Identification of amino-acids in the α-subunit first and third loops that are crucial for the heterospecific follicle-stimulating hormone activity of equid luteinizing hormone/choriogonadotropin

M Chopineau, N Martinat, J F Gibrat, C Galet, F Lecompte, F Foulon-Gauze, C Pourchet, F Guillou and Y Combarnous

Physiologie de la Reproduction et des Comportements (PRC), UMR INRA-CNRS 6073, 37380 Nouzilly, France and 1Mathematique, Informatique et Genome, INRA, 78352 Jouy-en-Josas, France

(Correspondence should be addressed to M Chopineau; Email: chopinea@tours.inra.fr)

Abstract

Objective: To identify amino-acids in the α-subunit important for expression of heterospecific FSH activity of horse (e) LH/choriogonadotropin (CG) (eLH) and donkey (dk) LH/CG (dkLH) (FSH/LH ratio ten times higher for eLH than for dkLH); this FSH activity absolutely requires an equid (donkey or horse) α-subunit combined with an equid β-LH subunit.

Design: Chimeric α-subunits possessing the first 63 amino-acids of the porcine (p) and the last 33 amino-acids of the donkey α-subunit (ap-dk) and the inverse (dk-p) were constructed. Porcine-specific amino-acids were introduced by mutagenesis in donkey α-subunit at positions 70, 85, 89, 93 and 96 (dk5xmut), 18 (dkK18E) or 78 (dkI78A).

Methods: These different α-subunits were co-transfected in COS-7 cells with β-eLH, β-dkLH and β-eFSH. The LH and FSH bioactivities of the dimers were then assessed in two heterologous in vitro bioassays.

Results: αp-dk or αdk-p exhibited FSH activity when co-expressed with β-eLH but not with β-dkLH. αdkK18E or αdkI78A gave hybrids with no FSH activity and important LH activity when expressed with β-dkLH. αdkI78A/βeLH displayed an FSH/LH ratio as low as that of dkLH. However, mutation at 78 in α-dk had no effect on FSH bioactivity when co-expressed with β-eFSH.

Conclusions: Amino-acids present in both the first two-thirds and the last third of the α-subunit of equid LHs are involved in their heterologous biospecificity. Ile78 exerts as strong an influence on it as the β102-103 residues. By contrast, this residue plays no role in the FSH specificity of eFSH.

European Journal of Endocrinology 150 877–884

Introduction

The glycoprotein hormone family consists of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and thyroid-stimulating hormone (TSH), which are secreted by the pituitary gland in all mammalian species, and choriogonadotropin (CG), which is secreted by the placenta in primates (hCG) and equids (eCG). These hormones are composed of a common α-subunit and a hormone-specific β-subunit (1) which are non-covalently associated. Only the α-β dimer is capable of binding to receptors to induce biological responses. The tertiary structure of hCG (2–4) and that of hFSH (5) show that both subunits have a similar topology: three of the disulfide bonds in each subunit form a cystin knot core that results in an elongated protein containing two paired loops at one end (αL1 and αL3) and a single loop at the other (αL2).

LH and hCG recognize the same receptor (LHR) whereas FSH and TSH have their own cognate receptors. It is the β-subunit that determines the receptor binding specificity (6, 7). However, photoaffinity labeling (8, 9), immunological studies (10) and mutational studies (11–13) demonstrated that the α-subunit also interacts with the receptor.

In order to study more precisely which amino-acids of the α-subunit are implicated in the interaction with gonadotropin receptors, we chose to work with the horse/donkey LH/CG model. Horse LH (eLH) and horse CG (eCG), which are identical apart from their oligosaccharide structures (they are encoded by the same gene (14)) are basically LH molecules in the horse but are unique in the family of gonadotropins as they exhibit both LH and FSH activities in species other than the horse (15). Donkey LH (dkLH) and donkey CG (dkCG) behave similarly but exhibit much
less FSH activity than eLH and eCG (16, 17). Recombinant eLH/CGr (eLH) and dkLH/CGr (dkLH) expressed in COS-7 cells exhibit the same characteristics as the natural hormones: if the FSH/LH ratio is set at 1 for eLH it is only 0.1 for dkLH (18).

