EXPERIMENTAL STUDY

Immunohistochemical detection of GHRH and its receptor splice variant 1 in primary human breast cancers

Ioulia Chatzistamou1, Andrew V Schally4,5, Hippokratis Kiaris3, Ekaterini Politi2, Jozsef Varga4,5, George Kanellis2, Anastasios Kalofoutis3, Agatha Pafiti1 and Helen Koutselini2

Departments of 1Pathology and 2Cytopathology, Aretaieion University Hospital, 3Department of Biological Chemistry, Medical School, University of Athens, M Asias 75 str., Athens 115 27, Greece, 4Endocrine, Peptide and Cancer Institute, Veterans Affairs Medical Center and 5Section of Experimental Medicine, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA

(Correspondence should be addressed to H Kiaris; Email: hkiaris@med.uoa.gr)

Abstract

Objective: GHRH is secreted by the hypothalamus and, upon binding to specific GHRH receptors in the pituitary, stimulates growth hormone (GH) production and release from the pituitary. In addition to this neuroendocrine action, accumulated evidence implies additional roles for GHRH in carcinogenesis in non-pituitary tissues. In vitro and in vivo studies have shown that splice variant 1 (SV1) of the GHRH receptor, which is widely expressed in non-pituitary tissues and cancers, can mediate the proliferative effects of GHRH. The aim of the present study was to investigate the operation of an autocrine stimulatory loop between GHRH and SV1 in primary breast tumors.

Design: Fifty-three primary breast tumors were evaluated for GHRH and SV1 expression.

Methods: Expression of GHRH and SV1 was assessed by immunohistochemistry using anti-GHRH SV95 and anti-SV1 2317/5 polyclonal antibodies.

Results: About 40% of the specimens tested express GHRH and/or SV1 (approx. 25% each), while in 35% of these positive specimens co-expression of these antigens was detected ($P < 0.01$). Furthermore, a correlation of GHRH, but not SV1, expression was detected in lobular compared with ductal carcinomas.

Conclusions: These results constitute the first demonstration for the expression of GHRH and SV1 in primary breast cancers, and provide evidence for the operation of an autocrine stimulatory loop between GHRH and SV1 in primary cancers. Our findings indicate that GHRH analogs could have diagnostic and therapeutic applications for the management of breast cancer.

European Journal of Endocrinology 151 391–396

Introduction

Growth hormone-releasing hormone (GHRH) is secreted by the hypothalamus and, after binding to specific GHRH receptors in the pituitary, stimulates growth hormone (GH) release ($1–3$). GH, in turn, stimulates the production of insulin-like growth factor-I (IGF-I) in the liver, which is a mitogen for various cell types (4).

Besides this neuroendocrine action, accumulated evidence points to additional actions of GHRH in non-pituitary tissues, especially neoplasms, by direct mechanisms. This evidence includes the expression pattern of this neuropeptide which suggests that GHRH is detected in many types of non-pituitary tumors (reviewed in 5). In addition, treatment of various experimental cancers, such as lung, brain, prostate, endometrial, ovarian and breast carcinomas, with antagonistic analogs of GHRH significantly inhibits their growth. This antitumor action of GHRH has been demonstrated in both in vivo experiments involving transplantable tumors in mice, and in in vitro cell culture conditions, in which by definition the endocrine GHRH/GH/IGF-I axis is not operational (reviewed in 4, 5). Thus, a role for GHRH as an autocrine/paracrine growth factor has been established ($6–15$). However, the receptor that mediates the proliferative effects of GHRH in non-pituitary tissues remains obscure. While the receptor for GHRH, in its pituitary form, is not expressed in extrapituitary tissues, a splice variant (SV) of this protein has been shown to be expressed in a wide range of non-pituitary tissues and experimental cancers (16, 17). This protein, which lacks a short extracellular portion of the full-length receptor, was
shown to be capable of mediating the mitogenic effects of GHRH and to possess, in addition to its ligand-dependent activity, ligand-independent activity in stimulating cell proliferation (18, 19). While the aforementioned evidence demonstrates that slice variant 1 (SV1) can mediate the growth-promoting effects of GHRH, to what extent the operation of such an autocrine stimulatory loop reflects the conditions of primary cancers remains poorly understood.

