A comparison of in vitro bioassays to determine cellular glucocorticoid sensitivity

H Vermeer, B I Hendriks-Stegeman, A A Verrijn Stuart, S C van Buul-Offers and M Jansen
Department of Pediatric Endocrinology, HP KC.03.063.0, Wilhelmina Children's Hospital, University Medical Center Utrecht, PO Box 85090, 3508 AB, Utrecht, The Netherlands
(Correspondence should be addressed to M Jansen; Email: M.Jansen@wkz.azu.nl)

Abstract
An altered cellular glucocorticoid (GC) sensitivity is associated with several pathophysiological conditions such as asthma, diabetes, or rheumatoid arthritis. Several bioassays have been developed and employed to assess cellular GC sensitivity of peripheral blood mononuclear cells (PBMC), but correlations between these have rarely been investigated. We have compared four mitogen-based assays and an FK506 binding protein 51 (FKBP51) mRNA induction assay, using ten controls and a GC-resistant patient. The mitogen-based assays were performed using either diluted wholeblood or isolated PBMC, and showed relatively large assay variations for the parameters maximal effect and half-maximal effect concentration. The FKBP51 assay showed smaller intra-assay and within-individual variation compared with the mitogen-based assays. The wholeblood-based mitogen assays and the FKBP51 assay clearly discriminated the GC-resistant patient from the controls but, in contrast to expectations, both PBMC-based mitogen assays did not. The GC-induced FKBP51 mRNA increase in PBMC may be an alternative to determine an altered individual GC sensitivity with several advantages as compared with mitogen-based assays, such as the use of unstimulated PBMC, and a better intra- and inter-individual reproducibility.

European Journal of Endocrinology 150 41–47

Introduction
Glucocorticoids (GCs) are commonly prescribed to combat diseases with a chronic inflammatory component, such as inflammatory bowel disease, autoimmune diseases, and asthma. Apart from their desired therapeutic effects, GCs influence virtually every tissue, altering gene transcription and protein expression, which may result in undesirable side-effects such as suppression of the hypothalamic-pituitary-adrenal axis, hypertension, or osteopenia (1–3). Decreased systemic GC activity has been realized by the introduction of GCs with enhanced topical potency and increased metabolism during the hepatic first pass. These GCs are used in the treatment of, among others, skin diseases and asthma (4, 5). However, some patients appear hypersensitive to GCs, as they develop side-effects even on low doses of topically applied GCs (6), while other patients appear to be resistant to GCs, as they show no clinical response to treatment (7, 8). It is therefore important to be able to identify GC hypo- or hypersensitivity, in order to provide treatment tailored to the needs of the individual patient.

The clinical response to GC treatment is dependent on both the bioavailability of GCs and the intrinsic, cellular sensitivity to GCs. For the determination of GC bioavailability in human serum, several bioassays have been developed, based on activation of a transfected GC-responsive reporter gene (9, 10).

To determine cellular GC sensitivity, on the other hand, the most frequently used assays are based on the ability of GCs to inhibit the mitogen-induced proliferation of peripheral blood mononuclear cells (PBMC). Numerous protocols have been described, differing in, for example, the use of diluted wholeblood or isolated PBMC, the type and concentration of mitogen, and the incubation time (11–15). Such differences, however, may affect the results obtained with these bioassays (16, 17). Moreover, the GC sensitivity of stimulated PBMC may very well be affected by the stimulation itself, as transcription and translation patterns are profoundly altered by mitogens (18–20). To avoid such 'induced' alterations of GC sensitivity, we developed a bioassay to assess cellular GC sensitivity using native, unstimulated PBMC. This bioassay is based on the GC-induced increase of FK506 binding protein 51 (FKBP51) (21) mRNA, detected using real-time PCR to minimize the number of PBMC required.
Materials and methods

Preparation of samples

Ten control patients without a history of GC medication (five males, five females; mean age 37 years; range 22–54 years), and a partially GC-resistant patient (female; age 36 years) were included in this study. This patient was previously shown to have one non-functional GC receptor allele, resulting in a functional GC receptor expression of approximately 50% (14, 23). The patient was prescribed 0.5 mg DXM/day at the time of venipuncture. Blood was collected in sodium heparin tubes by venipuncture between 0900 h and 1000 h to minimize variability due to circadian cortisol rhythms, divided for wholeblood use and for PBMC isolation, and processed immediately. PBMC were isolated using a Ficoll-Paque gradient (Amersham Biosciences, Uppsala, Sweden), washed twice with RPMI 1640, and resuspended for use according to the protocols of the various GC sensitivity assays.