We have previously shown that an equid α-subunit is absolutely required for expression of FSH activity by equid LHs (19): a porcine α-subunit is not able to confer any in vitro FSH activity to a hybrid with a donkey β-LH subunit whereas it permits full LH activity. The hybrid between the porcine α-subunit and eLH β-subunit was very poorly active concerning its LH activity and showed no detectable FSH activity, suggesting that an equid α-subunit is absolutely required for expression of both the LH and FSH activities of eLH.

In order to locate the determinants in the α-subunit necessary to express heterologous FSH activity in equid LHs, we first expressed recombinant hybrids between the donkey or the horse LH β-subunit and chimeric α-subunits composed of part of the porcine and part of the donkey α-subunit, or mutated donkey α-subunit containing specific porcine amino-acids. Secondly, to investigate the relationships between specific α-subunit amino-acids and amino-acids known to influence FSH activity in the β-subunit (20), the α-mutants were co-expressed with β-eLHV102G F103P and β-dkLHG102V P103F. Thirdly, the most interesting α-subunit mutant was co-expressed with β-eFSH in order to see whether the role of this amino-acid was similar for the expression of activity of eFSH itself. These mutant hormones were then tested for their in vitro LH and FSH bioactivities in heterologous bioassays.

Materials and methods

Chimeric porcine–donkey α-subunits

The donkey and porcine α-subunits cDNAs (18, 21) were excised from pBluescript vectors (Stratagene, Cambridge, Cambs, UK) via their Xba1 restriction sites, cut with the common Xcm1 restriction site (restriction site situated between amino acids 63 and 64 in the peptide sequence) and religated in a cross-manner, that is to say the beginning of the porcine subunit and the end of donkey subunit and the inverse (Table 1). After ligation of the chimeric α-subunits in the cloning vector via Xba1, each chimeric cDNA construct was sequenced in both directions by the dideoxy chain termination method. Each cDNA was then subcloned into the eukaryotic expression vector pCDM8 (Invitrogen, Leek, Staffs, UK). The constructs were then amplified in MC1061/P3 (Invitrogen), purified using the Qiagen maxiprep plasmid kit (Coger, Paris, France) and the sequence was checked again.

Mutant donkey α-subunits

Specific base substitutions were introduced in the donkey α-subunit cDNA by extension of mutagenic oligonucleotides containing the desired mutations by using a site-directed mutagenesis kit (Quick-change Site-directed Mutagenesis kit, Stratagene).

Donkey α-mutants were constructed in order to introduce, at specific positions, amino-acids present in the porcine α-subunit (Table 1): dk5xmut changing five positions in the donkey α-subunit (70, 85, 87, 93 and 96), dkK18E changing lysine into glutamic acid at position 18 and dkI78A changing isoleucine into alanine at position 78. Each construct was sequenced in both directions by the dideoxy chain termination method to ensure that correct mutations were introduced. Each cDNA was then subcloned into the eukaryotic expression vector pCDM8 (Invitrogen). The constructs were then amplified in MC1061/P3 (Invitrogen), purified using the Qiagen maxiprep plasmid kit (Coger) and the sequence was checked again.

β-subunits

Donkey LH β-cDNA and horse LH β-cDNA in pCDM8 were used as well as mutant β-eLH102G F103P and

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Amino-acid sequences of the donkey α-subunit aligned with those of the horse, pig and human: only amino-acids in the horse, pig and human that differ from the donkey are indicated. Position of the Xcm1 restriction site is indicated by the arrow. Positions of the amino-acids mutated in the donkey α-subunit are indicated in bold.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>FPDGEFTQTQDCPEKLiKKYFSFLGVPHLYQCMMGGCCFSRAYPTPARSKKT</td>
<td>RE-</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>M-</td>
<td>G-</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>A-</td>
<td>V-</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Xcm1</td>
<td>---</td>
</tr>
<tr>
<td>MLVPKNlTSATCCVAKAFIRVTLMGNRLENHTQCYSTCYHHKI</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>TKA-</td>
<td>V-</td>
</tr>
<tr>
<td>A-</td>
<td>V-</td>
</tr>
<tr>
<td>E-</td>
<td>H-</td>
</tr>
<tr>
<td>Y-</td>
<td>S-</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>SYN-</td>
<td>V-</td>
</tr>
<tr>
<td>GDKV-</td>
<td>A-</td>
</tr>
<tr>
<td>H-</td>
<td>Y-</td>
</tr>
<tr>
<td>S-</td>
<td>human</td>
</tr>
</tbody>
</table>

The different chimeric and mutant α-subunits are: α-pdk: p(1–63)-dk(64–96); α-dk-p: dk(1–64)-p(65–96); αdkK18E; αdk5xmut: dk170T Q85E Y87H H93Y 196S; αdkI78A.
βdlk12V p103F cDNAs (20). Horse FSH β-cDNA was cloned by RT-PCR in the laboratory from a horse pituitary with 3′ Race PCR and a specific 5′ primer. The sequence was found to be identical to the one recently published (22). This FSH β-cDNA was inserted into pCDM8.