In the present study, we evaluated primary breast tumors, a cancer cell type which previously was shown to express bio logically active GHRH and to respond significantly to the antagonists of GHRH, for expression of GHRH and SV1 (20–22). Our results indicate that the expression of GHRH and SV1 is not only detectable, but also correlated, providing an initial demonstration for the operation of this autocrine stimulatory loop in primary cancers.

Materials and methods

Specimens
Formalin-fixed paraffin-embedded tissues from 53 patients who had been surgically treated were collected from the Surgical Pathology archives of the Department of Pathology, Aretaieion Hospital, University of Athens, Athens. The study was approved by the Hospital Ethics and Scientific Research Committee. All patients were treated by mastectomy with axillary lymph node dissection. Histological grading of invasive ductal carcinomas takes into consideration the growth pattern of the tumors as well as cytological features of differentiation. The parameters measured were the extent of tubule formation, nuclear hyperchromasia and mitotic rate, and the histological grade was expressed in three categories: well differentiated (grade I), intermediate (grade II), and poorly differentiated (grade III).

Immunohistochemistry
Four-mm thick sections from representative paraffin-embedded blocks of 53 breast adenocarcinomas were collected onto poly-L-lysine-coated slides and stained for GHRH and SV1 antigens. The immunohistochemical detection of GHRH was carried out with rabbit anti-GHRH SV95 (23) polyclonal antibody, diluted with 1× phosphate buffer saline (PBS) at 1:100, using the Kwik-DAB kit (ThermoShandon, Pittsburgh, PA, USA) according to the manufacturer’s instructions. The immunohistochemical detection of SV1 was performed with rabbit anti-SV1 polyclonal antibody 2317/5 diluted with 1× PBS at 1:10^4. The 2317/5 anti-SV1 antibody was designed and produced by J Horvath, J Varga, M Zarandi and K Groot in the laboratory of one of us (A V S); its development will be preliminary initial characterization of the predominant splice variant of GHRH receptor, namely SV1, suggests in the analysis (data not shown). Specimens were evaluated for positive staining and classified according to the percentage of positive cells into the following categories: 1–10%, ±: 11–30%, +: 31–70%, ++: 71–100%, ++++. Images shown were obtained by Pro-image Analysis Software (Media Cybernetics, Inc., Silver Springs, MD, USA).

Statistical analysis
Statistical analysis was performed with the chi-square test and results were considered significant when P < 0.05.

Results
GHRH expression was detected in 13 (25%) and SV1 in 14 (26%) out of the 53 cases tested (Table 1). Immunoreactivity was cytoplasmic in all cases and it ranged from mild (±) to intense (+++) (Figs 1 and 2). Among the 20 (38%) cases identified as positive for either GHRH or SV1 expression, in 7 of them (35% of the specimens expressing either GHRH or SV1, or 13% among the total number of specimens tested), a co-expression of the ligand and the receptor was revealed (P < 0.01). No association between SV1 expression and the histological type of the breast cancer was found, but GHRH was detected at a higher ratio in lobular (3 out of 6, 50%) than in ductal (10 out of 42, 23%) carcinomas. For the latter analysis, some cases in which a mixed type carcinoma was found, being both ductal and lobular and/or mucinous, as well as the single papillary specimen, were excluded (Table 1).

