Abstract

Objective: To analyze the mutational spectrum of steroid 21-hydroxylase (CYP21) and the genotype–phenotype correlation in patients with congenital adrenal hyperplasia (CAH) registered in the Middle European Society for Pediatric Endocrinology CAH database, and to design a reliable and rational approach for CYP21 mutation detection in Middle European populations.

Design and methods: Molecular analysis of the CYP21 gene was performed in 432 CAH patients and 298 family members. Low-resolution genotyping was performed to detect the eight most common point mutations. High-resolution genotyping, including Southern blotting and sequencing was performed to detect CYP21 gene deletions, conversions, point mutations or other sequence changes.

Results: CYP21 gene deletion and In2 and Ile172Asn mutation accounted for 72.7% of the affected alleles in the whole study group. A good genotype–phenotype correlation was observed, with the exception of Ile172Asn and Pro30Leu mutations. In 37% of patients low resolution genotyping could not identify the causative mutation or distinguish homozygosity from hemizygosity. Using high-resolution genotyping, the causative mutations could be identified in 341 out of 348 analyzed patients. A novel mutation Gln315Stop was found in one simple virilising CAH (SV-CAH) patient from Austria. In the remaining seven patients polymorphisms were identified as the leading sequence alteration. The presence of elevated basal and ACTH-stimulated 17-hydroxyprogesterone, premature pubarche, advanced bone age and clitoral hypertrophy directly implicated Asn493Ser polymorphism in the manifestation of nonclassical- (NC) and even SV-CAH.

Conclusions: By genotyping for the most common point mutations, CYP21 gene deletion/conversion and the 8 bp deletion in exon 3, it should be possible to identify the mutation in 94–99% of the diseased alleles in any investigated Middle European population. In patients with a mild form of the disease and no detectable mutation CYP21 gene polymorphisms should be considered as a plausible disease-causing mutation.
amplification or by oligonucleotide hybridisation (6). However, the occurrence of alleles with changed gene copy number, the high frequency of compound heterozygotes having inherited a different mutation in each CYP21 allele, and alleles carrying multiple mutations complicate molecular genetic diagnostics (7). The severity of the disease is determined by the activity of the less severely affected of the two alleles but different phenotypes can be associated with the same mutation and the severity of clinical manifestations may vary within the genotype (8–10).

The Middle European Society for Pediatric Endocrinology (MESPE) has created a large database since 1998 containing information on 598 children with CAH from Austria, the Czech Republic, Hungary, Slovakia and Slovenia in order to study the endocrinological parameters, the efficiency of clinical diagnostics and the treatment and genetics of CAH in Middle European countries (11–13). The database is described in detail elsewhere (11).

The aim of this study was to systematically analyze the mutational spectrum and the genotype–phenotype correlation in CAH patients and their family members registered in the MESPE-CAH database. Furthermore, we aimed to design a rational approach for CYP21 mutation detection needed for reliable pre-, peri- and postnatal diagnostics and for genetic counseling in the Middle European countries and in ethnic groups originating from the region.

Subjects and methods

Study participants

Patients from the MESPE-CAH database and their family members were invited to participate in the study and written informed consent was obtained from all the participants. The respective national ethics committees for research in medicine approved the study design. The clinical and laboratory data on the patients were available on the database. The clinical diagnosis of different types of 21-OH deficiency was made by paediatric endocrinologists based on the history, physical examination, electrolyte and hormonal data (1, 14). Patients were considered to have the SW form when clinical and laboratory signs of renal salt wasting were present in the first month of life; the SV form was assigned if clinical symptoms of CAH without SW were present before the age of puberty onset, i.e. 8 years, and the NC form when symptoms of androgen excess became evident during or after puberty (11). Patients without reliable clinical information were excluded from the study.

Methods

National coordinators were asked to provide peripheral blood or genomic DNA samples of patients and their first-degree relatives for genotyping. Out of 598 CAH patients from the five Middle European countries included in the MESPE-CAH database peripheral blood or genomic DNA samples were available from 476 patients (79.6%). Sequence analysis was used to detect CYP21 gene mutations in Austrian patients using the approach previously described (15). For patients from other countries a two-step genotyping approach was employed. Low-resolution genotyping for 8 common point mutations was performed using allele-specific polymerase chain reaction (PCR-SSP) and/or PCR and sequence specific oligonucleotide hybridisation (PCR-SSO) by participating centers (16–18). High resolution genotyping by PCR-SSP, PCR-SSO, Southern blotting and sequencing was performed in Ljubljana to detect CYP21 gene deletions, conversions, point mutations or other sequence changes when mutation could not be identified on one or both alleles by low resolution genotyping or when homozygosity could not be distinguished from hemizygosity. The genotyping approach is described in detail elsewhere (17, 18). The reference sequence reported by White et al. (4) was used for numbering of nucleotides and amino acids.