Transient transfections of COS-7 cells

COS-7 monkey kidney cells (ATCC-CRL 1651), maintained at 37°C under 5% CO2 in a humidified atmosphere in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal calf serum, were co-transfected at 65% confluency in 6 cm diameter Petri dishes with 2 μg of each vector, one containing the α-subunit (wild-type (wt), chimeric or mutant) and the other the β-subunit (donkey or horse or mutant 102—103), using calcium phosphate precipitation (18). Co-transfection of vectors containing αdk17/α dk/LHG102V P103F cDNAs (20). Horse FSH β-cDNA was cloned by RT-PCR in the laboratory from a horse pituitary with 3′ Race PCR and a specific 5′ primer. The sequence was found to be identical to the one recently published (22). This FSH β-cDNA was inserted into pCDM8.

Estimations of bioactivities

Bioactivities of secreted LH dimers were tested at different dilutions without previous estimation of concentration by immunoassays for the following reason: the anti-eLH antibodies which we have are highly specific for the equid LHS, they do not cross-react with porcine LH, and as the mutations we introduce are amino-acids present in the porcine α-subunit, we could not be sure that the hybrid and/or mutated molecules were equipotent in these assays. However, we have previously shown that initial quantification of the hybrid hormones is not a critical point, and that the LH activity can be taken as a measure of the quantity of biologically expressed active hormone present (19). In any case, we were essentially interested in FSH/LH ratios which are independent of quantities.

Concerning the dimers obtained with the eFSHβ-subunit (αdk/βeFSH and αdk17/α/βeFSH), which display no LH activity, it was necessary to quantify hormones. To measure the quantities of dimers obtained with α-subunits co-transfected with the FSH β-subunit, we performed a displacement ELISA using a rabbit anti-eFSH antibody produced in the laboratory (number 803) and a standard eFSH (eFSH 1368 purified in the laboratory: 6x eFSH A). As this antibody shows a 15% cross-reaction with dissociated eFSH, to confirm the equivalent concentrations obtained for the two samples we used another displacement ELISA with a rabbit anti-pFSH antibody produced in the laboratory (number 513) which cross-reacts with eFSH but not with dissociated subunits.

The LH bioactivities of the recombinant hormones were estimated by measuring their abilities to stimulate testosterone production in a rat Leydig cell bioassay (23), and the FSH bioactivities were assessed in an in vitro progesterone stimulation assay using a Y1 cell line stably expressing the human FSH receptor (18). For each transfection, the dilutions of the media containing the αdkβLH hybrid gave 50% of the maximum of the biological response were normalized to 100% in both assays. As this hybrid (as well as the αdkβLH hybrid) can be quantified with a sandwich ELISA (18), these dilutions corresponded to an EC50 of 28±6.9 ng/ml for the LH bioassay, and of 46.7±16 ng/ml for the FSH bioassay. The activities of the other recombinant hormones were calculated according to the dilution of the media giving 50% of the maximum of the biological response compared with the reference value. For expression with βdkLH, it was the dilution of the media containing the αdkβdkLH hybrid which was the reference (100% for LH activity and 10% for FSH activity: these dilutions corresponded to an EC50 of 14.8±9.8 ng/ml for the LH bioassay and of 147.8 ng/ml for the FSH bioassay. Differences of quantities expressed between different transfections (number of COS-7 passages) are cleared as in each transfection experiment there was a reference dimer. So the percentage activity of a chimeric or mutant hybrid represents the sum of the intrinsically expressed activity and the intrinsic expression level (typically between 100 and 250 ng/ml αdkβeLH or αdkβdkLH).

Molecular modelling

To help visualize the positions of the amino-acids studied, models of αdkβeLH and αdkβeFSH were constructed with the program Modeller (salilab.org/modeller/modeller.html) (24) on the basis of hCG and hFSH three-dimensional structures (3, 5) respectively.

