INVITED REVIEW

Prevalence and natural history of adrenal incidentalomas

Luisa Barzon, Nicoletta Sonino 1, Francesco Fallo 2, Giorgio Palù and Marco Boscaro 3
Department of Histology, Microbiology, and Medical Biotechnologies, University of Padua, Via Gabelli 63, 35121 Padua, Italy,
1Department of Statistical Sciences, University of Padua, Padua, Italy, 2Department of Medical and Surgical Sciences, University of Padua, Padua, Italy and 3Division of Endocrinology, University of Ancona, Ancona, Italy

(Correspondence should be addressed to L Barzon; Email: luisa.barzon@unipd.it)

Abstract

Clinically silent adrenal masses discovered by imaging studies performed for unrelated reasons, i.e. adrenal incidentalomas, have become a rather common finding in clinical practice. However, only limited studies of incidence, prevalence, and natural history of adrenal incidentalomas are available. A comprehensive review of the literature shows the prevalence of adrenal incidentalomas to be 2.3% at autopsy and 0.5 – 2% at abdominal computed tomography scan. Most lesions are adrenocortical adenomas at histology, whereas the prevalence of adrenocortical carcinomas is relatively low. The risk of malignancy over time for masses defined as benign at diagnosis is estimated at about 1/1000, even though 5–25% of masses increase in size during follow-up. Hyperfunction develops in about 1.7% of cases and the risk is higher in patients with lesions larger than 3 cm. Cortisol hypersecretion is the most likely disorder that may ensue, and it remains subclinical in about two-thirds of cases. The lack of controlled studies precludes making specific management recommendations. Large perspective controlled studies to define the epidemiology, natural history, and possible associated morbidity of adrenal incidentalomas and their impact on the quality of life of patients are needed.

European Journal of Endocrinology 149 273–285

Introduction

Clinically silent adrenal masses discovered by imaging studies performed for unrelated reasons, i.e. adrenal incidentalomas, have become a rather common finding in clinical practice (1, 2). Although, in most cases, these masses are non-hypersecreting and benign, they still represent an important clinical concern because of the risk of malignancy or hormone hyperfunction. Experience in imaging and hormonal evaluation of adrenal incidentalomas and insights into the epidemiology and natural history are still growing.

Prevalence

The prevalence of adrenal incidentalomas varies with the source of data (either autopsy series or radiological series) and with the selection of patients (i.e. general population or special patient categories). With the widespread application of high-resolution imaging techniques the discovery of such masses has dramatically increased and has become a common problem in our aging population. Indeed, the prevalence of adrenal incidentalomas also varies with the patients’ age, being higher in older subjects.

Autopsy series

The prevalence of adrenal incidentalomas varies in the different autopic studies, depending on the age of the patient and the size of the tumor. The mean prevalence in a total of 71 206 cases from the literature is 2.3%, ranging from 1 to 8.7%, without significant differences between females and males (3–15) (Table 1). The prevalence of adrenal incidentalomas increases with the patients’ age, being 0.2% in young subjects as compared with 6.9% in subjects older than 70 years of age (1). Some authors have associated a higher prevalence of non-hypersecreting adrenocortical adenomas with the occurrence of diabetes mellitus, obesity, and hypertension (1, 4, 9). In this regard, a pathogenetic role for periods of ischemia followed by compensatory regeneration has been suggested (15). The variability of the prevalence of adrenal lesions among the different series also reflects the difficulty in distinguishing hyperplasia from small
nODULES AND ADENOMAS. In 498 consecutive autopsies, Reinhard et al. (15) reported the presence of single or multiple nodules in 53.7% of cases and adenomas in 5.0%. The diameter of nodules ranged from 0.3 to 8.0 mm and that of adenomas from 3.2 to 28.0 mm.

Radiological series

Adrenal incidentaloma is considered a disease of modern technology, since its occurrence has become apparent with the availability of high-resolution non-invasive imaging modalities. In this regard, a survey on adrenal incidentalomas in Japan which analyzed the number of diagnoses in the period from 1980 to 1988 according to the imaging technique employed, either computed tomography (CT) scan or ultrasonography, showed an increase in the detection of adrenal incidentalomas during time, mainly due to an increased use of abdominal CT scans performed for unrelated diseases (16). Non-functioning tumors were mainly responsible for the increase in diagnosis of adrenal incidentalomas, accounting for 0% of operated cases in 1980 and about 80% of operated cases in 1988. On the contrary, no significant chronological changes in the diagnosis of cortical carcinomas or of functioning tumors, such as pheochromocytomas, aldosteronomas, and cortisol-secreting adenomas, were observed (16). The mean prevalence of adrenal incidentalomas in the CT scan series, considering a total of 82,483 scans from the literature published in the period from 1982 to 1994, was 0.64%, ranging from 0.35 to 1.9% (13, 17–21) (Table 2). This prevalence is probably underestimated, since most investigations were performed with obsolete CT scanners. By using contemporary high-resolution CT scanning technology, the prevalence should approach that of autopsy studies. Indeed, the most recent report from Caplan et al. (21) shows a higher prevalence of adrenal incidentalomas, similar to that observed at autopsy.

Oncology series

Although, by definition, adrenal masses discovered in the course of abdominal imaging performed for staging of cancer are not generally considered as adrenal incidentalomas, several authors include patients with known malignancies in their series. In such patients the risk of an adrenal mass being a metastasis is high, ranging from 45 to 73% (13, 19, 22). Moreover, the risk increases with adrenal mass size, as malignancy rates of 43–100% have been reported for masses larger than 3 cm (19, 22).

The adrenal gland is a common site of metastatic spread, especially from lung, breast, stomach, and kidney cancer, and melanoma and lymphoma (23). Indeed, autopic and radiological studies report a prevalence of adrenal metastases in patients with known extra-adrenal malignancies ranging from 3 to 40% and from 6 to 20% respectively (1, 2, 23). In a recent report from the University of Texas, M. D. Anderson Cancer Center (24), out of a series of 1639 patients with unknown primary cancer, the adrenal

