CLINICAL STUDY

Direct causes of death in Japanese patients with hypopituitarism as analyzed from a nation-wide autopsy database

Hidesuke Kaji and Kazuo Chihara

Division of Physiology/Metabolism, College of Nursing Art and Science, Hyogo, Akashi, Japan and 1Division of Endocrinology/Metabolism, Neurology and Hematology/Oncology, Kobe University Graduate School of Medicine, Kobe, Japan

(Correspondence should be addressed to H Kaji, Division of Physiology/Metabolism, College of Nursing Art and Science, Hyogo 13-71, Kitaohji-cho, Akashi 673-8588, Japan; Email: hidesuke_kaji@cnas-hyogo.ac.jp)

Abstract

Objectives: The direct causes of death in Japanese patients with hypopituitarism remain unclear. In this study, the direct causes of death were investigated and compared between Japanese patients with hypopituitarism from a nation-wide autopsy database and an age- and gender-matched control population from national reports.

Subjects: Three hundred and ninety-one subjects with hypopituitarism who had died were selected from a nation-wide autopsy database (1984 – 1993). The ratios of each cause of death among the age- and gender-matched control population were derived from national reports.

Results: In subjects with hypopituitarism, an increased relative frequency of death from cerebrovascular diseases (male; 2.02 (95% confidence interval (CI) 1.45 – 2.82), female; 1.73 (95% CI 1.18 – 2.52)) was found. In particular, the relative frequency of death from cerebral hemorrhage was 4.60 (95% CI 2.95 – 7.17) in male and 4.80 (95% CI 2.90 – 7.94) in female subjects with hypopituitarism. Unexpectedly, a decreased relative frequency of death from all heart diseases (male; 0.439 (95% CI 0.277 – 0.696), female; 0.267 (95% CI 0.149 – 0.478)) was found in subjects with hypopituitarism, although there was no difference between subjects with hypopituitarism and controls in the frequency of death from ischemic heart disease.

Conclusions: These results provide useful information for the long-term care of Japanese patients with hypopituitarism.

European Journal of Endocrinology 150 149–152

Introduction

Four retrospective (1–4) and one prospective (5) epidemiological studies have examined mortality among patients with hypopituitarism and all have reported premature mortality mainly from cardiovascular or cerebrovascular disease. In particular, Tomlinson et al. (5) identified several factors (age at diagnosis, gender, a diagnosis of craniopharyngioma and untreated gonadotropin deficiency) affecting increased mortality.

On the other hand, adult growth hormone (GH) deficiency (AGHD) is a syndrome (6) characterized by increased visceral adipose tissue, decreased muscle mass as well as bone mineral density, hyperlipidemia and increased intima and media thickness of the carotid artery (7, 8). Many of these are risk factors for cardiovascular disease or stroke. Although the replacement with GH for AGHD is known to have beneficial effects on atherosclerosis (6) or cardiac functions (9–12), there is no evidence supporting the effect of GH replacement on mortality. Therefore, the replacement of GH or not, for GH-deficient adults (13, 14), is still under discussion. The prognosis of AGHD still remains to be clarified in Japan, where the environmental and genetic background is somewhat different from Europe and America. Although we carried out a longitudinal follow-up or cross-sectional investigation by questionnaire among AGHD subjects in Japanese hospitals of endocrinology and metabolism, the number of deaths among patients with AGHD was insufficient to analyze statistically (15). In the present study, we examined the direct causes of death in patients with hypopituitarism from the autopsy database of the past decade in Japan and compared those results with age- and gender-matched controls from annual reports of the Health and Welfare Statistics Association (16, 17).
Subjects and methods

The autopsy database of the past decade (1984–1993) contained 812 subjects in whom hypopituitarism was included as a pathological diagnosis. Cushing’s disease, acromegaly or direct invasion of pituitary tumors were considered to be a direct cause of death in 421 of the 812 subjects. Three hundred and ninety-one subjects with hypopituitarism were therefore enrolled in the present study after subtraction of the other 421 subjects. The median age at death (range) was 61 (1–89) years in 221 males and 54 (1–89) years in 170 females. The distribution of various causes of death in age- and gender-matched control populations was derived from the national reports of the Health and Welfare Statistics Association in 1986 (16) and 1991 (17), where the number of deaths per 100 000 people from each cause was corrected according to the age and gender distribution of subjects with hypopituitarism.

The direct causes of death were compared between subjects with hypopituitarism and the age- and gender-matched controls by estimating an odds ratios with a 95% confidence interval (CI). Statistical analysis was performed using the SPSS for Windows software package (Nankodo, Tokyo).

