EXPERIMENTAL STUDY

Gastric inhibitory polypeptide is the major insulinotropic factor in K\textsubscript{ATP} null mice

Katsushi Tsukiyama\textsuperscript{1,3}, Yuichiro Yamada\textsuperscript{1}, Kazumasa Miyawaki\textsuperscript{1}, Akihiro Hamasaki\textsuperscript{1}, Kazuaki Nagashima\textsuperscript{1}, Masaya Hosokawa\textsuperscript{1}, Shinpei Fujimoto\textsuperscript{1}, Akira Takahashi\textsuperscript{1}, Kentaro Toyoda\textsuperscript{1}, Shinya Toyokuni\textsuperscript{2}, Yutaka Oiso\textsuperscript{3} and Yutaka Seino\textsuperscript{1}

Departments of \textsuperscript{1}Diabetes and Clinical Nutrition and \textsuperscript{2}Pathology and Biology of Diseases, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan and \textsuperscript{3}Department of Endocrinology and Diabetology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan

(Correspondence should be addressed to K Tsukiyama, Department of Diabetes and Clinical Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Email: tukiyama@metab.kuhp.kyoto-u.ac.jp)

Abstract

Objective: ATP-sensitive K\textsuperscript{+} (K\textsubscript{ATP}) channels in pancreatic β-cells are crucial in the regulation of glucose-induced insulin secretion. Recently, K\textsubscript{ATP} channel-deficient mice were generated by genetic disruption of Kir6.2, the pore-forming component of K\textsubscript{ATP} channels, but the mice still showed a significant insulin response after oral glucose loading in vivo. Gastric inhibitory polypeptide (GIP) is a physiological incretin that stimulates insulin release upon ingestion of nutrients. To determine if GIP is the insulinotropic factor in insulin secretion in K\textsubscript{ATP} channel-deficient mice, we generated double-knockout Kir6.2 and GIP receptor null mice and compared them with Kir6.2 knockout mice.

Methods: Double-knockout mice were generated by intercrossing Kir6.2-knockout mice with GIP receptor-knockout mice. An oral glucose tolerance test, insulin tolerance test and batch incubation study of pancreatic islets were performed on double-knockout mice and Kir6.2-knockout mice.

Results: Fasting glucose and insulin levels were similar in both groups. After oral glucose loading, blood glucose levels of double-knockout mice became elevated compared with Kir6.2-knockout mice, especially at 15 min (345±10 mg/dl vs 294±20 mg/dl, \(P<0.05\)) and 30 min (453±20 mg/dl vs 381±26 mg/dl, \(P<0.05\)). The insulin response was almost completely lost in double-knockout mice, although insulin secretion from isolated islets was stimulated by another incretin, glucagon-like peptide-1 in the double-knockout mice. Double-knockout mice and Kir6.2-knockout mice were similarly insulin sensitive as assessed by the insulin tolerance test.

Conclusion: GIP is the major insulinotropic factor in the secretion of insulin in response to glucose load in K\textsubscript{ATP} channel-deficient mice.

European Journal of Endocrinology \textbf{151} 407–412

Introduction

The regulation of glucose-induced insulin secretion depends critically on glucose metabolism in pancreatic β-cells, and electrical activity controlled by plasma membrane ion channels is especially important (1). The ATP–sensitive K\textsuperscript{+} (K\textsubscript{ATP}) channel links glucose metabolism to membrane potentials (2–4). ATP closes the K\textsubscript{ATP} channels, which activates voltage-dependent calcium channels, initiating insulin release.

Recently, K\textsubscript{ATP} channel-deficient mice were generated by genetic disruption of Kir6.2, which forms the K\textsuperscript{+} ion-selective pore of the channel (5). While there is no increment in insulin secretion in response to high glucose concentration in vitro in Kir6.2-knockout (Kir6.2\textsuperscript{-/-}) mice, as assessed by perfusion and batch incubation of isolated pancreatic islets, the mice still show the insulin response after oral glucose loading in vivo.