Results

Bioactivities of chimeric porcine–donkey α-subunits co-expressed with horse and donkey LH β-subunits

The FSH/LH ratio was set at one for αdkβeLH. The hybrid αpβeLH had an FSH/LH ratio of 0 as it exhibited no detectable FSH activity together with a very low LH activity (around 10% LH activity). αp-dk or αdk-p mutant co-expressed with β-eLH permitted the appearance of some FSH activity (Table 2), but it was always lower than the FSH activity of αdkβeLH. These results showed that some FSH biodeterminants are present in two discontinuous domains of the donkey α-subunit.

αp-dk co-expressed with βdkLH displayed full LH activity whereas no FSH activity could be detected.

Table 2 The FSH and LH activities and the calculated FSH/LH ratios of recombinant-derived gonadotropins resulting from the co-transfection of δELH or δdkLH with different α-porcine/donkey or α-donkey mutants.

<table>
<thead>
<tr>
<th>α-subunit</th>
<th>βELH Activity</th>
<th>LH Activity</th>
<th>FSH/LH</th>
<th>βdkLH Activity</th>
<th>LH Activity</th>
<th>FSH/LH</th>
</tr>
</thead>
<tbody>
<tr>
<td>αdk</td>
<td>100</td>
<td>100</td>
<td>1</td>
<td>10</td>
<td>100</td>
<td>0.1</td>
</tr>
<tr>
<td>αp</td>
<td>0</td>
<td><10</td>
<td>0 (n = 5)</td>
<td>0</td>
<td>105±47</td>
<td>0 (n = 2)</td>
</tr>
<tr>
<td>αp-dk</td>
<td>7±5</td>
<td>31±12</td>
<td>0.21±0.11 (n = 5)</td>
<td>0</td>
<td>67±40</td>
<td>0 (n = 3)</td>
</tr>
<tr>
<td>αdk-p</td>
<td>8±4</td>
<td>45±10</td>
<td>0.16±0.10 (n = 5)</td>
<td>0</td>
<td>107±42</td>
<td>0 (n = 3)</td>
</tr>
<tr>
<td>αdkK18E</td>
<td>29±14.5</td>
<td>52.5±15</td>
<td>0.53±0.14 (n = 4)</td>
<td>0</td>
<td>137±32</td>
<td>0 (n = 3)</td>
</tr>
<tr>
<td>αdk5xmut</td>
<td>285±191</td>
<td>160±85</td>
<td>1.56±0.40 (n = 2)</td>
<td>24±13</td>
<td>160±99</td>
<td>0.15±0.02 (n = 2)</td>
</tr>
<tr>
<td>αdk</td>
<td>8±2.1</td>
<td>69±32</td>
<td>0.14±0.07 (n = 4)</td>
<td>0</td>
<td>95±35</td>
<td>0 (n = 2)</td>
</tr>
</tbody>
</table>

With βELH, each hybrid was measured according to the dilutions of the harvested medium; the dilution of αdk/βELH giving half the maximum of the response was normalized to 100% in LH dilution corresponding to 28±6.9 ng/ml and FSH (dilution corresponding to 46.7±16 ng/ml) bioassays, the activities of the other recombinant hormones were calculated according to their dilution giving half the maximum of the response compared with that of αdk/βELH, and FSH/LH ratios were then calculated.

With βdkLH, each hybrid was measured according to dilutions of the harvested medium and αdk/βdkLH was given a reference activity of 100% in the LH assay (dilution corresponding to 14.8±9.8 ng/ml) and 10% in the FSH assay (dilution corresponding to 147.8±12.6 ng/ml). The activities of the other recombinant hormones were calculated according to their dilution giving 50% of the response compared with that of αdk/βdkLH, and FSH/LH ratios were then calculated. αdk/βELH and αdk/βdkLH were typically produced at between 100 and 250 ng/ml in COS-7 media. An activity of 0 means that it was undetectable under the assay conditions (the limit of detection being 5 ng/ml αdk/βELH in each assay).

(Table 2). Similar results were obtained with αdk-p co-expressed with βdkLH, showing that the integrity of the α-subunit is needed for FSH activity of donkey LH. Figure 1 illustrates this difference in activity.