Discussion
GHRH is a neuropeptide that plays an essential role in the stimulation of the GHRH/GH/IGF-1 axis. The accumulated evidence attributes to GHRH a direct role in tumorigenesis and implies that in certain cases GHRH fulfills the criteria for being considered as an autocrine growth factor. This role was initially demonstrated in small cell lung carcinoma and subsequently shown in other tumors as well (5, 6). Consistent with this notion are reports claiming the ectopic production of GHRH by several non-pituitary cancers, as well as the demonstration of the potent antitumor activity of GHRH antagonists by mechanisms that frequently bypass the GH/IGF-I axis. It is noteworthy that the receptor for GHRH is absent from virtually all non-pituitary tissues tested. However, the identification of splice variants of GHRH receptors in such tissues implies that they may function as the receptors that mediate the mitogenic effects of GHRH in primary cancers. While preliminary initial characterization of the predominant splice variant of GHRH receptor, namely SV1, suggests
that it is capable of mediating the stimulatory effects of GHRH in non-pituitary tissues upon exogenous expression, it is unclear whether it functions as such in primary tumors. If the latter hypothesis were correct, it would be expected that the expression of this receptor splice variant SV1, and its ligand GHRH, would be correlated in primary cancers. Therefore, we have undertaken an immunohistochemical analysis for the detection of GHRH and SV1 expression in primary breast cancers, a tumor type previously shown to