Insulinotropic hormones secreted from the gut upon nutritional ingestion play an important role in glucose-induced insulin secretion (6, 7). Gastric inhibitory polypeptide (GIP) is released from duodenal and upper small intestinal endocrine K-cells upon absorption of glucose or fat (8), and potentiates insulin secretion from pancreatic β-cells by binding to its specific receptor, the GIP receptor (GIPR). This incretin stimulates adenylyl cyclase, raises cyclic AMP (cAMP), and activates protein kinase A or type-II isoform of cAMP-regulated guanine nucleotide exchange factor (cAMP-GEF II) (9). We previously generated mice with a targeted disruption of the GIPR gene (10). Islets from GIPR-knockout
Kir6.2 and GIPR null (Kir6.2/−/− GIPR/−/−) mice, and have found that Kir6.2/−/− GIPR/−/− mice lack the insulin response to oral glucose load seen in Kir6.2/−/− mice, clearly indicating that GIP is the major insulinotropic factor in the insulin secretory activity in these mice.

Design and methods

Generation of animal models

Kir6.2/−/− mice were provided by T Miki and S Seino, Chiba University Graduate School of Medicine, Japan. GIPR/−/− mice were generated as described previously (10). Kir6.2/−/− GIPR/−/− mice were generated by intercrossing Kir6.2/−/− mice with GIPR/−/− mice. Crossbreeding of Kir6.2/−/− GIPR/−/− mice yielded Kir6.2/−/− GIPR/−/− mice. All animals received care in accordance with the principles of laboratory animal care adopted by Kyoto University and the Declaration of Helsinki.

Batch incubation study

Pancreatic islets were isolated from 18- to 19-week-old male mice by collagenase digestion, and batch incubation was performed as described previously (11), with slight modifications. Briefly, pancreatic islets (10 in each tube) were preincubated at 37 °C for 60 min in Heps-Krebs buffer containing 118.4 mmol/l NaCl, 4.7 mmol/l KCl, 1.2 mmol/l KH2PO4, 2.4 mmol/l CaCl2, 1.2 mmol/l MgSO4, 20 mmol/l NaHCO3, 2.8 mmol/l glucose, and 10 mmol/l Heps, supplemented with 0.2% (wt/vol) BSA. The islets were incubated for 30 min in 400 μl buffer containing various stimuli of insulin secretion. GIP and glucagon-like peptide-1 (GLP-1) were obtained from Peptide Institute, Inc., Osaka, Japan. Tolbutamide was from Nacalai Tesque Inc., Kyoto, Japan.

Immunohistochemical analysis

The pancreata of 18-week-old male mice were removed and fixed in Bouin’s solution. Pancreatic specimens were embedded in paraffin and sectioned at 3.5 μm. The avidin–biotin complex method with alkaline phosphatase was used as previously described (12), with a slight modification. After deparaffinization, normal goat serum (diluted to 1:75) (DAKO, Kyoto, Japan) for inhibition of nonspecific binding of primary antibody, rabbit anti-insulin antibody (diluted to 1:350) (DAKO) or rabbit anti-glucagon antibody (OAL-123, kindly provided by Otsuka Assay Laboratory, Tokushima, Japan) in each tube) were preincubated at 37 °C for 60 min with slight modification. After deparaffinization, normal goat serum (diluted to 1:75) (DAKO, Kyoto, Japan) for inhibition of nonspecific binding of primary antibody, goat serum (diluted to 1:350) (DAKO), and avidin-biotin-alkaline phosphatase complex (diluted to 1:100) (Vector Laboratories, Burlingame, CA, USA) were sequentially applied on sections, followed by hematoxylin nuclear counterstaining. Staining was visualized in red and black by alkaline phosphatase substrate (Vector Laboratories) for insulin and glucagon respectively. The sections were analyzed using the NIH Image software (http://rsb.info.nih.gov/nih-image/), and the area containing insulin-positive β-cells was calculated.