Results

Table 1 shows the numbers of deaths from each cause of death in subjects with hypopituitarism and odds ratios with 95% CI, compared with those in the age- and gender-matched controls. Vascular disease is considered of potential importance as the cause of death in patients with hypopituitarism. The relative frequency of death from total circulatory disease in male subjects with hypopituitarism was not statistically different from that in controls (0.986 (95% CI 0.735–1.32)), but was rather lower in female subjects.

Table 1: Direct causes of death from an autopsy database in subjects with hypopituitarism.

<table>
<thead>
<tr>
<th>Causes of death</th>
<th>Male (n = 221)</th>
<th>Female (n = 170)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of deaths</td>
<td>Odds ratio (95% CI)</td>
</tr>
<tr>
<td>Circulatory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Heart</td>
<td>21</td>
<td>0.439 (0.277–0.696)*</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>8</td>
<td>0.533 (0.258–1.110)</td>
</tr>
<tr>
<td>Others</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Cerebrovascular</td>
<td>52</td>
<td>2.02 (1.45–2.82)*</td>
</tr>
<tr>
<td>Hemorrhage</td>
<td>31</td>
<td>4.60 (2.95–7.17)*</td>
</tr>
<tr>
<td>Infarct</td>
<td>21</td>
<td>1.45 (0.896–2.34)</td>
</tr>
<tr>
<td>Others</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Neoplasm</td>
<td>63</td>
<td>0.901 (0.664–1.22)</td>
</tr>
<tr>
<td>Lung</td>
<td>18</td>
<td>1.19 (0.714–1.98)</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>13</td>
<td>0.591 (0.332–1.05)</td>
</tr>
<tr>
<td>Liver and pancreas</td>
<td>3</td>
<td>0.232 (0.073–0.738)*</td>
</tr>
<tr>
<td>Breast</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Uterus</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Leukemia</td>
<td>4</td>
<td>3.42 (1.09–10.7)*</td>
</tr>
<tr>
<td>Others</td>
<td>25</td>
<td>21</td>
</tr>
<tr>
<td>Respiratory</td>
<td>38</td>
<td>1.48 (1.02–2.14)*</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>31</td>
<td>1.45 (0.969–2.17)</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease</td>
<td>1</td>
<td>0.176 (0.024–1.28)</td>
</tr>
<tr>
<td>Others</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Digestive</td>
<td>8</td>
<td>1.14 (0.54–2.39)</td>
</tr>
<tr>
<td>Peptic ulcer</td>
<td>4</td>
<td>4.07 (1.27–13.1)*</td>
</tr>
<tr>
<td>Liver</td>
<td>3</td>
<td>0.578 (0.179–1.87)</td>
</tr>
<tr>
<td>Others</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Renal</td>
<td>2</td>
<td>0.440 (0.106–1.83)</td>
</tr>
<tr>
<td>Metabolic</td>
<td>8</td>
<td>3.33 (1.48–7.49)*</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>5</td>
<td>2.17 (0.818–5.76)</td>
</tr>
<tr>
<td>Others</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>External cause</td>
<td>3</td>
<td>0.266 (0.084–0.845)*</td>
</tr>
<tr>
<td>Accident</td>
<td>3</td>
<td>0.414 (0.129–1.33)</td>
</tr>
<tr>
<td>Suicide</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Others</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Other causes</td>
<td>26</td>
<td>21</td>
</tr>
</tbody>
</table>

* Relative frequency of death by each cause is significantly different from age- and gender-matched controls derived from national demographic reports.
than in the corresponding controls (0.700 (95% CI 0.149–0.985)). In the case of circulatory disease, the relative frequency of death from total heart diseases was rather lower in subjects with hypopituitarism than among controls (male: 0.439 (95% CI 0.277–0.696), female: 0.267 (95% CI 0.149–0.478)), although the ratio of death from ischemic heart disease was not statistically different between subjects and controls (male: 0.533 (95% CI 0.258–1.10), female: 0.502 (95% CI 0.214–1.17)). In contrast, the relative frequency of death from cerebrovascular disease was higher in subjects with hypopituitarism than among controls (male: 2.02 (95% CI 1.45–2.82), female: 1.73 (95% CI 1.18–2.52)). In cerebrovascular disease, the relative frequency of death from cerebral hemorrhage was higher in patients with hypopituitarism than among controls (male: 4.60 (95% CI 2.95–7.17), female: 4.80 (95% CI 2.90–7.94)). Unexpectedly, the ratio of death from cerebral infarction was not different between patients and controls (male: 1.45 (95% CI 0.896–2.34), female: 0.907 (95% CI 0.513–1.60)).