<table>
<thead>
<tr>
<th>Case no.</th>
<th>Age (years)</th>
<th>Histology*</th>
<th>Grade (FIGO)†</th>
<th>No. of metastatic lymph nodes**</th>
<th>GHRH immunostaining†</th>
<th>SV1 immunostaining†</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72</td>
<td>D</td>
<td>II</td>
<td>0/19</td>
<td>±</td>
<td>++</td>
</tr>
<tr>
<td>2</td>
<td>72</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>63</td>
<td>D</td>
<td>II</td>
<td>10/16</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>48</td>
<td>D</td>
<td>I</td>
<td>1/15</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>55</td>
<td>D</td>
<td>II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>80</td>
<td>D</td>
<td>II</td>
<td>2/10</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>7</td>
<td>45</td>
<td>D</td>
<td>III</td>
<td>9/20</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>8</td>
<td>56</td>
<td>L</td>
<td></td>
<td>8/17</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>9</td>
<td>50</td>
<td>D</td>
<td>II</td>
<td>2/15</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>10</td>
<td>42</td>
<td>D</td>
<td>III</td>
<td>12/14</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>11</td>
<td>61</td>
<td>D</td>
<td>III</td>
<td>3/28</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>12</td>
<td>51</td>
<td>D</td>
<td>III</td>
<td>0/9</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>13</td>
<td>63</td>
<td>D</td>
<td>III</td>
<td>4/11</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>14</td>
<td>76</td>
<td>D</td>
<td>III</td>
<td></td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>15</td>
<td>37</td>
<td>D, P, M</td>
<td>II</td>
<td>0/15</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>16</td>
<td>69</td>
<td>D</td>
<td>III</td>
<td>3/10</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>17</td>
<td>67</td>
<td>D, L</td>
<td>II</td>
<td>5/15</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>18</td>
<td>73</td>
<td>D</td>
<td>III</td>
<td>0/10</td>
<td>++</td>
<td>−</td>
</tr>
<tr>
<td>19</td>
<td>74</td>
<td>L</td>
<td></td>
<td></td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>20</td>
<td>70</td>
<td>D</td>
<td>III</td>
<td></td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>21</td>
<td>72</td>
<td>D</td>
<td>I</td>
<td>0/13</td>
<td>−</td>
<td>++</td>
</tr>
<tr>
<td>22</td>
<td>70</td>
<td>D</td>
<td>III</td>
<td></td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>23</td>
<td>77</td>
<td>D</td>
<td>III</td>
<td>2/18</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>24</td>
<td>72</td>
<td>D</td>
<td>III</td>
<td>15/16</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>25</td>
<td>62</td>
<td>L, M, D</td>
<td></td>
<td></td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>26</td>
<td>58</td>
<td>D</td>
<td>III</td>
<td>0/19</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>27</td>
<td>56</td>
<td>D</td>
<td>III</td>
<td></td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>28</td>
<td>70</td>
<td>D</td>
<td>II</td>
<td>0/10</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>29</td>
<td>68</td>
<td>D</td>
<td>II</td>
<td>3/24</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>30</td>
<td>56</td>
<td>D</td>
<td></td>
<td></td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>31</td>
<td>71</td>
<td>D</td>
<td>III</td>
<td>12/23</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>32</td>
<td>27</td>
<td>D</td>
<td>II</td>
<td>2/9</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>33</td>
<td>66</td>
<td>L</td>
<td></td>
<td>1/28</td>
<td>−</td>
<td>+ + +</td>
</tr>
<tr>
<td>34</td>
<td>76</td>
<td>P</td>
<td></td>
<td>0/9</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>35</td>
<td>58</td>
<td>D</td>
<td>III</td>
<td>0/26</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>36</td>
<td>72</td>
<td>D</td>
<td>III</td>
<td>0/5</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>37</td>
<td>47</td>
<td>D</td>
<td>III</td>
<td></td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>38</td>
<td>72</td>
<td>D</td>
<td>II</td>
<td>1/8</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>39</td>
<td>65</td>
<td>D</td>
<td>III</td>
<td>3/13</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>40</td>
<td>58</td>
<td>D</td>
<td>II</td>
<td>4/8</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>41</td>
<td>44</td>
<td>D</td>
<td>III</td>
<td></td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>42</td>
<td>51</td>
<td>D</td>
<td>II</td>
<td>0/13</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>43</td>
<td>74</td>
<td>D</td>
<td>II</td>
<td>0/12</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>44</td>
<td>54</td>
<td>D</td>
<td>II</td>
<td>5/13</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>45</td>
<td>72</td>
<td>D</td>
<td>II</td>
<td>0/12</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>46</td>
<td>72</td>
<td>D, L</td>
<td>II</td>
<td>15/19</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>47</td>
<td>81</td>
<td>D</td>
<td>II</td>
<td>0/12</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>48</td>
<td>49</td>
<td>L</td>
<td></td>
<td>0/11</td>
<td>++</td>
<td>−</td>
</tr>
<tr>
<td>49</td>
<td>64</td>
<td>D</td>
<td>II</td>
<td>2/16</td>
<td>±</td>
<td>+</td>
</tr>
<tr>
<td>50</td>
<td>76</td>
<td>L</td>
<td></td>
<td>1/20</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>51</td>
<td>60</td>
<td>D</td>
<td>III</td>
<td>0/17</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>52</td>
<td>73</td>
<td>D</td>
<td>II</td>
<td>1/16</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>53</td>
<td>85</td>
<td>D</td>
<td>III</td>
<td>4/10</td>
<td>+</td>
<td>−</td>
</tr>
</tbody>
</table>

* D, ductal; L, lobular; P, papillary; M, mucinous; ††, in situ.
†† See text for details of scoring.
** Positive/total found lymph nodes.

Table 1 Clinicopathological data and expression of GHRH and GHRH receptor splice variant SV1 in human breast carcinoma specimens.
respond to GHRH antagonists. Our results confirmed the hypothesis that GHRH and SV1 are co-expressed in primary breast cancers. Although only a limited number of specimens, about 25%, expressed either GHRH or SV1, 35% of these specimens were positive for both \(P < 0.01 \), which corresponds to 13% among the total number of specimens tested. It has to be mentioned that given the methodology employed in the present study, our results might be underestimated and that molecular analyses including RT-PCR and/or in situ hybridization might have revealed a higher incidence of GHRH and SV1 positivity. Considering that SV1 is acting as a membrane receptor, in a manner analogous to that of GHRH receptor, the cytoplasmic staining detected in our analysis might be interesting and suggestive of additional roles of SV1. However, this finding should be considered with caution since immunohistochemistry followed by light microscopy is not the most appropriate technique for localization studies at the sub-cellular level. Confocal analyses in combination with immunofluorescence or other analogous approaches should be followed in order to investigate with high accuracy the precise intracellular localization of SV1.