Measurements of blood glucose and insulin levels

An oral glucose tolerance test (OGTT) was performed on age-matched male mice at 10 to 11 weeks of age. After a 16-h fast, plasma insulin and blood glucose levels were measured and glucose (2 g/kg body weight) was loaded orally. In the insulin tolerance test, 0.1 unit/kg body weight of human insulin (Eli Lilly, Indianapolis, IN, USA) was injected subcutaneously in male mice (17 weeks of age) after a 16-h fast. Blood samples were taken from the tail vein at the times indicated. Blood glucose levels were measured by an enzyme-electrode method in whole blood. Plasma insulin levels were determined by a high-sensitive ELISA kit (Shibayagi, Gunma, Japan).

Glucose uptake in jejunum in vitro

Incorporation of D-glucose into everted jejunal rings was determined as described previously (14), with slight modifications. Briefly, mice were anesthetized with pentobarbital sodium (60 mg/kg s.c.) and a segment of jejunum was quickly excised, rinsed with saline solution (140 mmol/l NaCl, 10 mmol/l KHCO3, 0.4 mmol/l KH2PO4, 2.4 mmol/l K2HPO4, 1.2 mmol/l CaCl2 and 1.2 mmol/l MgCl2, pH 7.4), everted, and cut into ~ 30 mg pieces. Groups of 4 intestinal rings were incubated for 15 min at 37 °C and continuously gassed with O2 in buffer containing 1.0 mmol/l D-glucose and 0.1 μCi/10 ml D-[14C]glucose (specific activity 50–60 mCi/mmol; Amersham Radiochemical Center, London, UK) in the absence and presence of 1 mmol/l phlorizin (phloretin 2’-glucoside), a potent inhibitor of Na+/glucose cotransporter (SGLT). At the end of the incubation period, the tissues were washed in ice-cold saline solution twice, blotted carefully to remove excess moisture, weighed, and extracted by shaking for 24 h in 1 ml 100 mmol/l HNO3 (at 4 °C). An aliquot was taken and radioactivity was determined by liquid scintillation counting on a Liquid Scintillation Analyzer (model TRI-CARB 1900CA, Packard Instrument Company Inc., Downers Grove, IL, USA). SGLT-dependent glucose uptake was determined as the glucose uptake
in the absence of phlorizin minus the glucose uptake in the presence of phlorizin.

**Results**

**Insulin secretion in isolated islets**

Insulin secretory responses of Kir6.2^−/−GIPR^−/− mice were examined *in vitro* by batch incubation study. Total insulin content per single islet is decreased in Kir6.2^−/−GIPR^−/− mice compared with wild-type (Kir6.2^+/+GIPR^+/+) mice (47.3 ± 3.5%, data not shown). In comparison with the basal level of insulin secretion at 2.8 mmol/l glucose from batch-incubated pancreatic islets, the insulin secretion in Kir6.2^−/−GIPR^−/− mice in response to 8.3 mmol/l glucose, 16.7 mmol/l glucose, 25.0 mmol/l glucose, 100 μmol/l tolbutamide in the presence of 16.7 mmol/l glucose or 100 nmol/l GIP in the presence of 8.3 mmol/l glucose is similar. In contrast, 100 nmol/l GLP-1 in the presence of 8.3 mmol/l glucose elicits an increased response (Fig. 1).

**Immunohistochemistry of pancreatic islets**

Immunohistochemical examination shows that the number of insulin-positive β-cells in islets of Kir6.2^+/+GIPR^+/+ mice (A, D), Kir6.2^+/−GIPR^+/+ mice (B, E), and Kir6.2^−/−GIPR^+/+ mice (C, F) are shown. Pancreatic β-cells and α-cells were stained using rabbit anti-insulin antibodies (A, B and C) or anti-glucagon antibodies (D, E and F). Bar = 100 μm.