Bioactivities of mutant α-subunits coexpressed with horse and donkey LH β-subunits

αdkK18E co-expressed with the horse LH β-subunit gave a hybrid with an FSH/LH ratio diminished by a factor of 2 (Table 2). Contrary to what was observed with ELH β-subunit, αdkK18E co-expressed with dkLH β-subunit gave a hormone with no FSH activity (Table 2) (although it exhibited full LH activity compared with αdk/βdkLH). Co-expression of the αdk5xmut with ELH β-subunit gave a hybrid with an identical FSH/LH ratio (Table 2). As with ELHB, αdk5xmut co-expressed with dkLHβ did not change the FSH/LH ratio (Table 2). Mono mutation at position 85, 87, 89, or 96 gave identical results (data not shown).

![Figure 1](https://www.eje.org)

Figure 1 (A) Bioassay of LH activity of chimeric porcine—donkey α-subunits co-expressed with donkey LH β-subunit. The media from transfected COS-7 cells were incubated for 4 h at 34 °C with rat Leydig cells. Supernatants were then harvested and testosterone was assayed with a specific RIA. (B) Bioassay of FSH activity of chimeric porcine—donkey α-subunits co-expressed with donkey LH β-subunit. Y1 cells stably transfected with the human FSH receptor were incubated for 4 h with the test samples and supernatants were harvested and assayed for progesterone with a specific RIA. Samples of media of the different constructs αdk/βdkLH (●), αp-dk/βdkLH (■) and αdk-p/βdkLH (○) were tested at different dilutions. The first dilution point in the FSH bioassay is media concentrated twofold (dilution 0.5). Each point is the mean±S.E.M. of duplicate measurements from one representative experiment from three different transfections.

www.eje.org
αdk^{78A} co-expressed with eLH β-subunit gave a hybrid hormone displaying an FSH/LH ratio which was decreased tenfold (FSH/LH = 0.14) with an LH activity of 69% compared with 100% for αdk/eLH (Table 2 and Fig. 2); when co-expressed with dkLH β-subunit it gave a hybrid hormone displaying full LH activity without FSH activity (Table 2).

Molecular modelling shows that amino-acids 18 and 78 of the donkey α-subunit are close together in the three-dimensional structure (Fig. 3); amino-acid 18 belongs to αL1 whereas amino-acid 78 belongs to αL3.

Bioactivities of donkey α-subunit mutated in position 18 or 78 coexpressed with βeLH^{V102G} F103P or βdkLH^{G102V P103F}

Co-expression of either of the two mutant donkey α-subunits with βdkLH^{G102V P103F} gave hybrids displaying a lowered FSH/LH ratio (Table 3) compared with αdk/βdkLH^{G102V P103F}, whereas mutants αdk^{78A} or αdk^{178E} co-expressed with βeLH^{V102G F103P} gave dimers without FSH activity (Table 3).

Bioactivities of donkey α-subunit mutated in position 78 coexpressed with horse FSH β-subunit

Estimation of the quantities of FSH dimer secreted was performed by ELISA, and FSH in vitro bioassay on human FSH receptor showed that αdk^{78A} co-expressed with eFSHβ displayed an FSH activity similar to that of αdk/βeFSH (Fig. 4).

Figure 2 (A) Bioassay of LH activity of αdk/βeLH and αdk^{78A} βeLH. The media from transfected COS-7 cells were incubated for 4 h at 34 °C with rat Leydig cells. Supernatants were then harvested and testosterone was assayed with a specific RIA. (B) Bioassay of FSH activity of αdk/βeLH and αdk^{78A} βeLH. Y1 cells stably transfected with the human FSH receptor were incubated for 4 h with the test samples, and supernatants were harvested and assayed for progesterone with a specific RIA. Samples of media of the constructs αdk/βeLH (■) and αdk^{78A} βeLH (○) were tested at different dilutions. The first dilution point in the FSH bioassay is media concentrated twofold (dilution 0.5). Each point is the mean ± S.E.M. of duplicate measurements from one representative experiment from four different transfections.

Figure 3 Model of αdk/βeLH superimposed with that of αdk/βeFSH. Models have been constructed with the program Modeller (24) on the basis of the three-dimensional structure of hCG (3) and hFSH (5) respectively. (αdk/βeLH: αdk red, βeLH blue; αdk/βeFSH: αdk green, βeFSH, orange.) The images were obtained with Rasmol (www.umass.edu/microbio/rasmol).
Discussion

As an equid α-subunit is absolutely required for the heterospecific FSH activity of equid LHs (19), we first constructed chimeric porcine/donkey α-subunits: the replacement of αp by αp-dk or αdk-p conferred FSH activity to the hybrids formed with eLHββ but LH bioactivity was still low compared with that of αdk/βeLH (31 and 45% respectively). Whether this low LH activity is due to poor α/βLH secretion or to misfolding of the dimer not permitting full interaction with the LH receptor is still to be determined. However, these results showed that some determinants present in loops 1-2 and loop 3 of the donkey α-subunit are able to confer some FSH activity to the secreted hybrid. By contrast, when these chimeric α-subunits were expressed with donkey βLH, the secreted hybrids did not display any FSH activity although high LH activity was observed.