<table>
<thead>
<tr>
<th>Study (reference)</th>
<th>No. of patients</th>
<th>Overall</th>
<th>Females</th>
<th>Males</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rineheart et al. 1941 (3)</td>
<td>100</td>
<td>3.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Russi et al. 1945 (4)</td>
<td>9000</td>
<td>1.45</td>
<td>2.0</td>
<td>1.2</td>
</tr>
<tr>
<td>Commons & Callaway 1948 (5)</td>
<td>7437</td>
<td>2.86</td>
<td>2.84</td>
<td>2.88</td>
</tr>
<tr>
<td>Schroeder 1953 (6)</td>
<td>4000</td>
<td>1.38</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Devenyi 1967 (7)</td>
<td>5120</td>
<td>3.55</td>
<td>3.62</td>
<td>3.61</td>
</tr>
<tr>
<td>Kokko et al. 1967 (8)</td>
<td>2000</td>
<td>1.05</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Hedeland et al. 1968 (9)</td>
<td>739</td>
<td>8.70</td>
<td>7.16</td>
<td>10.34</td>
</tr>
<tr>
<td>Yamada & Fukunaga 1969 (10)</td>
<td>948</td>
<td>5.40</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Granger & Genest 1970 (11)</td>
<td>2425</td>
<td>2.52</td>
<td>2.43</td>
<td>2.58</td>
</tr>
<tr>
<td>Russell et al. 1972 (12)</td>
<td>35000</td>
<td>1.97</td>
<td>2.05</td>
<td>1.92</td>
</tr>
<tr>
<td>Abecassis et al. 1985 (13)</td>
<td>988</td>
<td>1.90</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Meagher et al. 1988 (14)</td>
<td>2951</td>
<td>5.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Reinhard et al. 1996 (15)</td>
<td>498</td>
<td>5.0</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 1 Prevalence of adrenal incidentalomas in autopsy series.

<table>
<thead>
<tr>
<th>Study (reference)</th>
<th>No. adrenal masses/No. scans</th>
<th>Prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glazer et al. 1982 (17)</td>
<td>16/2200</td>
<td>0.60</td>
</tr>
<tr>
<td>Printz et al. 1982 (18)</td>
<td>4/1423</td>
<td>0.35</td>
</tr>
<tr>
<td>Abecassis et al. 1985 (13)</td>
<td>19/1459</td>
<td>1.30</td>
</tr>
<tr>
<td>Belldegrun et al. 1986 (19)</td>
<td>89/12 000</td>
<td>0.70</td>
</tr>
<tr>
<td>Herrera et al. 1991 (20)</td>
<td>259/61 054</td>
<td>0.42</td>
</tr>
<tr>
<td>Caplan et al. 1994 (21)</td>
<td>33/1779</td>
<td>1.90</td>
</tr>
<tr>
<td>Total</td>
<td>531/82 483</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Table 2 Prevalence of adrenal incidentalomas in CT-scan series.
Inherited endocrine cancer syndromes

Adrenal lesions may represent a feature of inherited endocrine cancer syndromes or may be the expression of a predisposition to develop endocrine neoplasms. A recent study from the Swedish Cancer Registry demonstrated that the finding of a secondary endocrine tumor was significantly increased after any other endocrine tumor (26). As for adrenal tumors, the occurrence of a secondary adrenal tumor was significantly increased after a first adrenal tumor or after a first thyroid tumor, particularly in males (68.6-fold and 40.7-fold increase respectively). On the other hand, the incidence of a thyroid cancer was very high following an adrenal tumor (122.5- and 26.1-fold increase in males and females respectively). The increased incidence of secondary tumors may have resulted from the treatment given for the first cancer and/or be caused by the same environmental or genetic factors that caused the first cancer. Indeed, in some cases the association between the first and the second endocrine gland tumor was remarkably high, suggesting that patients were affected by one of the known cancer syndromes with endocrine manifestations, particularly multiple endocrine neoplasia (MEN) type 1, MEN type 2, and Von Hippel–Lindau (VHL), as demonstrated also by the development of related cancers in family members. Further, increased diagnosis of secondary tumors was probably related to intense medical screening after diagnosing the first cancer. In any case, it should be kept in mind that the discovery of an adrenal mass could be the first manifestation of a familial cancer syndrome, although this is a very rare event. Overall, adrenal lesions are found in 40% of MEN1-affected patients (27–29), in 40–50% of MEN2-affected patients (30, 31), in 10–20% of VHL-affected patients (31–33), in 20% of patients with familial paraganglioma syndrome (31, 33), in 1% of patients with neurofibromatosis type 1 (31, 34), in 30% of those with the Carney’s complex (35), in 10–30% of those with the Li–Fraumeni syndrome (36), in 7–13% of cases of familial adenomatous polyposis (37, 38), and in 15% of patients with the Beckwith–Wiedemann syndrome (39).

Congenital adrenal hyperplasia

Adrenal enlargement may be incidentally found in patients with undiagnosed mild congenital adrenal hyperplasia (40–43), even though genetic screening by mutational analysis of the CYP21B and the CYP11B1 genes indicates that undiagnosed congenital adrenal hyperplasia is not a common underlying condition in patients with adrenal incidentalomas (44–46). These tumors are benign in most cases, and adrenocortical carcinomas are extremely unlikely. In congenital adrenal hyperplasia, decreased production of cortisol leads to increased adrenocorticotropin secretion, resulting in adrenal hyperplasia. Jaresk et al. (47) reported a high prevalence of adrenal masses, nearly 82% in homozygous and 45% in heterozygous patients with congenital adrenal hyperplasia, including deficiencies of 21-hydroxylase, 11β-hydroxylase, and 3β-hydroxysteroid dehydrogenase. In congenital adrenal hyperplasia, adrenal size correlated with patients’ age and the age at which therapy was started (47). On the other hand, no correlation between tumor size and serum 17-hydroxyprogesterone concentration was found in these patients, at variance with findings of a relationship between tumor size and 17-hydroxyprogesterone-stimulated secretion reported in patients with adrenal incidentalomas not associated with congenital adrenal hyperplasia (48–50). This observation seems to indicate that abnormal hormonal findings in sporadic adrenal incidentalomas may simply parallel the increased volume of adrenal tissue or intratumoral functional impairment of enzyme activity, rather than a true enzymatic defect.

Age and sex distribution

Adrenal incidentalomas show different distribution in the population with regard to the patients’ age and sex, the side, and the size and nature of the mass (16, 20, 21, 51–73) (Table 3). However, these differences are often biased by the rate and type of diagnostic procedures performed in different categories of patients. In clinical reports, adrenal incidentalomas show a peak incidence in the fifth to seventh decades (1, 20, 53, 69). The mean age of patients at diagnosis is 55 years, without significant age differences between females and males. Adrenal masses are more frequent in females, with a female to male ratio of 1.3–1.5 (Table 3). Since no sex differences have been reported in autopsy studies, the higher prevalence of adrenal incidentalomas in females can be ascribed to a higher rate of abdominal diagnostic procedures performed in women than in men. Although the age and sex of the patient do not appear to be helpful in predicting the presence of an adrenocortical carcinoma, adrenocortical malignancies generally occur at younger ages than benign adrenal lesions (69) and are significantly more
Table 3 Clinical features of adrenal incidentalomas.

