CLINICAL STUDY

Diagnostic 131I whole body scanning after thyroidectomy and ablation for differentiated thyroid cancer

Henry Taylor, Stephen Hyer, Louiza Vini, Brenda Pratt, Gary Cook and Clive Harmer

Thyroid Unit, Royal Marsden Hospital, Downs Road, Sutton, Surrey SM2 5PT, UK

(Correspondence should be addressed to S Hyer, St Helier Hospital, Wrythe Lane, Carshalton, Surrey SM5 1AA, UK; Email: Steve.Hyer@epsom-sthelier.nhs.uk)

Abstract

Objective: To assess the value of the diagnostic whole body 131I scan after thyroidectomy and 131I ablation.

Design: Retrospective analysis of all patients with differentiated thyroid cancer treated in one centre between 1990 and 2000.

Results: A total of 153 consecutive patients who underwent diagnostic scanning following ablative therapy were identified. This diagnostic scan was positive in 20 patients (13%) and faintly positive in 16 patients (11%). The majority (117 patients) had negative scans. Of the 20 patients with positive scans, four received no further treatment, nine showed no abnormal uptake following a second ablative 131I dose and seven had uptake in the thyroid bed (six) or in neck nodes (one) after repeat ablation.

Outcome: In the group with positive scans, the four patients who received no further treatment and the nine with a negative second ablation scan remained disease free during follow-up. No patient with a positive diagnostic scan received additional 131I therapy which would not otherwise have been given based on the clinical findings, serum thyroglobulin (Tg) values or the presence of anti-Tg antibodies. Ten of the patients with negative scans developed recurrent disease which was always detected clinically or by a rising serum Tg value.

Conclusions: Diagnostic whole body 131I scans add little extra information and in our experience do not influence patient management. They should be reserved for patients in whom serum Tg levels are unreliable because of the presence of antibodies or when there is clinical suspicion of tumour.

European Journal of Endocrinology 150 649–653

Introduction

The management of differentiated thyroid carcinoma will usually require total or near-total thyroidectomy followed by 131I ablation of any remnant thyroid tissue (1–3). A diagnostic 131I whole body scan and serum thyroglobulin (Tg) measurements follow, either in the hypothyroid state or after recombinant thyroid-stimulating hormone (rhTSH) administration, to exclude residual disease in the neck or distant metastases (4–6).

The value of 131I diagnostic imaging after thyroid ablation has recently been questioned by Cailleux et al. (7) who suggested that measurement of serum Tg after thyroxine withdrawal was a sufficiently sensitive marker of residual or metastatic disease by itself and that a diagnostic whole body scan yielded no additional information of clinical use. Similar conclusions were reached by Pucini et al. (8) in a study of patients with undetectable serum Tg after thyroid ablation.

In order to assess the potential value of the 131I diagnostic scan after thyroid ablation, we have retrospectively examined the records of all patients with differentiated thyroid cancer treated in our unit over a 10-year period.

Patients and methods

The Royal Marsden Hospital serves as a tertiary referral unit for patients with thyroid disease and maintains a tumour registry of all thyroid cancer patients based on a confirmed histopathological report of thyroid malignancy. All information at presentation and during follow-up is entered, with patients followed until death: the cause of death is recorded.

Between 1990 and 2000, 153 consecutive patients with differentiated thyroid cancer were treated in our Unit according to departmental protocol: all patients underwent total thyroidectomy (defined as removal of
both thyroid lobes, the isthmus and pyramidal lobe) followed by iodine ablation (1.1–3 GBq ¹³¹I). Residual normal thyroid tissue in the thyroid bed, with or without abnormal extra-thyroid radiiodine uptake, was detected in all cases on the ablation scan.

Four to six months later, a diagnostic ¹³¹I scan (185 MBq) was performed after adequate thyroxine withdrawal (TSH > 30 U/l) according to our protocol and based on national guidelines (9). Blood was sampled for serum Tg at the time of the diagnostic scan (off thyroxine) and 1 month after the scan whilst taking thyroxine. Serum Tg was assayed by an immunoradiometric assay (Cis Bio-international, Saclay, France) with a detection limit of 0.5 μg/l. Thyroid measurements at the time of ablation and those taken at the time of the diagnostic scan were performed after adequate thyroxine withdrawal (TSH > 30 U/l).