Table 1 Characteristics of the cellular GC sensitivity assays. The amount of mononuclear cells in both wholeblood-based assays (wb-I, wb-II) is an approximation based on mean normal values.

<table>
<thead>
<tr>
<th>Assay</th>
<th>PBMC/well</th>
<th>PHA</th>
<th>Total GC/PHA incubation time</th>
<th>(^3)H incorporation</th>
<th>FCS</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>wb-I</td>
<td>150 (\mu)l diluted wholeblood (1.5 \times 10^6 cells)</td>
<td>5 (\mu)g/ml (Sigma)</td>
<td>48 h</td>
<td>Last 6 h (0.5 (\mu)Ci)</td>
<td>10%</td>
<td>16</td>
</tr>
<tr>
<td>wb-II</td>
<td>100 (\mu)l diluted wholeblood (1 \times 10^6 cells)</td>
<td>25 (\mu)g/ml (Murex)</td>
<td>96 h</td>
<td>Last 16–18 h (1.0 (\mu)Ci)</td>
<td>—</td>
<td>15</td>
</tr>
<tr>
<td>PBMC-I</td>
<td>PBMC (4 \times 10^6 cells)</td>
<td>5 (\mu)g/ml (Sigma)</td>
<td>48 h</td>
<td>Last 6 h (0.5 (\mu)Ci)</td>
<td>10%</td>
<td>11</td>
</tr>
<tr>
<td>PBMC-II</td>
<td>PBMC (4 \times 10^6 cells)</td>
<td>5 (\mu)g/ml (Sigma)</td>
<td>96 h</td>
<td>Last 4 h (0.5 (\mu)Ci)</td>
<td>10% DCC-stripped</td>
<td>13</td>
</tr>
<tr>
<td>FKBP51</td>
<td>PBMC (4 \times 10^6 cells)</td>
<td>—</td>
<td>24 h</td>
<td>—</td>
<td>10% DCC-stripped</td>
<td>22</td>
</tr>
</tbody>
</table>

Inhibition of mitogen-stimulated proliferation of PBMC by DXM

We have performed four mitogen-based GC sensitivity assays on the blood samples, which have all been described in detail in recent literature. Two of them are based on the use of diluted wholeblood, wb-I (16) and wb-II (15), and two are based on isolated PBMC, PBMC-I (11) and PBMC-II (13). The differences between the GC sensitivity assays are summarized in Table 1. All mitogen-based assays were performed in 96-well round bottom plates, incubated in a humidified atmosphere with 5% CO\(_2\) at 37°C, and inhibition of proliferation was determined using DXM (SigmaAldrich Chemie, Steinheim, Germany) in concentrations as indicated.