<table>
<thead>
<tr>
<th>Study (reference)</th>
<th>No. of patients</th>
<th>F/M ratio</th>
<th>Mean age (years)</th>
<th>Mean tumor size (cm)</th>
<th>Subclinical Cushing's syndrome (%)</th>
<th>Pheochromocytoma (%)</th>
<th>Aldosterone-producing adenoma (%)</th>
<th>Adreno-cortical cancer (%)</th>
<th>Metastatic cancer (%)</th>
<th>Apparent non-functioning adenoma (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambrosi et al. 1995 (51)</td>
<td>32</td>
<td>2.5</td>
<td>55</td>
<td>2.7</td>
<td>12.5</td>
<td>0</td>
<td>3.13</td>
<td>0</td>
<td>0</td>
<td>78.1</td>
</tr>
<tr>
<td>Aso & Homma 1992 (16)</td>
<td>210</td>
<td>0.7</td>
<td>53</td>
<td>4.9</td>
<td>3.3</td>
<td>23.3</td>
<td>3.3</td>
<td>4.29</td>
<td>1.4</td>
<td>36.7</td>
</tr>
<tr>
<td>Bardet et al. 1996 (52)</td>
<td>46</td>
<td>NR</td>
<td>NR</td>
<td>2.6</td>
<td>6.5</td>
<td>4.4</td>
<td>0</td>
<td>4.35</td>
<td>2.2</td>
<td>69.6</td>
</tr>
<tr>
<td>Barzon et al. 2002 (53)</td>
<td>284</td>
<td>1.5</td>
<td>56</td>
<td>3.6</td>
<td>11.3</td>
<td>5.9</td>
<td>2.1</td>
<td>8.80</td>
<td>2.8</td>
<td>64.8</td>
</tr>
<tr>
<td>Bastounis et al. 1997 (54)</td>
<td>86</td>
<td>1.5</td>
<td>61</td>
<td>4.1</td>
<td>3.5</td>
<td>2.33</td>
<td>0</td>
<td>1.16</td>
<td>2.3</td>
<td>61.6</td>
</tr>
<tr>
<td>Benckis et al. 1995 (55)</td>
<td>63</td>
<td>1.1</td>
<td>27–85</td>
<td>2.5–1.4</td>
<td>20.6</td>
<td>0</td>
<td>0</td>
<td>1.59</td>
<td>11.1</td>
<td>50.8</td>
</tr>
<tr>
<td>Bondanelli et al. 1997 (56)</td>
<td>38</td>
<td>1.4</td>
<td>58</td>
<td>2.6</td>
<td>10.5</td>
<td>5.3</td>
<td>0</td>
<td>2.63</td>
<td>0</td>
<td>81.6</td>
</tr>
<tr>
<td>Bolognì & Ahren 2002 (57)</td>
<td>381</td>
<td>1.3</td>
<td>64</td>
<td>3.0</td>
<td>1.0</td>
<td>3.9</td>
<td>0.5</td>
<td>2.6</td>
<td>2.1</td>
<td>84.2</td>
</tr>
<tr>
<td>Caplan et al. 1994 (21)</td>
<td>26</td>
<td>1.9</td>
<td>66</td>
<td>NR</td>
<td>11.5</td>
<td>0</td>
<td>3.8</td>
<td>0</td>
<td>0</td>
<td>84.6</td>
</tr>
<tr>
<td>Favia et al. 2000 (58)</td>
<td>158</td>
<td>1.2</td>
<td>58</td>
<td>4.4</td>
<td>5.1</td>
<td>2.5</td>
<td>3.8</td>
<td>9.49</td>
<td>1.9</td>
<td>76.6</td>
</tr>
<tr>
<td>Flecchia et al. 1995 (59)</td>
<td>32</td>
<td>1.3</td>
<td>57</td>
<td>3.7</td>
<td>21.9</td>
<td>0</td>
<td>0</td>
<td>6.25</td>
<td>6.2</td>
<td>46.9</td>
</tr>
<tr>
<td>Herrera et al. 1991 (20)</td>
<td>342</td>
<td>1.5</td>
<td>62</td>
<td>2.5</td>
<td>0.6</td>
<td>1.5</td>
<td>0</td>
<td>1.17</td>
<td>0.3</td>
<td>95.9</td>
</tr>
<tr>
<td>Kasperlik-Zaluska et al. 1997 (60)</td>
<td>208</td>
<td>2.5</td>
<td>52</td>
<td>NR</td>
<td>2.9</td>
<td>9.1</td>
<td>0</td>
<td>8.65</td>
<td>9.1</td>
<td>70.2</td>
</tr>
<tr>
<td>Linos et al. 1996 (61)</td>
<td>57</td>
<td>1.3</td>
<td>49</td>
<td>5.9</td>
<td>8.8</td>
<td>7.0</td>
<td>0</td>
<td>3.51</td>
<td>3.5</td>
<td>84.2</td>
</tr>
<tr>
<td>Mantero & Arnaldi 2000 (62)</td>
<td>208</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>13.9</td>
<td>3.4</td>
<td>1.0</td>
<td>0.96</td>
<td>1.0</td>
<td>76.0</td>
</tr>
<tr>
<td>Murai et al. 1999 (63)</td>
<td>59</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>1.7</td>
<td>18.6</td>
<td>1.7</td>
<td>5.08</td>
<td>0</td>
<td>72.9</td>
</tr>
<tr>
<td>Osella et al. 1994 (64)</td>
<td>45</td>
<td>1.4</td>
<td>55</td>
<td>3</td>
<td>15.6</td>
<td>4.4</td>
<td>0</td>
<td>6.67</td>
<td>2.2</td>
<td>71.1</td>
</tr>
<tr>
<td>Proye et al. 1998 (65)</td>
<td>103</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
<td>14.6</td>
<td>4.8</td>
<td>4.85</td>
<td>3.9</td>
<td>69.9</td>
</tr>
<tr>
<td>Reincke et al. 1992 (66)</td>
<td>68</td>
<td>1.6</td>
<td>59</td>
<td>3.2</td>
<td>11.8</td>
<td>1.5</td>
<td>1.5</td>
<td>0</td>
<td>0</td>
<td>85.3</td>
</tr>
<tr>
<td>Rossi et al. 2000 (67)</td>
<td>65</td>
<td>1.7</td>
<td>54</td>
<td>3.3</td>
<td>18.5</td>
<td>7.7</td>
<td>0</td>
<td>3.08</td>
<td>3.1</td>
<td>58.5</td>
</tr>
<tr>
<td>Seppel & Schlaghecke 1994 (68)</td>
<td>52</td>
<td>1.7</td>
<td>56</td>
<td>3</td>
<td>1.9</td>
<td>1.9</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>96.1</td>
</tr>
<tr>
<td>Mantero et al. 2000 (69)</td>
<td>1004</td>
<td>1.4</td>
<td>58</td>
<td>3</td>
<td>9.2</td>
<td>4.2</td>
<td>1.6</td>
<td>4.68</td>
<td>1.2</td>
<td>71.3</td>
</tr>
<tr>
<td>Tanabe et al. 2001 (70)</td>
<td>38</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>47.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>52.6</td>
</tr>
<tr>
<td>Terzolo et al. 1997 (71)</td>
<td>210</td>
<td>1.5</td>
<td>55</td>
<td>3.1</td>
<td>14.3</td>
<td>4.8</td>
<td>0</td>
<td>7.14</td>
<td>0.9</td>
<td>58.6</td>
</tr>
<tr>
<td>Tutuncu & Gedik 1999 (72)</td>
<td>33</td>
<td>1.2</td>
<td>51</td>
<td>5.1</td>
<td>6.1</td>
<td>18.2</td>
<td>0</td>
<td>6.06</td>
<td>6.1</td>
<td>63.6</td>
</tr>
<tr>
<td>Virkkala et al. 1989 (73)</td>
<td>20</td>
<td>1.4</td>
<td>59</td>
<td>2.3</td>
<td>25.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>75.0</td>
</tr>
<tr>
<td>Total</td>
<td>3868</td>
<td></td>
<td></td>
<td></td>
<td>306 (7.9%)</td>
<td>217 (5.6%)</td>
<td>48 (1.2%)</td>
<td>170 (4.4%)</td>
<td>81 (2.1%)</td>
<td>2781 (71.2%)</td>
</tr>
</tbody>
</table>