Anterior and posterior whole body scans were obtained 48–72 h following oral administration of 185 MBq ¹³¹I, following cessation of thyroxine for 3 weeks or tri-iodothyronine for 10 days. Patients were on a low iodine diet during the time that replacement hormone was stopped. Scans were obtained with a dual-headed gamma camera in whole-body scanning mode using a high energy collimator with a 20% energy window centred around 364 kiloelectron volts (keV).

The diagnostic whole body scan was assessed by two experienced nuclear medicine physicians (G H and C H) and classified as either negative, faintly positive or definitely positive. Scans categorised as faintly positive showed a ghost-like remnant of probably normal thyroid tissue, uptake was confined to the thyroid bed and was only just above background activity levels. Definitely positive scans showed uptake either by normal remnant thyroid tissue or by tumour in the thyroid bed or neck nodes.

A second ablative dose of radioiodine was administered to patients showing significant uptake on diagnostic scanning despite previous ablative therapy in accordance with national guidelines (9). The rationale for this further therapy was to ensure complete ablation of thyroid remnant tissue and eliminate any remnant disease.

Results

A total of 153 consecutive patients undergoing initial ¹³¹I diagnostic whole body scan 4–6 months following total thyroidectomy and ablative ¹³¹I were identified. Patients were treated between 1990 and 2000 with a median follow-up of 7 years (range 3–13 years). There were 125 females and 28 males of median age 43 years (range 15–78) with papillary (121), follicular (25) or Hurthle cell (seven).

Table 1 summarises the clinical stage and histological type of carcinoma in relation to appearances on the diagnostic whole body scan. Twenty patients had a positive scan, the scan was classified as faintly positive in 16 patients and in 117 the scan was negative.

Table 1 Clinical stage and histological type in patients with positive, faintly positive and negative diagnostic whole body scans.

<table>
<thead>
<tr>
<th>Positive</th>
<th>Faintly positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient nos</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>Male: female</td>
<td>5: 15</td>
<td>7: 9</td>
</tr>
<tr>
<td>Age (mean years)</td>
<td>41</td>
<td>43</td>
</tr>
<tr>
<td>T stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>T2</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>T3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>TX</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nodal stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>N1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>NX</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Histology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Papillary</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>Follicular</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Hurthle</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Staging by UICC (10).

Positive ¹³¹I diagnostic whole body scan

In 20 patients (13%), the diagnostic scan was classified as positive with significant uptake in the thyroid bed or in local lymph nodes. Sixteen of these received a further dose of 5.5 GBq ¹³¹I to ensure complete ablation of any remnant disease according to our protocol (based on national guidelines). The serum Tg values for these 16 patients is shown in Table 2.

The remaining four remained disease free after no further treatment, and uptake in the neck was considered to represent normal thyroid remnant. Mean serum Tg for these four patients was 1 μg/l (range 1–4.9) and in all patients fell to < 1 μg/l 1 month after diagnostic scanning.

In nine of the 16, the scan became negative after repeat ablation ¹³¹I; all had normal serum Tg levels (< 1 μg/l) 1 month after scanning (Table 2).

In the other seven patients, following the second ablative dose of radiiodine, scanning showed uptake in the thyroid bed in six and in neck nodes in one. Serum Tg was elevated at the time of the diagnostic scan in six of these seven patients and, because of this elevation, they would have received ¹³¹I therapy irrespective of the scan appearance. The seventh patient had a normal serum Tg but anti-Tg antibodies were present at a titre of 1 in 160; according to protocol she would have required a diagnostic scan and would have proceeded to ¹³¹I therapy. At follow-up all seven patients are alive, with no clinical or biochemical evidence of disease.

References

Faintly positive scan

Faint uptake within the thyroid bed was documented in 16 (11%) of patients. Serum Tg in 15 of these patients was 1 mg/l and these patients received no further treatment. In one patient the serum Tg was elevated at 24 mg/l at the time of the diagnostic scan and he received 5.5 GBq radioiodine therapy to eliminate any residual remnant disease. Following treatment, his scan became negative and 1 month after the scan Tg had fallen to 5.5 mg/l. All 16 patients remain free of disease at follow-up.