The relative frequency of death from neoplasm in subjects with hypopituitarism was not statistically different from that in controls (male: 0.901 (95% CI 0.664–1.22), female: 0.874 (95% CI 0.603–1.27)). The relative frequency of death from neoplasm of the liver and pancreas was lower in male subjects with hypopituitarism than among controls (0.232 (95% CI 0.073–0.736)). In contrast, the relative frequency of death from leukemia was slightly but significantly higher in male subjects with hypopituitarism than among controls (3.42 (95% CI 1.09–10.7)). The relative frequency of death from total respiratory diseases was higher in male subjects with hypopituitarism (1.48 (95% CI 1.02–2.14)). The relative frequency of death from digestive diseases was higher in female subjects with hypopituitarism than among controls (2.47 (95% CI 1.24–4.92)). In digestive diseases, the relative frequency of death from peptic ulcer was higher in male subjects with hypopituitarism than in controls (4.07 (95% CI 1.27–13.1)). Although the relative frequency of death from diabetes mellitus in subjects with hypopituitarism was not statistically different from that in controls, the relative frequency of death from total metabolic diseases was higher, especially in male subjects with hypopituitarism, than in controls (3.33 (95% CI 1.48–7.49)). The relative frequency of death from external causes was lower in male subjects with hypopituitarism than in controls (0.266 (95% CI 0.084–0.845)), although the relative frequency of death caused by accidents in subjects with hypopituitarism was not statistically different from that in controls (0.414 (95% CI 0.129–1.33)). The relative frequency of death from renal disease in subjects with hypopituitarism was not statistically different from controls (male: 0.440 (95% CI 0.106–1.83), female: 0.725 (95% CI 0.216–2.43)).

Discussion

This is the first epidemiological study to correlate demographic data with autopsy reports on hypopituitarism. In this study, the relative frequency of death from cerebrovascular disease was higher in subjects with hypopituitarism than in controls, in good agreement with previous reports (3, 5). Among deaths from cerebrovascular disease, cerebral hemorrhage was notably higher in subjects with hypopituitarism than in controls. Patients whose death might be caused by hypothalamic–pituitary tumor invasion were not enrolled in the study. However, we cannot exclude the possibility that the tumor invasion or their treatment modality directly or indirectly influenced the pathogenesis of cerebral hemorrhage. Several investigators have reported an association between pituitary radiotherapy and stroke (18–20). It is surprising that the ratio of death not only by cerebral infarction but also by ischemic heart disease was no different in patients and controls, since the pathogenesis of these diseases is based on atherosclerosis, which is considered to be more extensive in hypopituitarism (6). We have also recently reported (8) that GH deficiency appears to increase an atherosclerotic risk in Japanese AGHD subjects as with Caucasians and to cause more extensive carotid intima-media thickening in child-onset AGHD than in adult-onset AGHD.

The relative frequency of death from total neoplasm in subjects with hypopituitarism was not statistically different from that in controls, consistent with previous reports (5). It remains unclear why the relative frequency of death from neoplasm of the liver and pancreas was lower in male patients with hypopituitarism. One of the deficient but not replaced hormone may be GH in subjects with hypopituitarism. If GH plays a role in the stimulation of cell growth in digestive organs, GH deficiency might cause a suppression of cell growth, resulting in a lower ratio of death from neoplasm of the liver and pancreas. However, this explanation is not relevant for females or for other types of neoplasm, and is contrary to the higher prevalence of death by leukemia in male patients with hypopituitarism. It is suspected, but remains unclear, as to whether GH replacement in GH-deficient children causes a greater susceptibility to leukemia.

The relative frequency of death from peptic ulcer was higher in male subjects with hypopituitarism than in controls. This is the first report of this finding to our knowledge and suggests that patients with hypopituitarism are more susceptible to stress, although hypercortisolemia may not appear in most patients with hypopituitarism but only in patients with hypopituitarism who have intact pituitary–adrenal axes.

The relative frequency of death from total respiratory diseases was higher in male subjects with hypopituitarism than in controls. Tomlinson et al. (5) have reported an increase in respiratory mortality in subjects with...
hypopituitarism. Judging from their report, it is unlikely
that the inadequate corticosteroid hormone replace-
ment played an important role in this factor, since res-
piratory mortality did not differ significantly between
patients who had intact versus those who had deficient
pituitary–adrenal axes. The relative frequency of death
from pneumonia did not differ between subjects
with hypopituitarism and controls, suggesting that a
decline in immune functions in hypopituitarism is
unlikely. The lower relative frequency of death by exter-
nal causes might be due to decreased physical and
social activity in male subjects with hypopituitarism.
Unexpectedly, there were no deaths by suicide,
although an impaired quality of life including a reduced
sense of well-being has been reported in patients with
hypopituitarism and by GH-deficient adults (6).