Briefly, the wb-I assay used wholeblood, diluted 1:10 with RPMI 1640 medium (Invitrogen Corp., Paisley, Strathclyde, UK) with 10% fetal calf serum (FCS) (Invitrogen Corp.), divided into 150 \(\mu\)l aliquots. Phytohaemagglutinin (PHA) (5 \(\mu\)g/ml final concentration; SigmaAldrich Chemie) and DXM were added to an endvolume of 200 \(\mu\)l, and the last 6 h of the 48-h incubation was in the presence of 0.5 \(\mu\)Ci \(^3\)H-thymidine/well. The wb-II assay used wholeblood, diluted 1:10 with RPMI 1640 medium and divided into 100 \(\mu\)l aliquots. PHA (25 \(\mu\)g/ml final concentration; Murex Diagnostics, Dartford, Kent, UK) and DXM were added to an endvolume of 150 \(\mu\)l. The cells were incubated for 96 h, the last 16–18 h in the presence of 1 \(\mu\)Ci \(^3\)H-thymidine/well. The PBMC-I assay used isolated PBMC in RPMI 1640 medium supplemented with 10% FCS, each well containing 4 \(\times\) 10^3 cells in 150 \(\mu\)l. PHA (5 \(\mu\)g/ml final concentration) and DXM were added to an endvolume of 200 \(\mu\)l, and the last 6 h of the 48-h incubation was in the presence of 0.5 \(\mu\)Ci \(^3\)H-thymidine/well. The PBMC-II assay was performed using isolated PBMC in RPMI 1640 supplemented with 10% dextran-coated charcoal (DCC)-stripped FCS, each well containing 4 \(\times\) 10^3 cells in 150 \(\mu\)l. PHA (5 \(\mu\)g/ml final concentration) and DXM were added to an endvolume of 200 \(\mu\)l. PBMC were incubated for 96 h, the last 4 h in the presence of 0.5 \(\mu\)Ci \(^3\)H-thymidine/well.
After incubation, cells were harvested using an automated cell harvester and incorporated radioactivity was determined in a liquid scintillation counter (Wallac, Turku, Finland).

FKBP51 bioassay

Isolated PBMC were resuspended to a concentration of 4.4 x 10^5 cells/ml in RPMI 1640 medium, supplemented with 10% DCC-stripped FCS, 4 mM L-glutamine, 100 IU/ml penicillin, and 100 μg/ml streptomycin. PBMC were divided into 0.9 ml aliquots onto a 48-well plate. Following an overnight preincubation to minimize the effects of endogenous glucocorticoids, DXM was added to an endvolume of 1 ml/well, followed by a 24-h incubation after which total RNA was isolated using TriPure reagent (Roche Applied Science, Mannheim, Germany), and reverse transcribed using MMLV-RNase H Minus, Point Mutant (Promega, Madison, WI, USA), according to the manufacturer’s protocols. Relative FKBP51 transcription levels were determined in a liquid scintillation counter (Wallac, Turku, Finland).

Briefly, the relative expression level of the housekeeping gene β2-microglobulin (β2m) was determined in each sample, and this was used to calculate the relative expression level of FKBP51. The PCR reactions (10 μl endvolume) were performed using the DNA Master SYBR-green I kit (Roche Applied Science, Mannheim, Germany), and contained 5.0 μl 1:40 diluted cDNA, 0.5 pmol/μl of each primer, 10% DNA master SYBR-green I solution, and MgCl2 (β2m, 4 mM; FKBP51, 3 mM). The mixture was denatured (30 s at 95°C) and subjected to up to 40 amplification cycles: denaturing 15 s at 95°C, annealing 10 s (β2m, 56°C; FKBP51, 67°C), and elongation for 30 s at 72°C, followed by a single measurement of fluorescence at 82°C.

Statistics

Experiments were performed in quadruplicate. The sigmoid dose–response curves of the mitogen-based assays were analyzed by non-linear regression using Graphpad Prism software version 3.0 (Graphpad Software Inc., San Diego, CA, USA), to obtain the parameters E_{max} and EC_{50}. The difference between untreated and PHA-treated PBMC was calculated using a paired t-test. Statistical analyses were performed using Graphpad Instat software version 3.00 (Graphpad Software Inc.).

Results

The intra-assay CV of E_{max} and EC_{50} were compared between the mitogen-based GC sensitivity assays. The relative increase of FKBP51 mRNA following incubations with 10^{-6} and 10^{-8} M DXM (on average the lowest DXM concentration to induce FKBP51 mRNA, and the highest DXM concentration tested respectively) have been used as parameters to assess the variation of the FKBP51 assay. Ten controls were assayed in quadruplicate, and the average CV showed a large intra-assay variation for both E_{max} and EC_{50} compared with the variation in the FKBP51 assay (Table 2).