**Glucose tolerance and insulin secretion in vivo**

Fasting glucose levels are similar in Kir6.2^−/−GIPR^−/−, Kir6.2^−/−GIPR^+/+, and Kir6.2^+/+GIPR^+/+ mice. However, after oral glucose loading, blood glucose
levels of Kir6.2\textsuperscript{−/−} GIPR\textsuperscript{−/−} mice become elevated compared with Kir6.2\textsuperscript{−/−} GIPR\textsuperscript{+/+} mice, especially at 15 min (345 ± 10 mg/dl vs 294 ± 20 mg/dl, P < 0.05) and 30 min (453 ± 20 mg/dl vs 381 ± 26 mg/dl, P < 0.05) (Fig. 3A). The time of peak glucose response is at 30 min both in Kir6.2\textsuperscript{−/−} GIPR\textsuperscript{−/−} mice and Kir6.2\textsuperscript{−/−} GIPR\textsuperscript{+/+} mice. Plasma insulin levels were measured to determine the cause of the glucose intolerance in Kir6.2\textsuperscript{−/−} GIPR\textsuperscript{−/−} mice. Fasting insulin levels in Kir6.2\textsuperscript{−/−} GIPR\textsuperscript{−/−} mice and Kir6.2\textsuperscript{−/−} GIPR\textsuperscript{+/+} mice are similar. The insulin response after oral glucose loading is almost completely lost in Kir6.2\textsuperscript{−/−} GIPR\textsuperscript{−/−} mice, and the insulin levels at 15 min and 30 min in Kir6.2\textsuperscript{−/−} GIPR\textsuperscript{−/−} mice are lower than in Kir6.2\textsuperscript{−/−} GIPR\textsuperscript{+/+} mice (Fig. 3B), indicating that the glucose intolerance in Kir6.2\textsuperscript{−/−} GIPR\textsuperscript{−/−} mice is due to insufficient insulin secretion.

**Glucose uptake by the jejunum in vitro**

We investigated glucose uptake by the jejunum in vitro using everted jejunal rings, and found no difference among Kir6.2\textsuperscript{+/+} GIPR\textsuperscript{+/+}, Kir6.2\textsuperscript{−/−} GIPR\textsuperscript{−/−} and Kir6.2\textsuperscript{−/−} GIPR\textsuperscript{+/+} mice (Fig. 4).

**Insulin sensitivity in vivo**

The glucose-lowering effect of insulin was assessed by an insulin tolerance test. Kir6.2\textsuperscript{−/−} GIPR\textsuperscript{−/−} mice and Kir6.2\textsuperscript{−/−} GIPR\textsuperscript{+/+} mice are similarly insulin sensitive, and more so than Kir6.2\textsuperscript{+/+} GIPR\textsuperscript{+/+} mice (Fig. 5).

**Discussion**

GIP and GLP-1 are physiological incretins (7, 15) that stimulate insulin secretion from pancreatic \(\beta\)-cells upon ingestion of nutrients. GIP and GLP-1 bind to specific receptors, the GIPR and the GLP-1 receptor (GLP-1R), and increase the intracellular cAMP concentration, which produces insulin secretion. However, functional differences have become clear in recent studies of knockout mice (10, 16–18). GIPR\textsuperscript{−/−} mice exhibit normal glucose tolerance after intraperitoneal glucose loading but impaired glucose tolerance after oral glucose loading, while GLP-1R-knockout (GLP-1\textsuperscript{−/−}) mice exhibit impaired glucose tolerance.