Only four amino-acids differ between loops 1-2 of porcine and donkey α-subunits (Table 1). Among them, position 18 is occupied by a negatively charged amino-acid in the pig (Glu) and a positively charged amino-acid in the donkey (Lys). Co-expression of αdkK18E with βeLH gave a hybrid displaying an FSH/LH ratio half that of αdk/βeLH, whereas co-expression with βdkLH gave a hybrid with its FSH activity abolished (whereas its LH activity was conserved). Thus Lys18 is crucial for the expression of FSH activity of dkLH whereas it has less impact for the expression of FSH activity of eLH. It is noteworthy that the amino-acid present at position 18 in the horse α-subunit is Glu as in the other non-equid α-subunits. Thus for eLH and the hybrid αe/βdkLH, the determinant implicated in the FSH activity has to be searched for elsewhere. It must be pointed out that these experiments have been performed using donkey and not horse α-subunit. Horse α-subunit displays some unique amino-acids (Arg17 instead of Lys in all other species, Phe23 instead of Ser23 in all other species, Lys33 instead of Met33 in all other species) that might be implicated in the FSH expression of equid LH hybrids obtained with horse α-subunit.

Lys18 is located on αL1 as shown in the model constructed on the basis of the three-dimensional structure of hCG (Fig. 3), and it points outside the molecule on its convex surface. It has been suggested that Phe23 in human αL1 (the numbering of the human α-subunit has been adjusted to the numbering of all α-subunit species) may interact with the LH receptor, as replacement of this amino-acid by a hydrophilic residue (Thr) gave a hybrid hCG which was twice as active as hCG in the stimulation of progesterone (25, 26). The authors hypothesize that this replacement probably results in weakening the interaction between the two subunits and that this short conformational change affects the receptor binding site probably located in close proximity to αPhe23. However, implication of αL1 in direct interaction with the LH receptor is controversial as an immunological study showed that the surface of hCG αL1 furthest from the β-subunit interface can be recognized by a monoclonal antibody when hCG is bound to the LH receptor (27). The data in the literature only concern hLH or hCG and their interaction with the LH receptor; no effect of mutations on αL1 has been reported for the interaction of FSH hormone and its receptor. Epitope mapping studies of alpha FSH show that this region is not accessible for neutralizing anti-alpha antibodies (28).

In the 33 positions after the Xcm1 site of the α-subunit, we were first interested in five amino-acids that differ between pig and equid α-subunits: positions 70, 85, 89, 93 and 96 (Table 1). We first focused on this C-terminal part of the α-subunit as deletion and mutagenesis studies had previously shown that this region in the human α-subunit was important for binding and bioactivity of gonadotropins (11-13, 29-31). Moreover, hCG with its α-subunit elongated by 24 residues beyond the terminal serine displayed full receptor binding and a sixfold reduction in LH bioactivity assessed on rat Leydig cells (32). However, this study shows that the mutations introduced in the C-terminal part of α-dk did not abolish FSH activity of dkLH or eLH, showing that these unique positions in the equid α-subunits do not favor interaction with the FSH receptor.

We were thus interested in other amino-acids which differ in donkey and pig α-subunits in the 33 positions after the Xcm1 site (loop 3 + C-terminal): αdkIle78Ala abolished FSH activity of donkey LH whereas its LH activity remained unchanged. Moreover, αdkIle78Ala co-transfected with βeLH gave a hybrid with a lowered FSH/LH ratio (0.14 versus 1 for αdk/βeLH) showing that lie with its large hydrophobic side chain plays an important role in the interaction with the FSH receptor. This amino-acid is situated on αL3 and points inside the molecule (Fig. 3). The amino-acid present in the human α-subunit in position 78 is Phe; when it was

Table 3 FSH/LH ratios of mutants αdkK18E and αdkI78A co-expressed with βeV102G-F103P and βdkG102V-P103F LH mutants.