Results

In the present study we systematically genotyped 476 CAH patients from five Middle European countries. Additionally, 298 first-degree relatives (236 parents and 62 siblings) were genotyped to confirm allele segregation. The diagnosis of CAH could not be confirmed in 34 patients and 10 patients had 11β-hydroxylase deficiency, therefore these patients were excluded from further study.

Using low-resolution genotyping mutations could not be identified or homozygosity could not be distinguished from hemizygosity in 160 out of 432 patients (37%). From 84 of these patients DNA was not available for further analysis. Using high-resolution genotyping, Southern blotting and sequencing the causative mutations could be identified in 341 out of 348 (98.0%) patients while in the remaining seven patients polymorphisms were identified as the leading sequence alteration.

A novel mutation Gln315Stop (Fig. 1) resulting in a premature stop codon which has not been described to date in CAH patients, was found in a patient from Austria. The girl was diagnosed at age 4.4 and was clinically SV. The sequencing analysis of both parents confirmed the inheritance of a Gln315Stop mutation from her mother and of a Pro30Leu mutation from her father.

Complete genotypes and clinical phenotypes of MESPE-CAH patients are shown in Table 1. Among 348 patients 221 (63.5%) presented with SW-CAH (92 boys and 129 girls), 92 (26.4%) had SV-CAH (35 boys and 57 girls) and 35 (10.1%) had NC-CAH (12 boys and 23 girls). One third of the patients were compound
heterozygotes, having inherited a different mutation in each CYP21 allele, 43.8% of all patients were homozygous and 22.9% were hemizygous for the mutation identified. The most common mutations found in SW-CAH were In2 (49.8%) and CYP21 gene deletion/conversion (29.9%). Ile172Asn was the most common mutation found in SV-CAH (59.8%), however it was also observed in 6.8% of SW-CAH as well as in 8.3% of NC-CAH patients. Other common mutations found in SV-CAH were Pro30Leu in 16.3%, a promoter conversion associated with Pro30Leu in 8.7% and In2 in 7.6% of SV patients. Together with Ile172Asn these mutations accounted for more than 90% of the SV form. The most common NC-CAH mutations were Val281Leu (41.7%), Pro30Leu (22.2%) and the Asn493Ser polymorphism (16.7%) together accounting for 80% of the NC-CAH. The Val281Leu mutation also represented the least severe mutation in 4.4% of SV-CAH patients.

To analyze the genotype-phenotype correlation, CYP21 gene mutations were categorized into four groups based on in vitro established enzyme activity as described previously (3, 8, 10). Alleles with multiple mutations were grouped according to the most severe mutation of the haplotype (Table 2). Although the impairment of enzyme activity for CYP21 gene conversion involving the promoter region alone or combined with Pro30Leu substitution has not been established in vitro these mutations were categorized in group B based on the previous reports of clinical phenotypes more severe than predicted in patients carrying these mutations (15, 18). As summarized in Table 2 a good genotype-phenotype correlation was observed in patients with severe mutations categorised in mutation groups 0 and A. Greater diversity of clinical phenotypes was observed in patients with less severe mutations, especially in carriers of Ile172Asn and Pro30Leu mutations, categorized in mutation groups B and C, respectively. In most patients the observed phenotype matched the severity of the less affected of the two alleles.