**Figure 3** Glucose tolerance test. (A) Blood glucose levels after oral glucose loading are shown: Kir6.2\textsuperscript{−/−} GIPR\textsuperscript{+/+} mice, open circles; Kir6.2\textsuperscript{−/−} GIPR\textsuperscript{−/−} mice, hatched circles; Kir6.2\textsuperscript{−/−} GIPR\textsuperscript{−/−} mice, solid circles (n = 5). (B) Plasma insulin levels after oral glucose tolerance test are shown: Kir6.2\textsuperscript{−/−} GIPR\textsuperscript{+/+} mice, open bars; Kir6.2\textsuperscript{−/−} GIPR\textsuperscript{−/−} mice, hatched bars; Kir6.2\textsuperscript{−/−} GIPR\textsuperscript{−/−} mice, solid bars (n = 5). Values are means ± S.E.M. *P < 0.05 vs Kir6.2\textsuperscript{−/−} GIPR\textsuperscript{−/−} mice; #P < 0.05 vs Kir6.2\textsuperscript{−/−} GIPR\textsuperscript{−/−} mice.

**Figure 4** Glucose uptake in the jejunum. Glucose uptake in the jejunum in Kir6.2\textsuperscript{−/−} GIPR\textsuperscript{+/+} mice, open bar; Kir6.2\textsuperscript{−/−} GIPR\textsuperscript{−/−} mice, hatched bar; Kir6.2\textsuperscript{−/−} GIPR\textsuperscript{−/−} mice, solid bar is shown (n = 4). Na\textsuperscript{+}/glucose cotransporter (SGLT)-dependent glucose uptake was determined as the glucose uptake in the absence of phlorizin minus the glucose uptake in the presence of 1 mmol/l phlorizin. Values are means ± S.E.M.

**Figure 5** Insulin tolerance test. Changes in blood glucose levels upon insulin injection are shown: Kir6.2\textsuperscript{−/−} GIPR\textsuperscript{−/−} mice, open circles; Kir6.2\textsuperscript{−/−} GIPR\textsuperscript{−/−} mice, hatched circles; Kir6.2\textsuperscript{−/−} GIPR\textsuperscript{−/−} mice, solid circles (n = 5). Values are means ± S.E.M., relative to basal blood glucose levels. #P < 0.05 compared with Kir6.2\textsuperscript{−/−} GIPR\textsuperscript{−/−} mice.
both orally and intraperitoneally. GIPR<sup>−/−</sup> mice also exhibit an increased number of pancreatic β-cells while GLP-1R<sup>−/−</sup> mice show a decreased number. In addition, GLP-1 causes a decreased gastric emptying rate by intravenous infusion in humans (19), and produces a marked reduction in food and water intake in rats through a central mechanism (20). Apparently, GIP contributes to glucose homeostasis by raising insulin secretion in response to an oral glucose load while GLP-1 contributes by pancreatic β-cell proliferation and other factors in addition to insulin secretion. In the present study using double-knockout mice, we establish that GIP is the insulinotropic factor in the insulin response to oral glucose loading in K<sub>ATP</sub> channel-deficient mice. Kir6.2<sup>−/−</sup>GIPR<sup>−/−</sup> mice show no increase in plasma insulin levels in response to an oral glucose load, demonstrating that the insulin secretory response in Kir6.2<sup>−/−</sup>GIP<sup>−/−</sup> mice is abolished in the absence of the GIP signal.

Immunohistochemical examination of pancreatic islets of Kir6.2<sup>−/−</sup>GIPR<sup>−/−</sup> mice shows that the area containing insulin-positive β-cells is larger than in Kir6.2<sup>−/−</sup>GIP<sup>−/−</sup> islets at 18 weeks of age. It has been reported that the number of β-cells in Kir6.2<sup>−/−</sup> mice is similar to wild-type (Kir6.2<sup>+/+</sup>) mice before 16 weeks of age, but that a decrease becomes evident in more aged Kir6.2<sup>−/−</sup> mice (21). The result is consistent with the previous study (17) that showed that the total pancreatic insulin content of GIPR<sup>−/−</sup> mice is lower than that of wild-type (GIP<sup>−/−</sup>) mice, although the pancreatic β-cell area is increased.