<table>
<thead>
<tr>
<th>βdkLH mutant</th>
<th>FSH/LH ratio</th>
<th>n</th>
<th>βLH mutant</th>
<th>FSH/LH ratio</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>αdk/βdkLH</td>
<td>0.1</td>
<td></td>
<td>αdk/βeLH</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>αdk/βdkLHβ102V-P103F</td>
<td>0.72±0.15</td>
<td>4</td>
<td>αdk/βeLH</td>
<td>V102G-F103P</td>
<td>0.05±0.04</td>
</tr>
<tr>
<td>αdkK18E/βdkLH</td>
<td>0.24±0.08</td>
<td>2</td>
<td>αdkK18E/βeLH</td>
<td>V102G-F103P</td>
<td>0.01±0.01</td>
</tr>
<tr>
<td>αdkI78A/βdkLH</td>
<td>0.1</td>
<td>1</td>
<td>αdkI78A/βeLH</td>
<td>V102G-F103P</td>
<td>0</td>
</tr>
</tbody>
</table>

www.eje.org
Heterospecific FSH activity of equid LH/CG

βLH_{102G P103P} and αdk mutated at positions 18 or 78, and a large diminution of the FSH/LH ratio for the α-mutants co-transfected with βdkLH_{102V P103F} showing that the amino-acids present at 18 and 78 in the α-subunit act in synergy with amino-acids present at 102–103 of the equid LH β-subunits to determine the level of FSH activity of equid LHs.

To summarize, the low heterospecific FSH activity of donkey LH requires Lys at position 18 together with Ile at position 78 in the α-subunit, and some specific amino-acids to be present on the β donkey sequence, Met⁴⁵ being implicated - Met⁴⁵ mutated in Leu⁴⁵ present in all non-equid βLH-subunits gave a hybrid after co-transfection with the α-dk subunit which had no FSH activity (data not shown). The high FSH activity of horse LH is due to Val Phe at positions 102–103 in the β-subunit, in conjunction with Ile⁷⁸ in the α-subunit and probably other specific horse α-amino-acids. How these specific determinants induce FSH bioactivity is still to be solved - do they directly contact the receptor and participate to the high affinity site or do they permit signal transduction once the high affinity binding to the receptor has been performed? The substitution with Ala at position 78 may enhance hydrophobic interactions with αL1 residues constraining the distance between subunits or alternatively may modify interactions with the eLHβ-subunit residue Met⁴⁵ (Tyr³⁹ in eFSHβ), again affecting the final disposition of the two α-subunit loops relative to one another.

In contrast, when αdk^{178A} is co-expressed with horse FSH β-subunit, the dimer displayed the same FSH activity as the one containing wild-type αdk, showing that Ile⁷⁸ is not crucial for interaction of eFSH with heterospecific FSH receptors. Nevertheless, it must be pointed out that eCG and eLH have a low FSH activity compared with eFSH and then only in heterologous species. Moreover, donkey LH has even lower FSH activity and zebra LH has none. Probably heterospecific FSH activity of equine LH/CG is due to some different structural features than those implicated in the FSH activity of genuine FSHs. The superimposition of the two models αdk/βLH with αdk/βeFSH (Fig. 3) shows that the overall structures are very similar. However, it is clear from the present data that the common α-subunit can influence the specificity of gonadotropins. Indeed, we were able to abolish the high heterospecific FSH activity of αdk/βLH by changing only one amino-acid in loop 3 of the αdk subunit. This is, in fact, as efficient as changing the β-102–103 sequence previously shown to play a prominent role in gonadotropin specificity.

Acknowledgements

The authors are grateful to A Ythier (Ares Serono, Geneva, Switzerland) for the gift of Y1 cells stably expressing the human FSH receptor, and to M Pelloie (INRA, Nouzilly, France) for sequencing the cDNAs.
They also acknowledge the rat breeding staff (C Cahier, M Vignaud and J C Braguier, INRA, Nouzilly, France) for technical assistance.

References

10. Moyle WR, Ehrlich PH & Canfield RE. Use of monoclonal antibodies to subunits of hCG to examine the orientation of the hormone in its complex with receptor. PNAS 1982 79 2245–2249.
12. Zeng H, Ji I & Ji TH. Lys91 and His90 of the α-subunit are crucial for receptor binding and hormone action of follicle-stimulating hormone (FSH) and play hormone-specific roles in FSH and human chorionic gonadotropin. Endocrinology 1995 136 2948–2953.