<table>
<thead>
<tr>
<th>CYP21 haplotype (allele 1/allele 2)</th>
<th>SW</th>
<th>SV</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Del/del or conv</td>
<td>61</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Del/8ntG110 (ex3)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Del/InsT307</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Del/Gln318Stop</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Del/Arg356Trp</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Del/Arg483GG → C</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Small conv/conv</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Del 8ntG110 (ex3)/del 8ntG110 (ex3)</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cluster ex6/cluster ex6</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>InsT307/InsT307</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>InsT307/Gln318Stop</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gln318Stop/Gln318Stop</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Arg356Trp/small conv</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Arg356Trp/Arg356Trp</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Arg483Pro/Arg483Pro</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>In2/del or conv</td>
<td>36</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>In2/ln2</td>
<td>62</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>In2/InsT307</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>In2/Gln318Stop</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>In2/Arg483Pro</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>In2/Arg483GG → C</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Prom conv + Pro30Leu/del or conv</td>
<td>1</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Prom conv + Pro30Leu/del Gln318Stop</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Prom conv + Pro30Leu/In2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Prom conv + Pro30Leu/Ile172Asn</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Prom conv + Pro30Leu/Gln318Stop</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Ile172Asn/del or conv</td>
<td>6</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Ile172Asn/ln2</td>
<td>2</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>Ile172Asn/del 8 bp</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Ile172Asn/Ile172Asn</td>
<td>4</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Ile172Asn/Gln318Stop</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Ile172Asn/Arg356Trp</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Ile172Asn/Arg483GG + C</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Pro30Leu/del or conv</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Pro30Leu/Pro30Leu</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pro30Leu/ln2</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Pro30Leu/Ile172Asn</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Pro30Leu/Val281Leu</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Pro30Leu/Gln318Stop</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Val281Leu/del or conv</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Val281Leu/ln2</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Val281Leu/Val281Leu</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Val281Leu/InsT307</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Val281Leu/Gln318Stop</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Val281Leu/Arg356Trp</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pro453Ser/del</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pro453Ser/ln2</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Prom conv/del or conv</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Asn493Ser/del</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Asn493Ser/Arg356Trp</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Asn493Ser/Asn493Ser</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Asn493Ser/Asn493Ser + T-107C</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>221</td>
<td>92</td>
<td>35</td>
</tr>
</tbody>
</table>

Del, CYP21 gene deletion; large conv, large gene conversion; prom conv, gene conversion in promoter region; small conv, multiple mutations present on the same allele, conversion not detectable by PCR-SSP or Southern blot analysis; conv, large or small conversion; ins, insertion; ln2, intron 2 mutation (A,C656G); del BntG110, 8 bp deletion in exon 3.
however the presence of a group 0 or A mutation on the second allele frequently resulted in a more severe clinical phenotype.

The allele frequencies of CYP21 gene mutations in MESPE-CAH patients were calculated based on systematic genotyping of 696 unrelated chromosomes. As shown in Table 3 only three mutations: CYP21 gene deletion, In2 and Ile172Asn were found to occur with a frequency higher than 10% each. Together they represented almost three quarters (72.7%) of the affected alleles in all the populations studied. Country-specific differences were observed in the frequencies of a particular mutation. The frequency of CYP21 gene deletion was 27.1% in the whole study group and ranged from 37.2% in Slovenian patients to 13.9% in Slovak patients. The In2 mutation with the allele frequency of 31.1% in the whole study group was the most prevalent mutation in Slovak (50.0%) and in Hungarian patients (35.9%) and it was the lowest in Slovenian patients (16.7%). Similarly, Ile172Asn had the lowest allele frequency in Slovenian patients (7.7%) while this mutation’s frequency was the highest in Austrian patients (22.5%).

Many diverse alleles with multiple mutations were found: 4.3% of all the alleles carried two mutations and 1.4% of alleles carried more than two mutations. The frequency of alleles with multiple mutations was highest among Slovenian patients (15.4% of all alleles), where the haplotypes were confirmed by analyzing the segregation of mutations in the families. The most common mutation occurring on the same haplotype with other mutations was In2 (2.1% of all alleles). Among 43 alleles with the Pro30Leu mutation only 26 (60.5%) represented a single nucleotide substitution, while Pro30Leu and promoter conversion alone or with a third mutation occurred on 17 separate alleles (39.5%) and represented 2.4% of all alleles.

In seven patients polymorphisms were identified to be the leading sequence alteration as the direct sequencing of all exons, introns and the proximal promoter region of CYP21 gene did not reveal any putative new mutation. Among these patients three were homo- or hemizygous for Asn493Ser and three were compound heterozygotes for this substitution. The clinical characteristics of these patients are given in Table 4. Most of the patients with Asn493Ser presented with elevated baseline or ACTH-stimulated 17OHP levels, premature pubarche or advanced bone age and one girl had clitoral hypertrophy. Elevated basal 17OHP levels were also observed in the NC patient hemizygous for the Lys102Arg Ser268Thr polymorphism, who also presented with clitoral hypertrophy.