The intra-assay CV of E_{max} and EC_{50} compared with the intra-individual CV was determined in a liquid scintillation counter (Wallac, Turku, Finland).
calculated for the parameters E_{max} and EC_{50}, and for the relative mRNA levels at 10^{-9} M and 10^{-6} M DXM. E_{max} showed, on average, less intra-individual variation compared with EC_{50}, whereas the intra-individual variation of the FKBP51 mRNA increase was lower than either the E_{max} or the EC_{50} of the mitogen assays.

To establish the effect of mitogen stimulation on lymphocyte GC sensitivity as determined with the FKBP51 assay, we incubated PBMC of three healthy subjects with or without 5 µg/ml PHA for 96 h. DXM was added for the last 24 h of the incubation. As shown in Fig. 3, unstimulated PBMC responded clearly to GC administration with a more than tenfold increase in FKBP51 mRNA, whereas PHA-stimulated PBMC showed a strongly diminished increase by a factor of 2 at best.

Discussion

A potentially important disadvantage of the use of mitogen-stimulated lymphocytes to determine cellular GC sensitivity in general is the profound alteration of lymphocytic gene and protein expression. Effects have been reported, among others, on cytokine expression.
topoisomerase I regulation, and nuclear transcription factors (18, 19, 24). These alterations can lead to changes in lymphocytic GC sensitivity. Therefore, when studying the GC responsiveness of cells in general, one might better choose a more ‘direct’ read-out frame, one that is as close as possible to the GC receptor (GR)–glucocorticoid response element (GRE) interaction and the subsequent GR-associated transcription machinery. The mRNA expression level of genes that are directly up- or downregulated by GC are ideally suited for this purpose. Among them is the mRNA encoding the immunophilin FKBP51, which is strongly upregulated by GC.

The diminished responsiveness to DXM of PHA-stimulated PBMC in the FKBP51 assay, as described in this study, confirms that the mitogen-based assays and the FKBP51 assay represent different aspects of GC-induced changes in cellular – i.e. lymphocytic – sensitivity. Thus, the use of PHA-stimulated PBMC

![Figure 2](image)

Figure 2 The GC sensitivity of ten controls and a GC-resistant patient was assessed, and compared using the parameters EC\textsubscript{50} and E\textsubscript{max} for the mitogen assays, and the relative increase of FKBP51 mRNA at 10^{-9} M DXM for the FKBP51 assay. (A) Comparison of EC\textsubscript{50} in wholeblood-based mitogen assays. (B) Comparison of E\textsubscript{max} in wholeblood-based mitogen assays (left Y-axis), and relative FKBP51 mRNA expression in the FKBP51 assay (right Y-axis, note the inversion). (C) Comparison of EC\textsubscript{50} in PBMC-based mitogen assays. (D) Comparison of E\textsubscript{max} in PBMC-based mitogen assays (left Y-axis), and relative FKBP51 mRNA expression in the FKBP51 assay (identical to (B); right Y-axis, note the inversion). The average of quadruplicate determinations are shown. (Female (○); male (●); GC-resistant patient (△)).

![Figure 3](image)

Figure 3 Native PBMC were cultured for 96 h with 5 μg/ml PHA (□), and without PHA (○). During the last 24 h of the incubation DXM in the concentrations indicated was added, and relative FKBP51 mRNA levels were determined.

<table>
<thead>
<tr>
<th></th>
<th>wb-I</th>
<th>wb-II</th>
<th>PBMC-I</th>
<th>PBMC-II</th>
<th>FKBP51</th>
</tr>
</thead>
<tbody>
<tr>
<td>E\textsubscript{max}</td>
<td>51.5</td>
<td>49.7</td>
<td>68.4</td>
<td>50.3</td>
<td>10^{-9} M DXM</td>
</tr>
<tr>
<td>EC\textsubscript{50}</td>
<td>67.4</td>
<td>62.8</td>
<td>48.7</td>
<td>77.5</td>
<td>10^{-6} M DXM</td>
</tr>
</tbody>
</table>

Table 3 Average intra-individual CV for E\textsubscript{max}, EC\textsubscript{50}, and the relative increase of FKBP51 mRNA after incubation with 10^{-9} or 10^{-6} M DXM.
in GC sensitivity assays may be warranted to assess the sensitivity to GC-induced immunosuppression, which appears to be mediated mainly by interactions of the activated GR with nuclear proteins, such as activator protein-1 and nuclear factor-κB (25, 26), although it could be argued that, even then, PBMC stimulation using a specific antigen such as tetanus toxoid might more closely resemble a physiological immune response. In contrast, the FKBP51 assay may be superior in detecting general changes in cellular GC sensitivity, e.g., based on changes in receptor number, or affinity, or alterations in the basal transcription machinery.