NR: not reported.
frequent in males, with a female to male ratio of 0.5 for malignant tumors and 1.7 for benign tumors (42).

Side and size distribution

Adrenal masses are found in the right adrenal gland in 50–60% of cases, in the left adrenal gland in 30–40% of cases, and bilaterally in 10–15% of cases (42, 59, 69). This difference can be accounted for by the widespread use of ultrasonography, which is less efficient than CT scan in detecting tumors on the left side, since a similar distribution between the two adrenal glands has been reported in CT scan (20) and autopsy series (1).

The mean diameter of adrenal incidentalomas discovered at CT scan is 3–3.5 cm, ranging from 0.5 to 25 cm (Table 3). Tumor size determined at CT scan is usually less than the diameter reported on histological examination. Size underestimation at CT scan has been estimated to range from 20 to 47% (19, 74). This is of interest since preoperative assessment of tumor size is one of the major decision criteria for surgery. In fact, the probability of malignancy increases as a function of mass size. A review of more than 1300 tumors reported in non-surgical series in the last 10 years (16, 20, 53, 56, 62, 64) shows that incidence of malignant neoplasms is significantly higher for masses greater than 4 cm in size (Fig. 1). Considering these data, the benign to malignant ratio can be estimated as 5:1 at a cut-off of greater than 3 cm in diameter, and 3:1 at a cut-off of greater than 4 cm (Fig. 1). However, mass diameter should not be used as the only criterion of malignancy, since malignant tumors less than 3 cm in diameter are not uncommon (19, 69, 74). As to mass size, subclinical adrenal hyperfunction is significantly more frequent in patients with larger masses than in those with small masses, as demonstrated in a review of about 1000 unselected cases from the literature (16, 20, 53, 56, 64, 66) (Fig. 2).

Etiology and function

In the vast majority of cases, adrenal incidentalomas are non-hypersecreting adrenocortical adenomas. However, they may also represent primary or metastatic malignancies and show minor endocrine abnormalities or subclinical hyperfunction. A review of the literature including 3868 patients with adrenal incidentalomas from 26 non-surgical series (16, 20, 21, 51–63) shows 70% of cases with an apparently non-functioning cortical adenoma, 5% with an adrenocortical carcinoma, 2% with metastases, 16% with hyperfunctioning tumors, and 8% with other lesions (i.e. myelolipomas, cysts, hemorrhage, etc.) (Table 3). Similar results have been recently reported in a survey in Japan (75) including 2455 cases of adrenal incidentalomas (i.e. 52.3% non-functioning adenomas, 7.9% cortisol-secreting adenomas, 7.9% pheochromocytomas, 4.1% aldosterone-secreting adenomas, and 1.5% adrenocortical carcinomas).

Pathology

Most incidentally discovered adrenal masses are adrenocortical adenomas, while adrenal medullary tumors are less frequent and represented mainly by pheochromocytomas (76) (Table 4). Combinations of cortical and medullary tumors (corticomedullary tumors) are found occasionally (42). Other adrenal lesions, such as myelolipomas, lipomas, cysts, hemangiomatas, angiosarcomas, and lymphomas, are rare. The prevalence of metastases...
varies in different series, accounting for about 2% of cases in studies not including cancer patients, and 30–70% of cases in series including patients with known extra-adrenal cancers. Among adrenal incidentalomas, adrenal pseudotumors are radiological images that seem to be of adrenal origin, but in reality arise from adjacent structures, such as kidney, spleen, pancreas, and lymph nodes. Occasionally, adrenal tumors of different natures may simultaneously be present in the same patient, e.g. a subclinical cortisol-secreting adenoma, an aldosteronoma, or a pheochromocytoma co-existing with a contralateral non-functioning mass (42, 77, 78), or adenomas with different pathological and hormonal features occurring within the same adrenal gland (79).

Subclinical hyperfunction

Upon accurate hormone assessment, most adrenal incidentalomas are non-hypersecreting; however, about 15% of cases show hypersecretion of either cortical or medullary hormones (Table 3). Adrenal hyperfunction seems to be more common in bilateral than in unilateral lesions (42). The mechanism of subclinical cortisol hypersecretion in bilateral adrenocortical lesions may involve aberrant expression of membrane hormone receptors, such as V1-vasopressin, luteinizing hormone/human chorionic gonadotropin, or serotonin receptors (80).

Subclinical hypercortisolism is the most common hormone abnormality detected in patients with adrenal incidentalomas (81, 82). The prevalence varies in different studies from 1 to 29%, with an average frequency of 9% (20, 21, 51, 53, 56–60, 64, 66–70, 83–90) (Table 5). The term subclinical or preclinical