Discussion

Systematic analysis of the mutational spectrum of the CYP21 gene and the associated haplotypes was performed in 348 patients with CAH registered in the MESPE-CAH database. Among them 221 presented with SW-CAH, 92 with SV-CAH and 35 with NC-CAH. In a particular clinical form two to three different mutations were found in more than 80% of all haplotypes: In2 and CYP21 gene deletion/conversion in SW-CAH, Ile172Asn and Pro30Leu with or without promoter conversion in SV-CAH and Val281Leu, Pro30Leu and Asn493Ser in NC-CAH.
We found a Gln315Stop substitution in one SV-CAH patient from Austria. This mutation has not been described to date in CAH patients and results in a premature stop codon. Although a functional assay has to be performed to determine the residual enzyme activity of this mutation in vitro we assume that such a mutation would completely abolish enzyme activity, similarly to the nearby Gln318Stop mutation. This would also explain a SV phenotype in this patient carrying Pro30Leu mutation on the less affected haplotype.

The large number of patients included in this study enabled us to analyze the genotype–phenotype correlation. In general a good genotype–phenotype correlation was observed in patients with severe mutations, however carriers of the Ile172Asn and Pro30Leu mutations on the less affected allele displayed a greater variability of clinical phenotypes. This phenotypic variability of Ile172Asn mutation has also been reported in other European populations showing an otherwise good correlation between the genotype and phenotype (3, 10, 19, 20). Similarly, many investigators have reported phenotypes more severe than expected in carriers of the Pro30Leu mutation (9, 10, 15, 18, 21). The finding of the Pro30Leu mutation linked to a gene conversion in the promoter region or with an additional mutation, Ala15Thr, could explain the increased severity of phenotypes in Slovenian patients (18). The in vitro expression analysis did not demonstrate the impairment of enzyme activity by Ala15Thr mutation alone (22) but it is not excluded that this mutation has a synergistic effect on 21-hydroxylase activity when combined with the Pro30Leu mutation and/or gene conversion in the promoter region (23).

The relatively slight differences in the distribution of CYP21 mutations observed between individual countries within the Middle European region suggest

<table>
<thead>
<tr>
<th>CYP21 alleles</th>
<th>Austrian</th>
<th>Czech</th>
<th>Hungarian</th>
<th>Slovak</th>
<th>Slovenian</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>N %</td>
</tr>
<tr>
<td>Del</td>
<td>40 33.3</td>
<td>55 28.4</td>
<td>60 22.2</td>
<td>5 13.9</td>
<td>29 38.2</td>
<td>189 28.4</td>
</tr>
<tr>
<td>Large conv</td>
<td>3 2.6</td>
<td>5 1.9</td>
<td>3 8.3</td>
<td>1 6.6</td>
<td>15 2.2</td>
<td></td>
</tr>
<tr>
<td>Prom conv</td>
<td>3 1.5</td>
<td>1 0.4</td>
<td>3 8.3</td>
<td>1 7.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro30Leu</td>
<td>11 9.2</td>
<td>4 2.1</td>
<td>8 3.0</td>
<td>3 3.9</td>
<td>26 3.7</td>
<td></td>
</tr>
<tr>
<td>In2</td>
<td>26 21.7</td>
<td>63 32.5</td>
<td>97 35.9</td>
<td>18 50.0</td>
<td>13 17.1</td>
<td>217 31.2</td>
</tr>
<tr>
<td>Del 8ntG110</td>
<td>3 1.5</td>
<td>1 0.4</td>
<td>4 11.1</td>
<td>7 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ile172Asn</td>
<td>27 22.5</td>
<td>27 13.9</td>
<td>38 14.1</td>
<td>3 8.3</td>
<td>6 7.9</td>
<td>101 14.5</td>
</tr>
<tr>
<td>Cluster ex6</td>
<td>2 1.0</td>
<td></td>
<td></td>
<td></td>
<td>2 0.3</td>
<td></td>
</tr>
<tr>
<td>Val281Leu</td>
<td>4 3.3</td>
<td>3 1.5</td>
<td>15 5.6</td>
<td>2 2.6</td>
<td>24 3.4</td>
<td></td>
</tr>
<tr>
<td>InsT307</td>
<td>10 3.7</td>
<td></td>
<td></td>
<td>1 1.3</td>
<td>11 1.6</td>
<td></td>
</tr>
<tr>
<td>Gln315Stop</td>
<td>1 0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gln318Stop</td>
<td>4 3.3</td>
<td>6 3.1</td>
<td>5 1.9</td>
<td>1 2.8</td>
<td>2 2.6</td>
<td>18 2.6</td>
</tr>
<tr>
<td>Arg356Trp</td>
<td>4 4.2</td>
<td>4 2.1</td>
<td>8 3.0</td>
<td>17 2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro4353Ser</td>
<td>1 0.8</td>
<td></td>
<td></td>
<td>1 1.3</td>
<td>1 0.7</td>
<td></td>
</tr>
<tr>
<td>Arg483Pro</td>
<td>1 0.8</td>
<td></td>
<td></td>
<td></td>
<td>1 0.1</td>
<td></td>
</tr>
<tr>
<td>Arg483G → C</td>
<td>6 3.1</td>
<td></td>
<td></td>
<td></td>
<td>6 0.9</td>
<td></td>
</tr>
<tr>
<td>Asn493Ser</td>
<td>6 3.1</td>
<td>2 0.7</td>
<td></td>
<td>2 2.6</td>
<td>10 1.4</td>
<td></td>
</tr>
</tbody>
</table>

