Abstract

Objective: Ghrelin is a GH secretagog isolated recently from rat stomach and involved in the stimulation of food intake and adiposity in rodents and humans. Moreover, subsequent studies showed that ghrelin is expressed in rat and human placenta, suggesting a possible influence of the peptide on fetal growth. The aim of this study was to evaluate circulating levels of ghrelin in appropriate for gestational age (AGA) or intrauterine growth-restricted (IUGR) fetuses.

Subjects and methods: Ghrelin levels between 20 and 39 weeks of gestation were measured in 16 AGA and nine IUGR fetuses in whom blood was collected by cordocentesis performed for prenatal diagnosis of different diseases or during elective cesarean section. In most samples, GH, cortisol and leptin levels were also evaluated. Results are expressed as means±S.D. Differences were tested using the Student’s t-test with Welch correction. P < 0.05 was considered significant.

Results: All fetuses showed levels of ghrelin in the umbilical venous blood (100±99 pmol/l) that did not correlate with the gestational age or the maternal ghrelin levels. No difference was found between umbilical venous and arterial concentrations, suggesting that fetal tissues are a source of ghrelin. Ghrelin levels in IUGR fetuses were significantly higher than those found in AGA fetuses (176±125 vs 58±44 pmol/l; P < 0.005). Moreover, in samples obtained at birth, ghrelin concentrations correlated negatively with birth weight (P < 0.05). In IUGR fetuses, GH and cortisol concentrations were higher and leptin levels lower than in AGA fetuses, although no significant correlation between these parameters and ghrelin levels was found.

Conclusion: The presence of ghrelin in the fetal circulation as well as its increase in IUGR fetuses suggest a role of this peptide during intrauterine development.

Materials and methods

Subjects

Twenty-five pregnancies between 20 and 39 weeks of gestation were studied in the Department of Obstetrics and Gynecology of the San Paolo Hospital, Milan (Table 1). The study included eight women carrying AGA fetuses (four females and four males) requiring fetal blood sampling for prenatal diagnosis of different disorders (chromosomal abnormalities, maternal infections, thrombocytopenia) that were subsequently excluded and nine pregnancies carrying fetuses (four females and five males) with intrauterine growth restriction, as documented by measurements of abdominal circumferences below the tenth percentile of reference values at ultrasound examination (18). Growth restriction was confirmed at birth as the neonatal weight below the tenth percentile according to Italian standards for birth weight and gestational age (19) (Table 1). In IUGR fetuses, samples were collected either by cordocentesis performed for rapid karyotyping and biochemical assessment as part of our routine clinical protocol (20), or at the time of cesarean section performed in the interest of the fetus. Finally, eight AGA fetuses (three females and five males) were studied at the time of cesarean section performed between the 37th and the 39th week of gestation for maternal indications. The protocol was approved by the San Paolo Institute Board. All pregnant women gave their informed consent to both cordocentesis and hormone measurements.

Samples

Maternal and fetal blood samples were collected simultaneously after an overnight fast. Fetal blood was obtained by direct puncture of the umbilical vein as previously described (19), either in utero or during elective cesarean section. At cesarean section umbilical arterial and venous blood samples were withdrawn from a doubly clamped segment of the cord immediately after fetal extraction. None of the babies showed signs of distress at delivery. The reliability of fetal sampling was assessed by red cell volume analysis with a Coulter counter and confirmed by Kleihauer smears, as previously reported (19).

Assay

Fetal and maternal plasma samples for ghrelin analysis were stored in ice-chilled EDTA/aprotinin polypropylene tubes, immediately separated by centrifugation at 3000 r.p.m. for 10 min at 4 °C and stored at −80 °C until assay. In agreement with previous reports (13, 21), we did not observe differences between control samples assessed with or without extraction procedures (data not shown). Therefore, due to the small amounts of fetal plasma available for hormone measurements, the assay was used without an extraction procedure. Plasma ghrelin was measured in one run with a commercial RIA kit (Phoenix Pharmaceuticals Inc., Belmont, CA, USA) that uses a polyclonal antibody recognizing the C-terminal end of ghrelin, i.e. total ghrelin. The detection limit was 9 pmol/l. Intra- and interassay CVs were 6% and 14% respectively.

Plasma leptin levels were measured by enzyme-linked immunosorbent assay (DRG Instruments, GMBH, Germany), and GH and cortisol by immunofluorometric assay (AutoDelfia kit, Perkin-Elmer Lifesciences, Turku, Finland).

Statistics

The results are expressed as means±s.d. Differences between groups were tested using the Student’s t-test with Welch correction and correlations were examined by linear regression analysis. A P value <0.05 was considered significant.