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Etiology and relative frequency of adrenal incidentalomas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etiology</td>
<td>Frequency (%)</td>
</tr>
<tr>
<td>Adrenal cortical tumors</td>
<td></td>
</tr>
<tr>
<td>Adenoma</td>
<td>36–94</td>
</tr>
<tr>
<td>Nodular hyperplasia</td>
<td>7–17</td>
</tr>
<tr>
<td>Carcinoma</td>
<td>1.2–11</td>
</tr>
<tr>
<td>Adrenal medullary tumors</td>
<td></td>
</tr>
<tr>
<td>Pheochromocytoma</td>
<td>1.5–23</td>
</tr>
<tr>
<td>Ganglioneuroma</td>
<td>0–6</td>
</tr>
<tr>
<td>Ganglioneuroblastoma, neuroblastoma, carcinoma</td>
<td><1</td>
</tr>
<tr>
<td>Other adrenal tumors</td>
<td></td>
</tr>
<tr>
<td>Myelolipoma</td>
<td>7–15</td>
</tr>
<tr>
<td>Lipoma</td>
<td>0–11</td>
</tr>
<tr>
<td>Lymphoma, hemangioma, angiomyolipoma, hamartoma, liposarcoma, myoma, fibroma, neurofibroma, teratoma</td>
<td><1</td>
</tr>
<tr>
<td>Cysts and pseudocysts</td>
<td>4–22</td>
</tr>
<tr>
<td>Hematoma and hemorrhage</td>
<td>0–4</td>
</tr>
<tr>
<td>Infections, granulomatosis</td>
<td><1</td>
</tr>
<tr>
<td>Metastases (breast, kidney, lung, ovarian cancer, melanoma, Lymphoma, leukemia)</td>
<td>0–21</td>
</tr>
<tr>
<td>Pseudoarenal masses (stomach, pancreas, kidney, liver, lymph node, vascular lesions, technical artifacts)</td>
<td>0–10</td>
</tr>
</tbody>
</table>

Modified from Barzon & Boscaro 2000 (76).

Table 5 | Prevalence of subclinical Cushing's syndrome (SCS) in patients with adrenal incidentalomas.

<table>
<thead>
<tr>
<th>Study (reference)</th>
<th>Prevalence of SCS</th>
<th>Diagnostic criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hensen et al. 1990 (83)</td>
<td>4/50 (8.0%)</td>
<td>Dex 1 mg</td>
</tr>
<tr>
<td>McLeod et al. 1990 (84)</td>
<td>6/122 (5.0%)</td>
<td>Cortisol rhythm, Dex 8 mg, ACTH, unilateral NP-59 scan</td>
</tr>
<tr>
<td>Reincke et al. 1992 (66)</td>
<td>8/68 (11.7%)</td>
<td>Dex 8 mg/2 days</td>
</tr>
<tr>
<td>Herrera et al. 1991 (20)</td>
<td>2/172 (1.1%)</td>
<td>Dex 2 mg or 8 mg</td>
</tr>
<tr>
<td>Siren et al. 1993 (85)</td>
<td>2/36 (5.5%)</td>
<td>Dex 1 mg, F, UFC</td>
</tr>
<tr>
<td>Caplan et al. 1994 (21)</td>
<td>3/26 (11.5%)</td>
<td>ACTH</td>
</tr>
<tr>
<td>Fernandez-Real et al. 1994 (68)</td>
<td>3/21 (14.3%)</td>
<td>Dex 8 mg</td>
</tr>
<tr>
<td>Osella et al. 1994 (64)</td>
<td>7/45 (15.6%)</td>
<td>Dex 1 mg</td>
</tr>
<tr>
<td>Seppel & Schlaghecke 1994 (68)</td>
<td>1/52 (1.9%)</td>
<td>Dex 1 mg, ACTH</td>
</tr>
<tr>
<td>Ambroisi et al. 1995 (51)</td>
<td>4/29 (13.7%)</td>
<td>Dex 1 mg + other abnormalities</td>
</tr>
<tr>
<td>Flechichia et al. 1995 (58)</td>
<td>7/24 (29.1%)</td>
<td>UFC, Dex 1 mg, ACTH</td>
</tr>
<tr>
<td>Bondanelli et al. 1997 (56)</td>
<td>4/38 (10.5%)</td>
<td>Dex 8 mg/2 days</td>
</tr>
<tr>
<td>Kasperlik-Zaluska et al. 1997 (60)</td>
<td>6/208 (2.9%)</td>
<td>Dex 8 mg/2 days</td>
</tr>
<tr>
<td>Terzolo et al. 1998 (87)</td>
<td>3/53 (5.7%)</td>
<td>Dex 1 mg + UFC</td>
</tr>
<tr>
<td>Rossi et al. 2000 (67)</td>
<td>12/65 (18.4%)</td>
<td>Dex 1 mg + another abnormal test</td>
</tr>
<tr>
<td>Mantero et al. 2000 (69)</td>
<td>92/1004 (9.2%)</td>
<td>≥2 abnormal tests (Dex 1 mg, ACTH, UFC, cortisol rhythm, unilateral NP-59 scan)</td>
</tr>
<tr>
<td>Morika et al. 2000 (88)</td>
<td>7/56 (12.5%)</td>
<td>≥2 abnormal tests (Dex 1 mg, ACTH, UFC, cortisol rhythm, unilateral NP-59 scan)</td>
</tr>
<tr>
<td>Favia et al. 2000 (58)</td>
<td>8/158 (5.1%)</td>
<td>Dex 1 mg, plasma cortisol</td>
</tr>
<tr>
<td>Tanabe et al. 2001 (70)</td>
<td>18/38 (47.3%)</td>
<td>Dex 1 mg + Dex 8 mg*</td>
</tr>
<tr>
<td>Micorikawa et al. 2001 (99)</td>
<td>4/20 (20.0%)</td>
<td>Dex 8 mg/2 days</td>
</tr>
<tr>
<td>Grossrubatscher et al. 2001 (90)</td>
<td>3/53 (5.7%)</td>
<td>≥3 abnormal tests (UFC, ACTH, cortisol rhythm, Dex 1 mg, unilateral NP-59 scan)</td>
</tr>
<tr>
<td>Barzon et al. 2002 (53)</td>
<td>32/284 (11.3%)</td>
<td>Dex 1 mg + another abnormal test (UFC, cortisol rhythm, ACTH)</td>
</tr>
<tr>
<td>Total</td>
<td>236/2622 (9.0%)</td>
<td></td>
</tr>
</tbody>
</table>

Dex, dexamethasone suppression test; UFC, urinary free cortisol; *criteria for normality: plasma cortisol after 1 mg dex < 3 μg/dl, plasma cortisol after 8 mg dex < 1 μg/dl, NP-59, [iodine-131]6-β-iodomethyl-19-norcholesterol.
Cushing’s syndrome was first introduced by Charbonnel and coworkers in 1981 (81) to describe patients with adrenal incidentalomas and autonomous glucocorticoid production, but without specific signs and symptoms of overt Cushing’s syndrome. Different diagnostic criteria have been used to define this condition (Table 5). Most authors employed the overnight low-dose dexamethasone suppression test as a screening tool to detect autonomous cortisol hypersecretion, but due to the high rate of false-positive results, confirmatory tests are usually recommended (76). On the other hand, revised criteria for a normal response to the low-dose dexamethasone suppression test have been suggested to improve its sensitivity and detect even subtle glucocorticoid autonomy (91–93). With these revised criteria, the prevalence of cortisol hypersecretion ranges from 30 to 50% of incidentally discovered adrenal adenomas (70, 92–94).