The GC resistance in the patient we studied is caused by a diminished GC receptor expression with unaltered ligand affinity (14, 23). In GC sensitivity assays this should be reflected in a diminished E_{max}, with EC_{50} values equivalent to those of the control subjects (14). The wholeblood-based mitogen assays as well as the FKBP51 assay indeed showed the expected response. However, the isolated PBMC-based mitogen assays reacted quite differently: in the PBMC-I assay, E_{max} was entirely comparable with normal, while E_{max} in the PBMC-II assay reflected the patient’s GC resistance relatively poorly. Moreover, both PBMC-based mitogen assays showed a lowered EC_{50} in the patient’s lymphocytes as compared with control subjects, which would seem to indicate an increased rather than a decreased sensitivity to GCs of the patient’s PBMC. An explanation for these conflicting findings may be that the patient was on long-standing GC medication (0.5 mg DXM/day). This may have changed the protein expression pattern of the PBMC and the serum concentration of ancillary factors required for the response of the PBMC to an immunogenic challenge. Isolated PBMC may thus become less capable of responding to the administered mitogens. Indeed, we observed a reduction of the proliferative response of the patient’s PBMC to PHA stimulation in both PBMC-based mitogen assays (PBMC-I, 9204 c.p.m.; PBMC-II, 1342 c.p.m.) compared with controls (range PBMC-I, 9098–40 455 c.p.m.; range PBMC-II, 2676–18 042 c.p.m.), whereas neither of the wholeblood-based mitogen assays exhibited such a reduced proliferation compared with controls.

The FKPB51 assay is less likely to be influenced by factors affecting proliferation, since it obviates the need for immunogenic stimulation. Moreover, following the preincubation step, the FKBP51 mRNA expression of the patient’s lymphocytes was comparable with expression in control PBMC, suggesting that the prolonged GC medication had not affected the constitutive FKBP51 mRNA expression. Thus, especially for patients or patient groups whose GC sensitivity needs to be assessed while on treatment with GC, the FKBP51 assay may be superior to proliferation-inhibition assays, since it uses isolated PBMC without the need for prior stimulation, while ascertaining a basal level in the response of the isolated PBMC by an overnight ‘resetting’ step in steroid-stripped medium.

Reports on inter- and intra-assay variations of the mitogen-based assays are scant. We found a rather high intra-assay variation both for EC_{50} and E_{max} in all of them. A lower intra-assay variation for E_{max} has previously been reported in the PBMC-I assay, based on only one control (11), whereas we have determined the average intra-assay variation of ten controls, which may have caused this discrepancy. To the best of our knowledge, intra-assay or intra-individual variations for E_{max} and EC_{50} have not been reported before for the other mitogen-based assays we have performed. The intra-individual variation of the increase in FKBP51 mRNA at 10^{-9} M and especially 10^{-6} M DXM, was smaller than either that of E_{max} or EC_{50} of the mitogen assays, indicating that GC-induced FKBP51 mRNA increase may be more reproducible within individuals than GC-induced inhibition of proliferation. It has been reported recently that the E_{max} of isolated PBMC in mitogen-based assays ranges from 0% to almost 100% (11, 16). Like others (14, 17, 27, 28), we could not detect such a wide variation with any of the mitogen-based assays we have performed, as the E_{max} ranged from 51.8% to 96.6%. Although we have performed the assays exactly as described in the literature, slight differences in experimental procedures and the number of control subjects tested may have caused this discrepancy. The higher sensitivity of mitogen-stimulated PBMC to GCs in the wholeblood-based mitogen assays as found by us is in concordance with previous observations (16). As a consequence, the E_{max} shows less variation between subjects, thus wholeblood-based assays may be less able to distinguish between different levels of GC sensitivity.