That certain cases were positive for GHRH alone, besides the fact that it may be due to the reduced sensitivity of our assay in detecting the splice variant receptors for GHRH, is consistent with the notion that GHRH can act through other receptors, namely the receptor for the vasoactive intestinal peptide or the pituitary adenyl cyclase activating polypeptide. Thus, GHRH, even in the absence of SV1, may bind to other homologous receptors, eliciting mitogenic responses. Furthermore, the cancer cells probably are not the only targets for the locally produced GHRH, and an effect on the tumoral stroma should also be considered. This is in agreement with previous findings showing that an agonist of GHRH can stimulate the proliferation and increase the levels of c-myc mRNA in normal human dermal fibroblasts (24). In addition, a recent study involving the analysis of GHRH expression in primary endometrial carcinomas by a combination of in situ hybridization analysis and immunohistochemistry demonstrated that while the GHRH mRNA-producing
cells exhibited a mosaic pattern, the peptide itself was detected in a more uniform pattern implying a para-
crine, most likely a stromal, action (25).
SV1 was detected in certain cases in which GHRH expression was absent. Recent findings suggest that
SV1, besides its ligand GHRH-dependent activity, also possesses ligand-independent activity, consisting of
the stimulation of cell proliferation in the absence of
GHRH (19). Consequently, this receptor may play a
role in the development of the disease even without
reaching its maximal stimulation which occurs only in
the presence of ligand binding.

Our results show that GHRH expression is detected
predominantly in the lobular as compared with the
ductal carcinomas. While the number of specimens
tested is limited and does not permit reliable statistical
analysis and therefore has to be confirmed by further
studies, it raises interesting possibilities regarding our
understanding of the mechanisms of pathogenesis of the
disease.

Collectively, this study provides the first demon-
stration that GHRH and splice variant SV1 of its recep-
tor are expressed in primary breast cancers and implies
that the operation of an autocrine stimulatory loop
between this ligand and the corresponding receptor is
associated with the development of the disease. These
findings also suggest that approaches to therapy of
breast cancer based on antagonists of GHRH merit an
investigation.

Acknowledgements
We thank Dr Gabor Halmos for critical reading of the
manuscript. We are also grateful to P Kollia-Lariou and
K Ploumi for help in specimen collection and processing.