Aldosteronomas have been reported in 1.5–3.3% of adrenal incidentalomas (12, 16, 21, 42, 69). A recent study on normokalemic patients with adrenal incidentalomas found primary aldosteronism in 4.0% of all patients with adrenal incidentalomas and in 5.5% of those with hypertension (95), a prevalence higher than that found in the general hypertensive population.

Although at autopsy studies up to 76% of pheochromocytomas are clinically silent and unsuspected before death (96), the prevalence of pheochromocytomas in patients with adrenal incidentalomas is relatively low (1.5–11%) (1, 16, 18, 20, 42, 60, 64, 97, 98) and only 10–20% of pheochromocytomas are incidentally discovered (99–101). Patients with incidentally discovered pheochromocytoma are older than those with symptomatic pheochromocytoma: in half of the cases, they are normotensive and often do not show any signs and symptoms (101, 102). Their catecholamine levels are significantly lower than those of patients with typical symptomatic pheochromocytomas (101, 102).

Natural history

The natural course of adrenal incidentalomas and the risk that such lesions evolve toward hormonal hypersecretion or malignancy are still under evaluation. Although there are only a few studies in the literature reporting long-term follow-up observation of adrenal incidentalomas, it seems that the majority of masses, classified as benign and non-hypersecreting at diagnosis, subsequently remains hormonally and morphologically unchanged (20, 53–56, 62, 64, 67, 71, 73, 87, 90, 103–108) (Table 6). Nonetheless, in a percentage which varies in different series, some cases develop mass enlargement and/or adrenal hyperfunction, ranging from 0 to 26% and from 0 to 11% respectively (Table 6).

Mass enlargement and risk of malignancy

In a review of 18 published series, including a total of 873 patients followed for a mean period of 3 years, 9% of cases showed mass enlargement greater than 1 cm and/or the appearance of another mass in the contralateral adrenal gland (Table 6). Mass enlargement was generally limited to 1–2 cm increase in diameter over a period of 1–3 years. Radiological images suggestive of malignancy together with mass enlargement, rather than a mere slight increase in mass size, can be used to suggest the need for surgical intervention. The risk of malignancy has been reported to range from 0 to 26%, and the risk of hyperfunction from 0 to 11% in different series of adrenal incidentalomas. The natural course of adrenal incidentalomas and the risk that such lesions evolve toward hormonal hypersecretion or malignancy are still under evaluation. Although there are only a few studies in the literature reporting long-term follow-up observation of adrenal incidentalomas, it seems that the majority of masses, classified as benign and non-hypersecreting at diagnosis, subsequently remains hormonally and morphologically unchanged (20, 53–56, 62, 64, 67, 71, 73, 87, 90, 103–108) (Table 6). Nonetheless, in a percentage which varies in different series, some cases develop mass enlargement and/or adrenal hyperfunction, ranging from 0 to 26% and from 0 to 11% respectively (Table 6).

Table 6 Long-term follow-up of adrenal incidentalomas.

<table>
<thead>
<tr>
<th>Study (reference)</th>
<th>Follow-up (years (range))</th>
<th>Mass size enlargement</th>
<th>Mass size reduction</th>
<th>Malignancy</th>
<th>Hyperfunction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reincke et al. 1989 (103)</td>
<td>1.2 (0.5–4)</td>
<td>0/11 (0%)</td>
<td>0/11 (0%)</td>
<td>0/11 (0%)</td>
<td>0/11 (0%)</td>
</tr>
<tr>
<td>Virkkala et al. 1989 (73)</td>
<td>2 (0.8–4.1)</td>
<td>0/12 (0%)</td>
<td>1/12 (8.3%)</td>
<td>0/12 (0%)</td>
<td>0/12 (0%)</td>
</tr>
<tr>
<td>Herrera et al. 1991 (20)</td>
<td>2 (0.1–5.6)</td>
<td>5/159 (3.1%)</td>
<td>4/159 (2.5%)</td>
<td>0/159 (0%)</td>
<td>0/287 (0%)</td>
</tr>
<tr>
<td>Jockenhovel et al. 1992 (104)</td>
<td>2.7 (1–8.4)</td>
<td>1/18 (5.5%)</td>
<td>2/18 (11.1%)</td>
<td>0/18 (0%)</td>
<td>2/18 (11.1%)</td>
</tr>
<tr>
<td>Osella et al. 1994 (64)</td>
<td>1.0</td>
<td>2/9 (22.2%)</td>
<td>0/9 (0%)</td>
<td>0/9 (0%)</td>
<td>1/9 (11.1%)</td>
</tr>
<tr>
<td>Bencsik et al. 1995 (55)</td>
<td>1.5 (0.3–3.4)</td>
<td>1/27 (3.7%)</td>
<td>0/27 (0%)</td>
<td>0/27 (0%)</td>
<td>0/27 (0%)</td>
</tr>
<tr>
<td>Courtade et al. 1997 (105)</td>
<td>3.6 (0.3–6.3)</td>
<td>0/25 (0%)</td>
<td>10/25 (40%)</td>
<td>0/25 (0%)</td>
<td>0/32 (0%)</td>
</tr>
<tr>
<td>Bastounis et al. 1997 (54)</td>
<td>3.6 (1–5.3)</td>
<td>2/60 (3.3%)</td>
<td>0/60 (0%)</td>
<td>0/60 (0%)</td>
<td>0/60 (0%)</td>
</tr>
<tr>
<td>Bondanelli et al. 1997 (56)</td>
<td>0.5–1.5</td>
<td>1/14 (7.1%)</td>
<td>0/14 (0%)</td>
<td>0/14 (0%)</td>
<td>0/14 (0%)</td>
</tr>
<tr>
<td>Terzolo et al. 1998 (71)</td>
<td>1</td>
<td>1/14 (2.4%)</td>
<td>NA</td>
<td>0/41 (0%)</td>
<td>0/41 (0%)</td>
</tr>
<tr>
<td>Barry et al. 1998 (106)</td>
<td>7 (0.1–11.7)</td>
<td>4/91 (4.4%)</td>
<td>0/91 (0%)</td>
<td>0/224 (0%)</td>
<td>0/224 (0%)</td>
</tr>
<tr>
<td>Terzolo et al. 1998 (87)</td>
<td>>1</td>
<td>0/53 (0%)</td>
<td>0/53 (0%)</td>
<td>0/53 (0%)</td>
<td>0/53 (0%)</td>
</tr>
<tr>
<td>Rossi et al. 2000 (67)</td>
<td>3.2 (0.7–6.1)</td>
<td>1/32 (3.1%)</td>
<td>0/32 (0%)</td>
<td>0/32 (0%)</td>
<td>1/32 (3.1%)</td>
</tr>
<tr>
<td>Siren et al. 2000 (107)</td>
<td>7 (2–16.3)</td>
<td>4/21 (19.0%)</td>
<td>7/21 (33.3%)</td>
<td>0/21 (0%)</td>
<td>0/21 (0%)</td>
</tr>
<tr>
<td>Mantero et al. 2000 (62)</td>
<td>>1</td>
<td>14/53 (26.4%)</td>
<td>NA</td>
<td>0/53 (0%)</td>
<td>2/53 (3.8%)</td>
</tr>
<tr>
<td>Grossrubatscher et al. 2001 (90)</td>
<td>2 (0.5–6.5)</td>
<td>10/53 (19.8%)</td>
<td>1/53 (1.9%)</td>
<td>0/53 (0%)</td>
<td>0/53 (0%)</td>
</tr>
<tr>
<td>Barzon et al. 2002 (53)</td>
<td>4.6 (2–12)</td>
<td>19/130 (14.4%)</td>
<td>3/130 (2.3%)</td>
<td>0/130 (0%)</td>
<td>10/130 (7.7%)</td>
</tr>
<tr>
<td>Libe et al. 2002 (108)</td>
<td>2.1 (1–10)</td>
<td>13/64 (20.3%)</td>
<td>0/64 (0%)</td>
<td>1/64 (1.6%)</td>
<td>4/64 (6.2%)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>78/873 (9.0%)</td>
<td>28/779 (3.6%)</td>
<td>1/1081 (0.09%)</td>
<td>20/1147 (1.7%)</td>
</tr>
</tbody>
</table>