In conclusion, in investigating the origin and consequences of altered GC sensitivity, the mitogen-based assays and the FKPB51 assay appear to complement each other. Alterations in the capacity of the GR to engage in nuclear protein–protein interactions may be more pronounced using PBMC proliferation assays, whereas alterations in GR/DNA-binding and the GR-associated transcription machinery may be reflected better by the FKPB51 assay. Although the results obtained with the FKPB51 assay have yet to be correlated with clinical outcome when GCs are used for immunosuppression, it is already clear that the FKPB51 assay has its advantages: it shows smaller assay variations, is less likely to be influenced by serum-related variables, does not require mitogen-activated PBMC, and may therefore overall be better suited to assess in vivo cellular GC sensitivity.

Acknowledgements

The authors would like to thank Dr A Kavelaars for critically reading the manuscript. This study was...
supported by a research grant from Ferring B.V., The Netherlands.

References

1 Grebe SK, Feek CM, Durham JA, Klijakovic M & Cooke RR. Inhaled beclometasone dipropionate suppresses the hypothalamo–pituitary–adrenal axis in a dose dependent manner.
Clinical Endocrinology 1997 47 297–304.
2 Nishimura J & Ikuyama S. Glucocorticoid-induced osteoporosis: pathogenesis and management.
3 Slater JHD, Heffron PF, Vernet A & Nabarro JDN. Clinical and metabolic effects of dexamethasone.
4 Harrison TW, Wisniewski A, Honour J & Tattersfield AE. Comparison of the systemic effects of fluticasone propionate and budesonide given by dry powder inhaler in healthy and asthmatic subjects.
5 Umland SP, Schleimer RP & Johnston SL. Review of the molecular and cellular mechanisms of action of glucocorticoids for use in asthma.
Pulmonary Pharmacology and Therapeutics 2002 15 35–50.
6 Zimmerman B, Gold M, Wherrett D & Hanna AK. Adrenal suppression in two patients with asthma treated with low doses of the inhaled steroid fluticasone propionate.
8 Kino T & Chronouso GP. Glucocorticoid and mineralocorticoid resistance/hypersensitivity syndromes.
12 Spahn JD, Landwehr LP, Nimmagadda S, Surs W, Leung DY & Szelller SJ. Effects of glucocorticoids on lymphocyte activation in patients with steroid-sensitive and steroid-resistant asthma.
Journal of Allergy and Clinical Immunology 1996 98 277–284.
16 Hearing SD, Norman M & Dayan CM. In vitro measurement of lymphocyte steroid sensitivity: lack of agreement between whole blood culture and separated lymphocyte culture.
Immunopharmacology and Immunotoxicology 1999 21 41–53.
17 Van Reijen EAM, Harvey RA, Bartoni RN, Rijp JG & Horan MA. Sensitivity of mononuclear leucocytes to glucocorticoids in elderly hip-fracture patients resistant to suppression of plasma cortisol by dexamethasone.
18 Fan J, Nishanain P, Breen EC, McDonald M & Fahey JL. Cytokine gene expression in normal human lymphocytes in response to stimulation.
Cell and Tissue Research 2002 310 297–304.
Molecular and Cellular Biology 1995 15 4395–4402.
24 Tay DL, Hoffbrand AV & Wickremasinghe GR. Expression of c-fos and c-jun proteins and AP-1 binding activity during cell cycle progression of HL60 cells and phytohaemagglutinin-stimulated lymphocytes.
25 Herrlich P. Cross-talk between glucocorticoid receptor and AP-1.
Oncogene 2001 20 2465–2475.
27 Kraft M, Vianna E, Martin RJ & Leung DM. Nocturnal asthma is associated with reduced glucocorticoid receptor binding affinity and decreased steroid responsiveness at night.
Journal of Allergy and Clinical Immunology 1999 103 66–71.
28 Wei T, Knight RA & Lightman S. Mitogenic response and steroid sensitivity in M1 lymphocytes.

Received 16 July 2003
Accepted 8 October 2003

www.eje.org