Finally, to evaluate the findings obtained in this study
we should take careful precautions against possible
bias. First, the subjects of our study were all selected
from those subjected to autopsy. Since all subjects
were not submitted to dissection, there may be some
bias in the selection of subjects for this study. Secondly,
the data were analyzed on the basis of written diag-
noses in case records, and clinical and endocrine data
were not available. Endocrine status is most important
since a recent report indicates that gonadotropin
deficiency, if untreated, worsens prognosis (5) and
much evidence suggests an association between GH
deficiency and cardiovascular dysfunctions or athero-
sclerosis (6–12). Thirdly, the number of subjects
enrolled in this study may have been statistically mini-
mal. Nevertheless, the cause of death among subjects
was substantially robust for a sample drawn from patho-
logical examination at autopsy, providing clini-
cally relevant information for the long-term care of
patients with hypopituitarism.

Acknowledgements
We are greatly indebted to M Irie, Toho University, and
S Maeda, J Kamae and R Kitazawa, Kobe University
Graduate School of Medicine. This work was supported
in part by a grant-in-aid for scientific research from the
Japanese Ministry of Education, Science, and Culture,
and by a grant from the Foundation for Growth
Science.

References
1 Rosen T & Bengtsson B-A. Premature mortality due to

2 Bates AS, Van’t Hoff W, Jones PJ & Clayton RN. The effects
of hypopituitarism on life expectancy. Journal of Clinical Endo-
crinology and Metabolism 1996 81 1169–1172.

3 Pulow B, Hagmar J, Mikovsky Z, Nordstrom C-H & Erfurth E.
Increased cerebrovascular mortality in patients with hypopitui-
244 trism. Clinical Endocrinology 1997 46 75–81.

4 Bates AS, Bullivant B, Sheppard MC & Stewart PM. Life expect-
cy following surgery for pituitary tumors. Clinical Endocrinology

5 Tomlinson JW, Holden N, Hills RK, Wheatley K, Clayton RN,
Bates AS et al. Association between premature mortality and

6 de Boer H, Blok Gj & van der Veen EA. Clinical aspects of
growth hormone deficiency in adults. Endocrine Reviews 1995
16 63–86.

7 Markussen V, Beshyah SA, Fisher C, Sharp P, Nicolaides AN &
Johnston DG. Detection of premature atherosclerosis by high
resolution ultrasonography in symptom-free hypopituitary

8 Murata M, Kaji H, Minuno I, Sakurai T, Iida K, Okimura Y et al.
A study of carotid intima-media thickness in GH-deficient Japa-
nese adults during onset among adults and children. European

9 Vance ML & Mauras N. Beneficial effects of growth hormone treat-
ment in GH-deficient adults. New England Journal of Medicine
1999 341 1206–1215.

10 Colao A, Di Somma C, Cuocolo A, Spinelli L, Tesedisco N,
Pivonello R et al. Improved cardiovascular risk factors and cardiac
performance after 12 months of growth hormone (GH)
replacement in young adult patients with GH deficiency. Journal

11 Smith JC, Evans LM, Wilkinson I, Goodfellow J, Cockcroft JR,
Scalanon MF et al. Effects of GH replacement on endothelial
function and large artery stiffness in GH-deficient Japa-
nese adults: a randomized, double-blind, placebo-controlled study.

12 Jallad RS, Lieberman B, Viana CB, Vieira ML, Ramirez JA &
Knoepfelmacher M. Effects of growth hormone replacement
therapy on metabolic and cardiac parameters, in adult patients
with childhood-onset growth hormone deficiency. Growth

13 Isley WL. Growth hormone therapy for adults: not ready for prime

14 Cook DM. Shouldn’t adults with growth hormone deficiency be
offered growth hormone replacement therapy? Annals of Internal
Medicine 2002 137 197–201.

15 Kaji H, Sakurai T, Iguchi G, Murata M, Kishimoto M, Yoshioka S
et al. Adult growth hormone deficiency in Japan: results of
investigation by questionnaire. Endocrine Journal 2002 49
597–604.

16 Health and Welfare Statistics Association, National Health Reports,

17 Health and Welfare Statistics Association, National Health Reports,

18 Murros KE & Toole JF. The effect of radiation on carotid arteries.

19 Bowen J & Paulsen CA. Stroke after pituitary irradiation. Stroke

20 Bitzer M & Topka H. Progressive cerebral occlusive disease after