present evidence that MC2-R expression is, in fact, closely related to a less aggressive adrenal tumor phenotype which can be amplified by ACTH treatment. We furthermore demonstrate that activation of MC2-R dependent pathways results in suppression of proliferation, while apoptosis and cellular hypertrophy are not affected by ACTH treatment in this tumor model. Although the decrease in the proliferation marker PCNA associated with the presence of MC2-R was modest, these changes were sufficient to cause significant growth retardation with lower tumor weight in comparison to tumors lacking MC2-R expression.

Functional in vitro expression of the MC2-R has been difficult to achieve, because of the presence of MC1-R with background activity after stimulation with ACTH (41, 42) or because of failed retained receptor protein in the endoplasmatic reticulum (43) most likely due to the lack of the recent cloned melanocortin 2 receptor accessory protein (MRAP) (44). Y6 cells which have been derived from the Y1 adrenocortical tumor cell line as ACTH resistant cell clones have been characterized by defective expression of wild type MC2-R, despite a normal DNA sequence encoding that receptor while retaining signaling properties induced by forskolin (37). Accordingly, these cells have successfully been utilized in transfection models to demonstrate the characteristics of mutant MC2-R in vitro that were identified in patients with familial glucocorticoid deficiency (45). Although the cellular phenotype of Y6 cells is linked to a polymorphism of the transcription factor SF-1, the underlying molecular defect that affects SF-1 function has not been elucidated in detail (46). As we demonstrate, MC2-R expression can be maintained after stable transfection even after passage in vivo, and restoration of MC2-R expression has a significant impact on tumor physiology. In contrast to normal adrenocortical cells, ACTH has no significant effect on cellular hypertrophy in this tumor model, a feature that might be associated with the overall low steroidogenic properties of this cell line (47).

It has to be noted that ACTH treatment did also affect growth of MC2-R negative tumors, although to a lesser extent than MC2-R expressing tumors and without reaching statistical significance. In mice, ACTH has low affinity to the MSH receptor, MC1-R (48, 49), therefore, we hypothesized that higher doses of ACTH might activate MC1-R dependent pathways and may affect the tumor phenotype independently of MC2-R expression. Thus, we investigated the Y6 cell lines and the resulting tumors for MC1R expression. Interestingly, although MC1-R expression could be demonstrated in our strains of the parental Y6 cell lines, its expression

Figure 5 (A) RT-PCR of tumor samples demonstrating retained expression of human ACTH receptor (hMC2-R) mRNA in transfected tumors (TUmc2-R) while endogenous murine MC2-R (mMC2-R) is not expressed after in vivo passage. A mouse adrenal cDNA (m. adr.) served as a positive control. DNA contamination was excluded by samples without reverse transcription (-RT). TUpcDNA denotes control tumors transfected with empty vector. Two tumors from each treatment group were analyzed with reproducible results. Beta 2 microglobulin (β2-MG) served as an internal control. (B) While melanocortin 1 receptor (MC1-R) is expressed in both MC2-R positive (Y6mc2-R) and MC2-R negative (Y6pcDNA) cell lines, MC1-R expression is lost in both tumor samples (TUmc2-R and TUpcDNA) following passage in the animals.
was lost following the passage in the animals. Tumors are prone to change their biological phenotype through chromosomal instability, increased mutation rate and transcriptional regulation that result in the growth advantage of certain tumor clones. In this context, loss of MC1-R expression in the course of tumor development might be interpreted as loss of differentiation in these tumor clones. However, ACTH dependent effects on adrenal tumor growth in this model are not to be explained by activation of MC1-R dependent pathways.

As in all complex in vivo models, direct treatment effects have to be differentiated from possible indirect effects that might have impact on the overall phenotype. Such possible indirect effects that could affect adrenal tumor growth include alteration of the endogenous hypothalamus-pituitary-adrenal (HPA) axis by exogenous ACTH treatment. Higher doses of ACTH such as those given in our study increase adrenal steroidogenesis and it cannot be excluded that elevated glucocorticoid levels might directly affect adrenocortical tumor growth. In addition, and in accordance with the hypothesis that the pro-γ-MSH fraction of POMC harbors a peptide with mitogenic properties to the adrenal cortex (23, 50), the glucocorticoid induced suppression of endogenous POMC might also have affected adrenal tumor growth. To circumvent these disturbances, we chose ACTH doses that did not cause overt hypercortisolism as demonstrated by the lack of significant changes in corticosterone and endogenous ACTH levels at the end of the study. As more subtle indicators of long term ACTH bioactivity, adrenal weights as markers of ACTH induced adrenal hypertrophy and thymus weights as markers of glucocorticoid action on lymphatic tissue were assessed and did not show significant differences between the treatment groups. However, time course experiments after the injection of a slow release form of ACTH 1-24 disrupts the physiological diurnal rhythm of HPA axis activity with intermittently elevated blood levels of total ACTH. In this respect, it could be argued that the small decrease in MC2-R negative tumor cells upon ACTH treatment might be due to lower levels of endogenous N-POMC peptides levels, thus adding another facet to mechanisms of ACTH dependent suppression of adrenal tumor growth.

Taken together, we demonstrate a growth inhibiting effect of ACTH 1-24 in an in vivo adrenocortical tumor model using high physiological doses of ACTH. We present evidence that this effect is most likely independent of pituitary function and corticosterone levels, suggesting direct effects of ACTH treatment on adrenocortical tumor growth. Novel treatment options for patients with adrenocortical carcinoma are urgently needed. Based on our data, it seems reasonable to speculate about possible clinical applications of anti-proliferative actions of ACTH. For example, in patients with adrenocortical carcinoma, combined treatment of low doses of ACTH with differentiation inducing agents such as peroxisome proliferator activated receptor (PPAR)γ agonists that antagonize loss of MC2-R expression in adrenocortical carcinoma (51) might be considered a compelling future concept.

Acknowledgements

We are indebted to Roger Cone and Bernard Schimmer for their generous gift of an expression vector for human MC2-R and the Y6 cells, respectively. This work was supported by grants from the Deutsche Forschungsgemeinschaft (DFG, Re 752/11-2.) and Mildred Scheel Stiftung to MR.

References

Cater DB & Stack-Dunne MP. The histological changes in the adrenal of the hypophysectomised rat after treatment with pituitary preparations. *Journal of Pathology and Bacteriology* 1953 66 119–133.

Schimmer BP, Kwan WK, Tsao J & Qi R. Adrenocorticotropin-resistant mutants of the Y1 adrenal cell line fail to express the adrenocorticotropin receptor. *Journal of Cellular Physiology* 1995 163 164–171.

Boston BA & Cone RD. Characterization of melanocortin receptor subtype expression in murine adipose tissues and in the 3T3-L1 cell line. *Endocrinology* 1996 137 2043–2050.

ACTH inhibits adrenal tumor proliferation 443