Small conversions
- Prom conv + Pro30Leu: 4 2.1 | 7 2.6 | 3 3.9 | 14 2.0 |
- Prom conv + Pro30Leu + In2: 1 1.3 | 1 0.1 | | |
- Prom conv + Pro30Leu + Als15Thr: 2 2.6 | 2 0.3 | | |
- Prom conv + del 8bp: 1 2.8 | | | 1 0.1 | |
- In2 + Ile172Asn: 2 1.0 | 3 1.1 | | 5 0.7 |
- In2 + Val281Leu: 2 0.7 | | | 2 0.3 |
- In2 + Val281Leu: 1 0.4 | 1 2.8 | | 2 0.3 |
- In2 + Arg356Trp: 1 0.5 | 1 0.4 | | 2 0.3 |
- In2 + Ex6 + Val281Leu + Gln318Stop: 2 2.6 | 2 0.3 | | |
- In2 + Val281Leu + Gln318Stop + Arg356Trp: 1 0.4 | | | 1 0.1 |
- Ex 4-ex8 conversion: 1 0.4 | | | 1 0.1 |
- Ile172Asn + ex6 + Pro4353Ser: 1 0.4 | 1 1.3 | 1 0.1 | |
- Val281Leu + InsT307 + Gln318Stop + Arg356Trp: 1 0.4 | | | 1 0.1 |
- InsT307 + Gln318Stop: 3 3.9 | 3 0.4 | | |
- InsT307 + Arg356Trp: 1 0.4 | | | 1 0.1 |
- Total small conversion alleles: 7 3.6 | 18 6.7 | 2 5.6 | 12 15.6 | 39 5.3 |
- Total alleles: 120 100.0 | 194 100.0 | 270 100.0 | 36 100.0 | 76 100.0 | 696 100.0 |

Del, CYP21 gene deletion; large conv, large gene conversion; prom conv, gene conversion in promoter region; In2, intron 2 splice site mutation (A, C656G); del 8ntG110, 8 bp deletion in exon 3; ex6, cluster mutation in exon6; Ex4-ex8 conversion, ile172Asn + ex6 + Val281Leu + InsT307 + Gln318Stop + Arg356Trp.
that, despite differences in ethnic origins, similar genetic mechanisms were probably involved in the transmission of the disease. A possible explanation for this may be a high degree of ethnic mixing over the centuries in some populations (16). The observed frequencies of the CYP21 gene deletion (range 13.9–37.2%) and In2 mutation (range 16.7–50.0%) were comparable to the frequencies observed in most of the other European countries. In CAH patients from the Middle European populations studied, the frequencies of the Val281Leu mutation (range 1.5–5.6%) were lower than in Italy, France and Spain (range 11.0–16.7%), but comparable to other European countries (range 2.2–5.7%). The frequencies of Pro30Leu in Middle European populations (range 2.1–9.2%) were higher, particularly in Austrian CAH patients than in other European populations (range 0.3–2.7%) (8, 10, 20, 24–26).