References
1 Schally AV & Comaru-Schally AM. Agonistic analogs of growth
hormone-releasing hormone (GH-RH): endocrine and growth
studies. In Growth Hormone Secretagogues in Clinical Practice, pp
2 Schally AV, Steelman S & Bowers CY. Effect of hypothalamic
extracts on the release of growth hormone in vitro. Proceedings
of the Society for Experimental Biology and Medicine 1965 119
208–212.
3 Krulich L, Dhartiwal APS & McCann SM. Stimulatory and inhibi-
tory effects of purified hypothalamic extracts on growth hormone
release from rat pituitary in vitro. Endocrinology 1968 83
783–790.
4 Schally AV & Varga JL. Antagonistic analogs of growth hormone-
releasing hormone: new potential antitumor agents. Trends in
5 Kiaris H, Koutsilieris M, Kalofoutis A & Schally AV. Growth hor-
mone-releasing hormone and extra-pituitary tumorigenesis:
therapeutic and diagnostic applications of growth hormone-
releasing hormone antagonists. Expert Opinion in Investigational
Drugs 2003 12 1385–1394.
6 Kiaris H, Schally AV, Varga JL, Groot K & Armatis P. Growth hor-
mone-releasing hormone: an autocrine growth factor for small
7 Busto R, Schally AV, Varga JL, Garcia-Fernandez MO, Groot K,
Armatis P & Szepeshazi K. The expression of growth hormone-
releasing hormone (GHRH) and splice variants of its receptor in
human gastroenteropancreatic carcinomas. PNAS 2002 99
11866–11871.
8 Busto R, Schally A, Braczkowski R, Plonowski A, Krupa M, Groot K,
Armatis P & Varga J. Expression of mRNA for growth hormone-
releasing hormone and splice variants of GHRH receptors in
47–53.
& Halmos G. Inhibition of growth and metastases of MDA-MB-
435 human estrogen-independent breast cancers by an antagon-
ist of growth hormone-releasing hormone. Anticancer Drugs 2001
12 761–768.
10 Zeitzer P & Siritawandana G. Antagonism of endogenous growth
hormone-releasing hormone (GHRH) leads to reduced prolifer-
ation and apoptosis in MDA231 breast cancer cells. Endocrine
2002 18 85–90.
& Halmos G. Antagonists of growth hormone-releasing hormone
and somatostatin analog RC-160 inhibit the growth of the OV-
1063 human epithelial ovarian cancer cell line xenografted into
mice. Journal of Clinical Endocrinology and Metabolism 2001
86 2144–2152.
12 Csernus EJ, Schally AV, Kiaris H & Armatis P. Inhibition of growth,
production of insulin-like growth factor-II (IGF-II), and expression
of IGF-II mRNA of human cancer cell lines by antagonistic anal-
og of growth hormone-releasing hormone in vitro. PNAS 1999
96 3098–3103.
13 Szepeshazi K, Schally AV, Groot K, Armatis P, Hebert F & Halmos G.
Antagonists of growth hormone-releasing hormone (GH-RH) inhib-
it in vivo proliferation of experimental pancreatic cancers and
decrease IGF-II levels in tumors. European Journal of Cancer
14 Szepeshazi K, Schally AV, Groot K, Armatis P, Halmos G, Hebert F,
Szende B, Varga JL & Zarandi M. Antagonists of growth hormone-
releasing hormone (GHRH) inhibit IGF-II production and growth
of HT-29 human colon cancers. British Journal of Cancer 2000 82
1724–1731.
15 Braczkowski R, Schally AV, Plonowski A, Varga JL, Groot K,
Krupa M & Armatis P. Inhibition of proliferation in human
MNNG/HOS osteosarcoma and SK-ES-1 Ewing sarcoma cell
lines in vitro and in vivo by antagonists of growth hormone-releasing
16 Halmos G, Schally AV, Varga JL, Plonowski A, Rekasi Z &
Czompoly T. Human renal cell carcinoma expresses distinct
binding sites for growth hormone-releasing hormone. PNAS
2000 97 10555–10560.
17 Rekasi Z, Czompoly T, Schally AV & Halmos G. Isolation and
sequencing of cDNAs for splice variants of growth hormone-
releasing hormone receptors from human cancers. PNAS
2000 97 10561–10566.
18 Kiaris H, Schally AV, Busto R, Halmos G, Artavanis-Tsakonas S &
Varga JL. Expression of splice variant of GHRH receptor SV1 medi-
Kalofoutis A. Ligand-dependent and -independ-
dent effects of splice variant 1 of growth hormone-releasing
hormone receptor. PNAS 2003 100 9512–9517.
20 Kahan Z, Varga JL, Schally AV, Rekasi Z, Armatis P, Chatzistamou I,
Czompoly T & Halmos G. Antagonists of growth hormone-releasing
hormone arrest the growth of MDA-MB-468 estrogen-independent
human breast cancers in nude mice. Breast Cancer Research and
Treatment 2000 60 71–79.
21 Chatzistamou I, Schally AV, Varga JL, Groot K, Busto R, Armatis P
& Halmos G. Inhibition of growth and metastases of MDA-MB-
435 human estrogen-independent breast cancers by an antagon-
ist of growth hormone-releasing hormone. Anticancer Drugs 2001
12 761–768.