Negative scan

Diagnostic whole body scanning was negative in 117 (76%) patients. In one patient, (patient 1; Table 3) serum Tg was elevated at 521 mg/l at the time of the scan and metastatic lung disease was visible on chest X-ray. He responded poorly to treatment and died of disease. No further radioiodine therapy was given to the remaining 116 patients in the year following the diagnostic scan. However, ten patients (9% of those with negative diagnostic scans) developed evidence of recurrent thyroid carcinoma after 1–8 years. Clinical details and serum Tg results are shown in Table 3. Relapse was identified by rising serum Tg with or without a palpable neck mass (six patients) or by clinical findings (neck recurrence) with normal serum Tg. In two cases, the serum Tg was not recorded at the time of relapse.

Each patient was reviewed in a multidisciplinary setting and underwent surgery, further radioiodine or external beam radiotherapy as appropriate. At last follow-up, six of these ten patients remain well with no evidence of disease and four are alive with disease.

Discussion

The diagnostic whole body scan serves as an adjunct to clinical evaluation and serum Tg testing following thyroidectomy and ablative 131I therapy. A positive diagnostic scan may demonstrate persistent disease following ablation (11) and confirms iodine avidity.

In this study, we found that the presence of a positive or faintly positive scan added little extra information.

Table 2

Mean (range) serum Tg (µg/l) at the time of diagnostic scanning and 1 month later in patients with positive and faintly positive diagnostic scans following ablation.

<table>
<thead>
<tr>
<th>Patient nos</th>
<th>Tg at scan</th>
<th>Tg 1 month later</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive scans remaining positive after second treatment</td>
<td>7</td>
<td>8 (1–1826)</td>
</tr>
<tr>
<td>Positive scans becoming negative after second treatment</td>
<td>9</td>
<td>8 (1–22)</td>
</tr>
<tr>
<td>Faintly positive scans (no second treatment given)</td>
<td>15</td>
<td>3.7 (1–29)</td>
</tr>
<tr>
<td>Faintly positive scan becoming negative after second treatment</td>
<td>1</td>
<td>24</td>
</tr>
</tbody>
</table>

Table 3

Clinical details and serum Tg (µg/l) at the time of diagnostic scans and 1 month later in patients with negative diagnostic scans who subsequently relapsed.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age (years)</th>
<th>Sex</th>
<th>Stage (histology grade)</th>
<th>Tg at scan</th>
<th>1 month Tg (on T4)</th>
<th>Recurrence</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>61</td>
<td>F</td>
<td>T1N0 Pap 1</td>
<td>521</td>
<td>NA</td>
<td>Lung at 8 years. Tg 627. Therapy scan – ve</td>
<td>AWD</td>
</tr>
<tr>
<td>2</td>
<td>70</td>
<td>M</td>
<td>T3N0 Pap 2</td>
<td>55</td>
<td><1</td>
<td>Submandibular at 6 years excised</td>
<td>NED</td>
</tr>
<tr>
<td>3</td>
<td>73</td>
<td>F</td>
<td>T3N0 Fol 1</td>
<td>2.8</td>
<td>1.6</td>
<td>Loco regional at 1 year.</td>
<td>AWD</td>
</tr>
<tr>
<td>4</td>
<td>74</td>
<td>F</td>
<td>T4N0 Pap 2</td>
<td><1</td>
<td><1</td>
<td>Loco-regional at 2.5 years. Tg < 1. Surgery and external beam RT</td>
<td>NED</td>
</tr>
<tr>
<td>5</td>
<td>31</td>
<td>F</td>
<td>T2N1 Pap 1</td>
<td><1</td>
<td><1</td>
<td>Loco-regional at 6 years.</td>
<td>NED</td>
</tr>
<tr>
<td>6</td>
<td>48</td>
<td>F</td>
<td>T2N0 Pap 1</td>
<td>26</td>
<td>3</td>
<td>Loco-regional at 8 years. Surgery and radioiodine</td>
<td>NED</td>
</tr>
<tr>
<td>7</td>
<td>62</td>
<td>F</td>
<td>T4N1 Pap 1</td>
<td>19</td>
<td>3</td>
<td>Loco-regional at 1 year. Tg 105. Further radioiodine</td>
<td>AWD</td>
</tr>
<tr>
<td>8</td>
<td>43</td>
<td>F</td>
<td>T4N1 Pap 1</td>
<td>99</td>
<td>13</td>
<td>Loco-regional at 4 years. Tg 322. Further radioiodine</td>
<td>NED</td>
</tr>
<tr>
<td>9</td>
<td>45</td>
<td>F</td>
<td>T1N0 Pap 1</td>
<td><1</td>
<td><1</td>
<td>Loco-regional at 3 years. Rising serum Tg. Further radioiodine</td>
<td>NED</td>
</tr>
<tr>
<td>10</td>
<td>65</td>
<td>F</td>
<td>T2N0 Pap 1</td>
<td>22</td>
<td>18</td>
<td>Loco-regional at 2 years. Rising Tg. Further radioiodine</td>
<td>AWD</td>
</tr>
</tbody>
</table>