A high frequency of alleles with multiple mutations was found: 5.6% of the alleles in the whole study group and 15.4% of all the alleles in Slovenian patients carried two or more mutations. The clustering of point mutations on one allele has been previously reported in 1.9% of unrelated alleles in Dutch patients (20). The relatively high frequency of alleles with multiple mutations in Middle European patients compared to some other single point mutations considered to be common in CAH, such as Gln318Stop (2.6%) and Arg356Trp (2.4%), demonstrates the importance of including the parents of the index case in the molecular analysis if segregation of alleles needs further determination. If families are not available, mutations can be allocated to separate alleles by allele–specific PCR amplifications (8).

By low-resolution genotyping for the eight most common CYP21 point mutations, mutations could not be identified or homozygosity could not be distinguished from hemizygosity in 37% of patients. Using high-resolution genotyping, PCR-SSP amplification and Southern blotting for the detection of CYP21 gene deletion and large gene conversions only 2% of alleles remained unidentified. Among these, direct sequencing of CYP21 identified Asn493Ser substitution as the leading sequence change in six patients. Some authors describe this substitution as a naturally occurring polymorphism (27) and some as a disease causing mutation (28) but its influence on residual enzyme activity has never been analyzed in vitro. In Mexican CAH patients a higher proportion of homozygosity for the Asn493Ser substitution was observed than in a healthy population (29). It was proposed that a synergistic effect between two mutations could lead to decreased enzymatic activity in CAH patients homozygous for Ser268Thr and Asn493Ser (30, 31), but, except in one patient with a T-107C substitution and one patient with concomitant Lys102Arg on one haplotype, the sequencing of all the exons, introns and 340 nucleotides of the proximal promoter region
revealed no other sequence alteration on alleles charac-
terised by Asn493Ser. The presence of elevated basal and
ACTH-stimulated 170HP, premature pubarche,
advanced bone age in all patients and also clitoral
hypertrophy in one girl implicates a direct role of this
substitution in the disease manifestation of NC and
even SV-CAH.

Lys102Arg and Ser268Thr mutations were also
reported to be normal polymorphisms, however, a
synergistic effect resulting in a decreased enzymatic
activity was observed when both mutations were trans-
mitted on the same haplotype (30, 31). This could
explain the finding of clitoral hypertrophy and elevated
basal 170HP levels in one NC patient hemizygous for
Lys102Arg Ser268Thr substitutions.

In conclusion, our genotyping approach allowed
accurate and sensitive identification of CYP21 gene
mutations in CAH patients and their families and
offered reliable information needed for diagnostics and
for adequate genetic counselling in the Middle Euro-
pean countries and in ethnic groups originating from
the region. A novel Gln313Stop mutation was
identified. By genotyping for the most common point
mutations, CYP21 gene deletion/conversion and the
8 bp deletion in exon 3, it should be possible to identify
the responsible mutation in 94–99% of the diseased
alleles in any investigated population. In patients with
a mild form of the disease and a normal genotype at
cell positions, CYP21 gene polymorphisms such as
Asn493Ser should be considered as a plausible disease
causing mutation.

Acknowledgements

This study was supported by grants from the Slovenian
Ministry for Education, Science and Sport (# J3-7880,
J3-3096, J3-6072, J3-1196; P1-0170), the Hungarian
National Scientific Foundation (OTKA T-037559) and
CEEPUS (SI-013). The contribution of Anna Ferenczi,
2nd Department of Paediatrics, Semmelweis University.
Budapest to the genotyping of Hungarian CAH patients
is greatly acknowledged. Special thanks to Jurka
Ferran, University Children’s Hospital, Ljubljana for
her expert technical assistance. The assistance of
Regina Sepsiova, Bratislava, Slovakia is greatlyfuly
acknowledged – Austria: P Blämel, H Frisch, K Kapelari,
E Ploechl, K Schmitt and F Waldhauser; Czech Republic:
O Hniková, B Kvaclová, J Klabochová, S Koloušková,
J Lebl, L Lisá, V Procházková, S Průhová, R Průsa,
J Skvor, M Snejderová, J Venhácouvá, F Votava, J Zaple-
talová and J Zeman; Hungary: É Erhardt, Z Halaš,
I Ilyés, J Kovács, K Láng, E Nagy, T Niederland, F
Péter, J Ságodi, G Soltész, E Sólyom, J Sólyom, L Szabó
and P Szüts; Slovakia: S Bielikova, M Debreova,
J Javorkova, L Kostalova, M Kusekova, Z Misikova,
Z Pribilincova, J Strnova, Z Simekova and D Trezova:
Slovenia: T Battelino, N Bratanič, V Dolžan, C Kržnišnik,
Mojca Jerjav-Tansek, B Replič-Lampret, M Stopar-
Obreza, and K Trebušak.