NA, not available.
should be considered more reliable indicators of tumor progression, since only one case was demonstrated to be a malignant tumor at follow-up. It was the case of a non-Hodgkin's lymphoma showing a conspicuous tumoral growth within a short period of time (108). The likelihood of malignant transformation at long-term follow-up for masses considered as benign at diagnosis is therefore minimal, and is estimated at one case per 1000 incidentalomas (Table 6). An anecdotal case of a small adrenocortical carcinoma evolving after diagnosis of subclinical Cushing’s syndrome in a patient with an apparently benign adrenal incidentaloma has been reported in the literature (109). In our patient population, the case of a young woman referred for a 9 cm metastatic adrenocortical carcinoma associated with Cushing’s syndrome is noteworthy. The patient, 2 years earlier, showed a 2.5 cm adrenal lesion in the course of ultrasonography for abdominal pain. Another interesting case was that of a female patient referred for a 6 cm incidentally discovered non-functioning adrenocortical carcinoma, which had increased 3 cm in size in 1 year at radiological imaging (authors’ unpublished observations).

Reduction or even disappearance of the adrenal mass have been reported in up to 40% (mean, 3.6%) of adrenal incidentalomas, most often in the case of cystic lesions, hematomas, or adrenal pseudotumors (Table 6).

Incidentally discovered adrenocortical carcinoma

Adrenocortical carcinomas represent 5% of incidentalomas (Table 3). Most non-functioning adrenocortical carcinomas are incidentally discovered and account for about half of all adrenocortical carcinomas. These tumors are typically large masses at diagnosis, ranging from 3 to 20 cm in diameter (mean 8 cm), with distant metastases in 20–50% of cases (110–113). Our anecdotal case of a small adrenocortical carcinoma evolving after diagnosis of subclinical Cushing’s syndrome in a patient with an apparently benign adrenal incidentaloma has been reported in the literature (109). In our patient population, the case of a young woman referred for a 9 cm metastatic adrenocortical carcinoma associated with Cushing’s syndrome is noteworthy. The patient, 2 years earlier, showed a 2.5 cm adrenal lesion in the course of ultrasonography for abdominal pain. Another interesting case was that of a female patient referred for a 6 cm incidentally discovered non-functioning adrenocortical carcinoma, which had increased 3 cm in size in 1 year at radiological imaging (authors’ unpublished observations).

Reduction or even disappearance of the adrenal mass have been reported in up to 40% (mean, 3.6%) of adrenal incidentalomas, most often in the case of cystic lesions, hematomas, or adrenal pseudotumors (Table 6).

Hormone production

Overall, out of 1147 patients with adrenal incidentalomas from the literature, 20 (1.7%) developed adrenal hyperfunction during follow-up, in a percentage ranging in different studies from 0 to 11% (Table 6). Out of these patients, 13 (0.65%) developed subclinical hypercortisolism, six (0.3%) overt Cushing’s syndrome, and one (0.05%) catecholamine hypersecretion (53, 62, 104). In our recent follow-up study of 130 patients with adrenal incidentalomas, the estimated cumulative risk to develop either subclinical or overt glucocorticoid hypersecretion was 3.8% after 1 year and 6.6% after 5 years (53). Development of primary hyperaldosteronism and catecholamine hypersecretion during follow-up seems extremely rare, since no cases of hyperaldosteronism and only one of pheochromocytoma (116) have been reported (Table 6).

From subclinical Cushing’s syndrome to overt Cushing’s syndrome

The risk of progression from subclinical to overt Cushing’s syndrome is controversial. Terzolo et al. (87) reported a spontaneous endocrine normalization in 50% of patients with subclinical hypercortisolism, whereas no patient developed clinical Cushing’s syndrome. At variance, in other reports subclinical hypercortisolism persisted throughout follow-up or became clinically evident in some patients (62, 67, 83, 90, 104, 116). In our experience, one out of eight patients with subclinical Cushing’s syndrome at diagnosis developed overt Cushing’s syndrome during follow-up (53). Moreover, of the seven patients reported in the literature (including four patients of our own) who developed Cushing’s syndrome during follow-up, only three already had subclinical hypercortisolism at the time of adrenal mass discovery (53, 62, 83, 104, 116). In two of these cases, a concomitant adrenal mass enlargement was observed (53, 104). A slight increase of tumor size may also occur in patients with subclinical Cushing’s syndrome who do not demonstrate worsening of their endocrine function (53, 67, 116).