We have shown that the plasma GLP-1 levels are similar in GIP<sup>−/−</sup> mice and GIP<sup>−/−</sup> mice, and that GIPR<sup>−/−</sup> mice exhibit higher insulin release in response to GLP-1 (17). These results suggest that the action of GLP-1 is increased in the absence of GIP signaling. Since GLP-1 signaling is still intact in Kir6.2<sup>−/−</sup>GIP<sup>−/−</sup> mice, the increased number of pancreatic β-cells in Kir6.2<sup>−/−</sup>GIP<sup>−/−</sup> mice may be due to the action of GLP-1. These results indicate both that GIP is the major insulinotropic factor in insulin secretion in K<sub>ATP</sub> channel-deficient mice and that GLP-1 contributes to glucose homeostasis in these mice by stimulating pancreatic β-cell proliferation.

Despite the nearly complete loss of the insulin secretory response to an oral glucose load, Kir6.2<sup>−/−</sup>GIPR<sup>−/−</sup> mice still show only mild glucose intolerance. Since GIP receptors are also expressed in the small intestine and in insulin-target tissues such as adipocytes (22), we investigated glucose uptake by the small intestine using everted jejunal rings in vitro. Glucose uptake in Kir6.2<sup>−/−</sup>GIP<sup>−/−</sup>, Kir6.2<sup>−/−</sup>GIP<sup>−/−</sup>, and Kir6.2<sup>−/−</sup>GIP<sup>−/−</sup> mice was similar in this study, suggesting that other factors may contribute to glucose homeostasis in this case, such as increased glucose uptake to adipocytes and skeletal muscle or extrapancreatic glucose-lowering effects of GLP-1 (23). In the insulin tolerance test, Kir6.2<sup>−/−</sup>GIPR<sup>−/−</sup> mice and Kir6.2<sup>−/−</sup>GIP<sup>−/−</sup> mice are similarly insulin sensitive, and more so than Kir6.2<sup>+/+</sup>GIP<sup>−/−</sup> mice. Previous studies have shown that insulin sensitivity is increased by disruption not only of Kir6.2 but also of SUR2, the other component of skeletal muscle K<sub>ATP</sub> channels. The glucose-lowering effect of insulin, as assessed by the insulin tolerance test, is increased in Kir6.2<sup>−/−</sup> mice (5), and a 2-deoxy-[<sup>3</sup>H]glucose uptake experiment in vivo has shown that basal and insulin-stimulated glucose uptake in skeletal muscles and adipose tissues of Kir6.2<sup>−/−</sup> mice is enhanced compared with Kir6.2<sup>+/+</sup> mice (24). In SUR2-knockout (SUR2<sup>−/−</sup>) mice, enhanced insulin action in skeletal muscle has been reported, and in vitro insulin-stimulated glucose transport is 1.5-fold greater than in wild-type (SUR2<sup>+/+</sup>) mice (25). It is thought that K<sub>ATP</sub> channels consisting of Kir6.2 and SUR2 participate in glucose uptake in skeletal muscles directly while the Kir6.2-containing channels in adipose tissues are involved in glucose uptake only indirectly.

Acknowledgements

We thank Dr T Miki and Prof. S Seino, Chiba University Graduate School of Medicine, Department of Cellular and Molecular Medicine, who provided the Kir6.2<sup>−/−</sup> mice. This study was supported, in part, by Grants-in-Aids for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, by Health and Labor Sciences Research Grants for Research on Human Genome, Tissue Engineering and Food Biotechnology from the Ministry of Health, Labor and Welfare of Japan, and by Health and Labor Sciences Research Grants for Comprehensive Research on Aging and Health from the Ministry of Health, Labor and Welfare of Japan.

References

1 Ashcroft FM & Rorsman P. Electrophysiology of the pancreatic beta-cell. Progress in Biophysics and Molecular Biology 1989 54 87–143.
7 Creutzfeldt W. The incretin concept today. Diabetología 1979 16 75–85.

www.eje.org


Received 16 January 2004
Accepted 16 June 2004