Diabetic retinopathy in two patients with congenital IGF-I deficiency (Laron syndrome)

Zvi Laron and Dov Weinberger

Endocrinology and Diabetes Research Unit, Schneider Children’s Medical Center of Israel, Petah Tikva, WHO Collaborating Center for the Study of Diabetes in Youth and 1Department of Ophthalmology, Rabin Medical Center, Beilinson Campus, Petah Tikva and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel

Abstract

Objective: Animal and clinical studies have shown that excessive amounts of growth hormone or insulin-like growth factor-I (IGF-I) promote the development of diabetes and diabetic retinopathy. Forthwith, we present two patients with congenital IGF-I deficiency who developed type II diabetes and subsequently retinopathy.

Methods: Eighteen adult patients with classical Laron syndrome (8 males, 10 females, aged 20–62 years) were followed by us since childhood or underwent fundus photography with a Nikon NF 505 instrument. Three had been treated in childhood with IGF-I, the rest were never treated, including the two patients reported.

Results: Two never-treated patients were diagnosed with type II diabetes (DM) at ages 39 and 41 respectively. There was no diabetes in the families. Oral treatment was followed by insulin injections. Metabolic control was not optimal and one patient developed proliferative diabetic retinopathy, necessitating laser surgery. He also has nephropathy and severe neuropathy. The other patient has background diabetic retinopathy and has developed, progressively, exudates, microaneurisms, hemorrhages and clinically significant macular edema. He also has subacute ischemic heart disease.

Conclusions: Our findings show that congenital IGF-I deficiency, similar to excess, causes vascular complications of DM, denoting also that vascular endothelial growth factor can induce neovascularization in the presence of congenital IGF-I deficiency.

European Journal of Endocrinology 151 103–106

Introduction

Houssay observed that hypophysectomy modified experimentally induced diabetes (1) and Young showed that administration of purified pituitary growth hormone (GH) produced diabetes (2). Subsequently, studies have been extended to insulin-like growth factor-I (IGF-I), the anabolic effector hormone of GH and its binding proteins (3–6). The relationship between pituitary growth hormone, diabetes and its vascular complications has recently been reviewed (7). It was observed that excessive GH secretion, such as in acromegaly induced diabetes and ketoacidosis (8–10), and that in several instances acromegaly is accompanied by severe diabetic retinopathy (11–13). Treatment of acromegaly reduced the insulin requirement, improved the glucose intolerance (14) and induced regression of the retinopathy (13). It is assumed that IGF-I is involved in the development of the retinopathy. Thus, Dills et al. (15) found an association between diabetic retinopathy and elevated serum IGF-I levels. Inokuchi et al. (12) reported increased IGF-I levels in the vitreous of their acromegalic patient with diabetic retinopathy. Increased serum IGF-I levels were also reported with progressive diabetic retinopathy during pregnancy (16). It is not settled whether IGF-I has a direct effect on angiogenesis or whether this effect is mediated via the vascular endothelial growth factor (VEGF) (17).

Patient reports

In this paper, we present two patients who developed diabetes and diabetes vascular complications despite suffering from congenital isolated deficiency of IGF-I (Laron syndrome = primary GH insensitivity or resistance) due to mutations in the growth hormone receptor and thus an inability to generate IGF-I (18, 19).

Patient 1

A male of Jewish Iraqi origin was referred to us with two of his children, all three suffering from classical
Laron syndrome (18) (patient #22 in that report). His adult height was 142 cm. He was obese: weight 61 kg, skinfolds: iliac 22 mm, triceps 19 mm, subscapular 28 mm, and his serum cholesterol was 278 mg/dl. DNA analysis revealed a homozygous mutation $G \rightarrow A$ at position 83 (W-15X in the signal peptide) and a homozygous mutation $G \rightarrow A$ at position 686 (R211H in exon 7) (20). At age 39 diabetes mellitus was diagnosed (fasting glucose: 241 mg/dl (13.3 mmol/l); HbA1c: 12.4%). Oral therapy with Phenformin (DBI) 50 mg was instituted but his metabolic control was not consistent and at age 50 the first signs of non proliferative diabetic retinopathy (NPDR) were detected. He refused insulin therapy and after one year of oral anti-diabetic diabetic therapy (Metformin, or Glibenclamide, or Rosiglitazone) fundi examinations revealed exudates, microaneurysms, hemorrhages and clinically significant macular edema which was treated by grid laser macular photoagulation. His metabolic control was bad (HbA1c: 10.5–12.5%). At that stage he accepted insulin treatment (neutral protamine Hagedorn insulin (NPH) bid, regular insulin (RI) tid. He subsequently developed neuropathy and partial arterial occlusion of the lower limbs. There was no evidence of diabetic nephropathy. His blood pressure was usually 150/80 mm Hg. He had smoked a few cigarettes a day but later claimed to have stopped.