Even though, by definition, no clinical sign or symptom of Cushing’s syndrome should be present, patients with adrenal incidentalomas and especially those with subclinical Cushing’s syndrome have a higher prevalence of hypertension (40–90% of cases), obesity (35–50%), diabetes mellitus or glucose intolerance (20–75%), hyperlipidemia (50%), or osteopenia (40–50%) than the general population (42, 51, 64, 66, 67, 89, 94, 117–123). Whether these features, which are typical of the metabolic syndrome, will have an impact on the long-term morbidity of patients with subclinical Cushing’s syndrome remains to be determined. Long-term perspective studies are lacking; however, an amelioration of clinical or biochemical abnormalities in patients with subclinical hypercortisolism after surgery has been reported (42, 51, 53, 66, 67, 88–90). Improvement of blood pressure, obesity, metabolic abnormalities, collagen and bone turnover markers was observed after adrenalectomy in patients
with subclinical Cushing's syndrome (51, 66, 67). In particular, Midorikawa et al. (89) demonstrated an improvement in systolic blood pressure and insulin resistance after adrenalectomy both in patients with subclinical Cushing’s syndrome and in those with non-functioning cortical adenoma, but not in patients with non-cortical tumors (89). Cross-sectional and case-control studies indicate that the degree of metabolic abnormalities in patients with adrenal incidentalomas is directly related to the severity of the hypercortisolism (94, 118, 121–124). Thus, subtle cortisol hypersecretion by apparently non-functioning adrenal adenomas might be the cause of insulin resistance and other features of the metabolic syndrome in such patients (118). An alternative hypothesis was suggested by Reincke et al. (125), based on the observation that insulin has a mitogenic effect on adrenocortical cells without affecting cortisol synthesis. They proposed the adrenal incidentaloma as an insulin-mediated tumoral manifestation of the metabolic syndrome, similar to the insulin-mediated ovary overgrowth seen in polycystic ovary syndrome. Other potential effects of hypercortisolism, such as cardiovascular disease, thrombophilia, and psychiatric disturbances, remain to be investigated in patients with adrenal incidentalomas. Increased cardiovascular risk has been recently demonstrated in patients with subclinical Cushing’s syndrome (126). Abnormalities of coagulative parameters and mood disturbances were observed in our patients with subclinical Cushing’s syndrome who subsequently developed the overt condition (53).

Analysis of risk factors

Patients with subclinical hypercortisolism or with large masses at diagnosis are considered to be at risk for progression toward overt Cushing’s syndrome or malignancy respectively. However, no long-term prospective follow-up studies of adrenal incidentalomas with analysis of prognostic factors have been performed, except for the study we conducted in a cohort of 75 patients with non-hypersecreting, apparently benign, adrenocortical incidentalomas (116). In our experience, the majority of patients maintained unchanged mass size and hormonal function throughout follow-up. Out of 75 patients, only 17 showed change in the mass size and/or developed endocrine hyperfunction. By analysis of risk factors (i.e. sex, age, presence of obesity, hypertension, diabetes mellitus, abnormal endocrine tests at diagnosis, mass size, mass location, and scintigraphic uptake pattern), we have demonstrated how the presence of isolated endocrine test abnormalities at diagnosis had predictive value for mass enlargement or development of bilateral masses (116). On the other hand, mass size of 3 cm or more at diagnosis and exclusive radiocholesterol uptake by the mass with no visualization of the contralateral adrenal gland at scintigraphy had relevance for the occurrence of adrenal hyperfunction (116). Development of endocrine hyperfunction was more frequent in female, older, hypertensive subjects with endocrine abnormalities at diagnosis, although the association was not statistically significant (116). A relationship between tumor size and adrenocortical function (42, 116) was also reported by others (59, 94, 117) (Fig. 2). It is conceivable that adrenal tumors increase their cortisol secretion as they increase in volume and acquire glucocorticoid autonomy when a given size is reached. Our results have been confirmed by Libe et al. (108) who demonstrated that mass size greater than 3 cm and endocrine abnormalities at diagnosis were risk factors for adrenal hyperfunction and mass enlargement respectively.

As to the role of adrenocortical scintigraphy as a predictive factor for adrenal hyperfunction, findings of an increased risk of adrenal hyperfunction in patients showing exclusive uptake by the adrenal mass indicate that this scintigraphic pattern may represent an early phase of functional autonomy of the adrenal adenomas also in the case of apparently normal hormone function (42, 52, 67, 92, 127). Indeed, a mild degree of autonomy is demonstrated by lack of complete suppression after low-dose dexamethasone (92, 93). Since adrenal scintiscan may not be available in all centers, the 1 mg overnight dexamethasone suppression test may be a rapid and convenient tool to identify patients at risk for disease progression. With revised cut-off levels for a normal response, this test shows a good correlation with scintigraphic patterns and a high sensitivity in the detection of mild subclinical hypercortisolism (92, 93).

Causes of death

In the vast majority of patients with apparently benign adrenal incidentalomas, death is not directly related to the adrenal mass, but to cardiovascular accidents, malignancy, and chronic disorders, as observed in the general population (106, 107, 116). Barry et al. (106) reported the causes of death in 81 out of 224 patients followed for adrenal incidentalomas. All patients died of conditions unrelated to adrenal pathology, i.e. cardiac disease in 43%, malignancy in 22%, chronic obstructive pulmonary diseases in 11%, Alzheimer’s disease in 6%, cerebrovascular accident in 4%, pneumonia or sepsis in 4%, ruptured abdominal aortic aneurysm in 2.5%, diabetic renal failure in 2.5%, and other causes in 5%. Also in the series reported by Siren et al. (107), including 21 patients with adrenal incidentaloma, the most common causes of death were related to cardiovascular disease (acute myocardial infarction, ventricular arrhythmia, cardiac failure, multi-infarct dementia, and acute cerebrovascular
infarct), which occurred in seven out of nine deaths, whereas pulmonary embolism secondary to deep vein thrombosis and lung cancer occurred in two. Mean age at death was 72.8 years. Whether the relatively high rate of mortality due to cardiovascular disease is related to hypercortisolism was not investigated.

Conclusions

A comprehensive review of the literature shows the prevalence of adrenal incidentalomas to be 2.3% at autopsy and 0.5–2% at abdominal CT scan. With the improvement in imaging techniques and the increasing use of abdominal imaging, the incidental discovery of adrenal masses will continue to increase. Most lesions are adrenocortical adenomas at histology, whereas the prevalence of adrenocortical carcinomas is relatively low. The risk of malignancy over time for masses defined as benign at diagnosis is estimated to be about 1/1000, even though 5–25% of masses increase in size during follow-up. Hyperfunction develops in about 1.7% of cases, with percentages ranging from 0 to 11%, and the risk is higher in patients with lesions larger than 3 cm and/or with unilateral radio-tracer uptake at scintigraphy. Cortisol hypersecretion is the most likely disorder that may ensue, and it remains subclinical in about two-thirds of cases. Morbidity that may derive from subclinical hormone hypersecretion should always be weighed in the management of adrenal incidentalomas. The lack of controlled studies precludes making specific management recommendations. Large perspective controlled studies to define the epidemiology, natural history, and possible associated morbidity of adrenal incidentalomas and their impact on the quality of life of patients are needed.

References

1 Kloos RT, Gross MD, Francis IR, Korobkin M & Shapiro B. Incidentally discovered adrenal masses. Endocrine Reviews 1995 16 460–484.
3 Rineheart JF. Williams OO & Cappeller WS. Adenomatous hyperplasia of the adrenal cortex associated with essential hypertension. Archives of Pathology 1941 34 1031–1034.
5 Commons RR & Callaway CP. Adenomas of the adrenal cortex. Archives of Internal Medicine 1948 81 37–41.

72 Tutuncu NB & Gedik O. Adrenal incidentaloma: report of 33 cases. Journal of Surgical Oncology 1999 70 247–250.

Received 14 May 2003
Accepted 27 June 2003