References

1 White PC, New MI & Dupont B. Congenital adrenal hyperplasia.
2 White PC & New MI. Genetic basis of endocrine disease 2: conge-
nital adrenal hyperplasia due to 21-hydroxylase deficiency. Jour-
nal of Clinical Endocrinology and Metabolism 1992 74 6–11.
3 Speiser PW, Dupont J, Zhu D, Serrat J, Buegelesien M, Tuse-
Luna MT, Lesser M, New MI & White PC. Disease expression
and molecular genotype in congenital adrenal hyperplasia due to
21-hydroxylase deficiency. Journal of Clinical Investigations
1992 90 584–595.
4 White PC, New MI & Dupont B. Structure of human steroid
21-hydroxylase genes. PNAS 1986 83 5111–5115.
5 Higashi Y, Yoshioka H, Yamane M, Gotoh O & Fuji-Kuriyama Y.
Complete nucleotide sequence of two steroid 21-hydroxylase
genes tandemly arranged in human chromosome: a pseudogene
and a genuine gene. PNAS 1986 83 2841–2845.
6 Urabe K, Kimura A, Harada F, Iwanaga T & Sasazuki T. Gene con-
version in steroid 21-hydroxylase genes. American Journal of
Human Genetics 1990 46 1178–1186.
7 Helmberg A, Tüske-Muna MT, Tabarelli M, Keller R & White PC.
R339H and P453: CYP21 mutations associated with nonclassic
steroid 21-hydroxylase deficiency that are not apparent gene con-
8 Wedell A, Thilen A, Ritten EM, Stenager B & Latham H. Mutu-
tional spectrum of the steroid 21-hydroxylase gene in Sweden:
implications for genetic diagnosis and association with disease
manifestation. Journal of Clinical Endocrinology and Metabolism
1994 78 1145–1152.
9 Wilson RC, Mercado AB, Cheng KC & New MI. Steroid 21-
hydroxylase deficiency: genotype may not predict phenotype. Jour-
10 Krone N, Braun A, Roscher AA, Knorr D & Schwarz P. Predicting
phenotype in steroid 21-hydroxylase deficiency?: Comprehensive
genotyping in 155 unrelated, well defined patients from Southern
Germany. Journal of Clinical Endocrinology and Metabolism 2000
11 Kovacs J, Votava F, Heinze G, Solyom J, Lebl J, Pribilincova Z,
Frisch H, Battelino T, Waldhauser F & the MEWPE-CAH study
group. Lessons from 30 years of clinical diagnosis and treatment
of congenital adrenal hyperplasia in five middle European
countries. Journal of Clinical Endocrinology and Metabolism
2001 86 2958–2964.
12 Hargitai G, Solyom J, Battelino T, Lebl J, Pribilincova Z, Hauspie R,
Kovacs J, Waldhauser F & Frisch H. The MEWPE-CAH study
group. Growth patterns and final height in congenital adrenal
hyperplasia due to classical 21-hydroxylase deficiency. Hormone
13 Frisch H, Waldhauser F, Lebl J, Solyom J, Hargitai G, Kovacs J,
Pribilincova Z, Krznišnik C & Battelino T. For the MEWPE-CAH study
group. Congenital adrenal hyperplasia: lessons from a mul-
14 New MI, Lorenzen F, Lerner AJ, Kohn B, Oberfield SE, Pollack MS,
Dupont B, Storer E, Levy DJ, Pang S & Levine LS. Genotyping ster-
oid 21-hydroxylase deficiency: hormonal reference data. Journal
15 Baumgartner-Parzer SM, Schulze E, Waldhausl W, Pauschenwein S,
Vierhapper H. Mutational spectrum of the steroid 21-hydroxylase