Patient 2

A male of Jewish Yemenite origin (patient #10 in ref. 18) belonging to a consanguineous family was diagnosed with Laron syndrome as an infant. The molecular defect of his GH receptor is a homozygous mutation $C \rightarrow T$ in position 703 (R217X in exon 7). His adult height is 116 cm, with obesity, his skinfolds being over 25 mm. At age 38 diabetes mellitus was diagnosed. Dietary management was irregular as was his metabolic control, and at age 43 he had a fasting blood glucose of 283 mg/dl and a HbA1c of 10.3%. He was found to have background retinopathy including venous congestion, microaneurysms and blot hemorrhages (Fig. 1) followed within 2 years by clinically significant macular edema including hard exudates (Fig. 2). He was also diagnosed with microalbuminuria (25 mg/24 h) and subacute ischemic heart disease. His blood pressure varied around 140/70 mm. He smoked rarely.

There were no subjects with diabetes in the families of the two patients.

Discussion

The contribution of IGF-I in the physiology and pathophysiology of the retinal vessels is as yet unclear. The evidence in man linking GH and IGF-I to diabetic retinopathy correlates eye pathology to the circulating levels of these hormones without taking into account local IGF-I production and/or action. Experimental studies using the anoxia model in mice showed that IGF-I and VEGF co-action promote retinal neovascularization (21) and that IGF-I receptor antagonist suppresses VEGF-induced neovascularization in vivo by reducing the P44/42 nitrogen-activated protein kinase (22).

Recent studies using the oxygen-induced retinopathy model in mice showed that knock out (KO) of the IGF-I receptor decreased retinal neovascularization by 34% as compared with controls. Insulin receptor KO reduces retinal vascularization by 57% (23). These results were interpreted to mean that both IGF-I and insulin signaling in endothelium play a role in retinal neovascularization.
In view of the experimental findings, the development of diabetic retinopathy in our two patients was unexpected. Patients with Laron syndrome have extremely low to undetectable IGF-I levels due to molecular defects of the GH receptor (18, 24). In addition to dwarfism, untreated patients have progressive obesity (25), insulin resistance and glucose intolerance (26) with occasional development of clinical diabetes, as in the two patients described. This is the first report describing diabetic retinopathy and vasculopathy in association with isolated IGF-I deficiency. These patients differ from the patient reported by Raben et al. (27), a 26-year-old patient with idopathic hypopituitarism and diabetes after pancreactectomy who developed retinal hemorrhages without neovascularization, as well as cataracts. Another patient reported by Thivolet et al. (28) had diabetes and developed multiple pituitary insufficiency by hemorrhagic shock during pregnancy. Four years later retinal neovascularization was detected, as were cataracts. In a previous study it has been shown that genetic IGF-I deficiency, including that seen in our patients, resulted in a lower number of vascular branching points in the retina (29).

Thus the role of GH/IGF-I in the development of diabetic retinopathy is not clearly defined. It seems to be U-shaped, as both GH/IGF-I excess as well as GH/IGF-I deficiency can promote diabetic retinopathy.

The action of IGF-I may also depend on genetic factors and/or metabolic changes in the retinal epithelium affecting oxygenation, VEGF and P44/42 protein kinase activity. Considering that IGF-I administration to patients with diabetes improves diabetes control by increasing insulin sensitivity and decreasing secondary GH resistance (30, 31), one might speculate that IGF-I is not having a ‘causal’ but instead either a ‘permissive’ mediating or even a ‘protective’ role (32) in the development of diabetic retinopathy.

Acknowledgements

We thank Mrs Vivian Dagan for preparing the photographs and Mrs Gila Waichman for her secretarial help.

References

Received 3 December 2003
Accepted 1 April 2004