T4, thyroxine; M, male; F, female; Stage, staging by UICC (1997) TNM; Tg at scan, serum Tg at time of diagnostic scan; 1 month Tg, serum Tg 1 month after scan; Fol, follicular; Pap, papillary thyroid carcinoma; RT, radiotherapy; NED, no evidence of disease; AWD, alive with disease; NA, result not available; Loco-regional, recurrence in thyroid bed or local lymph nodes.
and would not have influenced patient management. The diagnostic whole body scan was considered definitively positive in 20 patients (13% of all patients) and faintly positive in an additional 16 patients (11% of all patients). Yet in none of these patients with a positive scan was a therapy dose given that would not otherwise have been administered on the basis of clinical findings, elevated serum Tg values or the presence of anti-Tg antibodies.

It seems likely that the uptake seen on the diagnostic scans in the four patients who received no further treatment and who remained disease free up to 10–13 years was in normal remnant thyroid tissue. A similar explanation applies to the positive scans in nine patients where the second ablation scans were negative. Scans following ablative 131I have a greater sensitivity to detect residual disease than the diagnostic scan, since sensitivity relates to the dose of 131I given (12–13). Furthermore, serum Tg values were undetectable in all nine, implying that these patients did not have persistent disease.

It is possible that that the diagnostic 131I dose may have resulted in a stunning effect resulting in a negative post-treatment scan in these nine patients. The dose of 185 MBq 131I used in diagnostic imaging has been shown to reduce the subsequent uptake of 131I sufficiently to affect the outcome of the therapy dose (14). Use of 125I with a smaller radiation dose to the thyroid might prevent stunning without loss of diagnostic accuracy (14). However, a stunning effect from the diagnostic dose seems an unlikely explanation in our patients as a sub-optimal absorbed therapy dose would have been expected to have resulted in relapse in at least some of these patients but they all had low or undetectable serum Tg levels.

Other investigators have previously reported little value from diagnostic imaging after total thyroxectomy and ablative iodine therapy (8, 15). In these studies, undetectable serum Tg levels (Tg < 1 μg/l) whilst hypothyroid or after rTSH stimulation were highly predictive of disease-free status (8). However, surveillance with clinical examination supplemented by measurements of stimulated serum Tg (off thyroxine or after rTSH) provides the best means of following patients treated for differentiated thyroid carcinoma and will be highly predictive of complete remission.

Tg measurement is unreliable in the presence of anti-Tg antibodies (16, 17) and for these patients diagnostic scanning retains a valuable role.

Current British guidelines do not include neck ultrasonography in the routine follow-up of patients treated for differentiated thyroid cancer. Other groups have found this to be useful (18). Ultrasound examination has the potential to detect lymph node disease when serum Tg is low or undetectable and may therefore be valuable in deciding on the need for further therapy.

We conclude that diagnostic whole body scans need not be performed routinely following total thyroxectomy and radiiodine ablation but should be reserved for those patients in whom serum Tg values are unreliably (in the presence of antibodies) or if TSH-stimulated Tg measurements are not available.

In agreement with current consensus guidelines, use of diagnostic scanning is considered optional (9). Further studies are needed to confirm whether diagnostic scans with 125I will prove to have superior clinical usefulness to conventional 131I scanning (19).

References

Diagnostic scans for differentiated thyroid cancer

8 Pacini F, Capezzoni M, Elisei R, Caccuri E, Taddei D & Pinchera A. Diagnostic 131-Iodine whole body scan may be avoided in thyroid cancer patients who have undetectable serum Tg levels after initial treatment. Journal of Clinical Endocrinology and Metabolism 2002 87 1499–1501.

13 Reynolds JC. Percent 131I uptake and post-therapy 131I scans: their role in the management of thyroid cancer. Thyroid 1997 7 281–284.

Received 24 October 2003
Accepted 9 February 2004