Results

All fetuses included in the study showed detectable levels of ghrelin in the umbilical venous blood that were highly variable (100±99 pmol/l; range

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Fetal characteristics at the time of the sampling and at the time of delivery. All data are presented as means±s.d. n = number of cases.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cordocentesis</td>
</tr>
<tr>
<td></td>
<td>Gestational age (weeks)</td>
</tr>
<tr>
<td>AGA fetuses, n = 16</td>
<td>25.8±4.2</td>
</tr>
<tr>
<td>n = 8</td>
<td></td>
</tr>
<tr>
<td>IUGR fetuses, n = 9</td>
<td>27.2±1.5</td>
</tr>
<tr>
<td>n = 4</td>
<td></td>
</tr>
</tbody>
</table>

*P < 0.01 vs normal (see ref. 19), **P < 0.001 vs normal (see ref. 19).
IUGR fetuses (10.7 ± 1.6 vs 11.2 ng/ml), although the difference did not reach significance (Table 2). A positive correlation between leptin levels and birth weight was observed (Fig. 2). Plasma cortisol levels, ranging from 62 to 230 nmol/l and increasing with gestational age (Fig. 3), were significantly higher in IUGR fetuses than in AGA fetuses (175 ± 40 vs 126 ± 48 nmol/l; P < 0.05; Table 2). No significant correlation between fetal ghrelin and GH, leptin or cortisol levels was found.

Discussion

This study demonstrates for the first time that ghrelin is present in the human fetal circulation during gestation. Admittedly, since the commercially available RIA kit detected both octanoylated bioactive and non-octanoylated bio-inactive ghrelin, total ghrelin may not strictly reflect the biologically active peptide. Ghrelin was clearly detectable in the umbilical venous blood in fetuses from 20 weeks to term, without sex-related differences. No significant variation in ghrelin levels was observed throughout the gestation, though data did not cover each gestation week due to the low number of pregnancies requiring cordocentesis.

As far as the origin of the peptide is concerned, the recent demonstration that ghrelin mRNA and protein are expressed in the placenta makes this organ a good source of ghrelin production and release into the fetal circulation (16). However, the present study provided evidence for a fetal origin of the peptide since neither significant umbilical veno-arterial difference of maternal and fetal plasma levels were observed. Accordingly, an origin from fetal tissues may be suggested by the observation that the peptide seems to be almost absent in the placenta during the last trimester (16) while ghrelin persisted in the fetal circulation until term.

Intrauterine growth restriction was associated with a significant increase of plasma ghrelin levels, although values recorded in IUGR and AGA fetuses showed

Table 2: Circulating levels of ghrelin, GH, leptin and cortisol in AGA and IUGR fetuses. All data are presented as means ± S.D. n = number of cases.

<table>
<thead>
<tr>
<th></th>
<th>Ghrelin (pmol/l)</th>
<th>GH (μg/l)</th>
<th>Leptin (ng/ml)</th>
<th>Cortisol (nmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGA fetuses</td>
<td>58 ± 44</td>
<td>10.6 ± 2</td>
<td>8.1 ± 10.5</td>
<td>126 ± 48</td>
</tr>
<tr>
<td>n = 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IUGR fetuses</td>
<td>176 ± 25*</td>
<td>29.8 ± 6.1</td>
<td>2.3 ± 2.4</td>
<td>175 ± 40*</td>
</tr>
<tr>
<td>n = 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*P < 0.05 vs AGA, **P < 0.005 vs AGA.
some overlapping. This observation is in agreement with a recent study in which ghrelin was detected in cord blood of full-term neonates and correlated negatively with birth weight (17). A similar correlation was also found at birth in the present study. Several mechanisms may be responsible for the high ghrelin levels observed in IUGR fetuses. First, this pattern of secretion may be an additional component of the altered somatotrophic axis observed in growth-restricted fetuses. Indeed, as previously described, plasma GH levels in cord blood were higher in IUGR fetuses than in normal fetuses and negatively correlated with birth weight, probably as a result of the reduced IGF-I levels present in this pathological condition (22, 23). Therefore, it is likely that low IGF-I associated with intrauterine growth restriction may induce ghrelin overproduction, although the feedback mechanisms regulating ghrelin secretion are still poorly understood. Alternatively, the increased levels of ghrelin observed in IUGR fetuses may be related to the role of this peptide in energy balance. Indeed, plasma ghrelin levels have been reported to be increased by fasting and anorexia and decreased by acute or chronic states of positive energy balance (11–15). Accordingly, ghrelin appears

\[\text{Figure 2} \] Negative correlations between birth weight and ghrelin and GH levels in AGA and IUGR neonates (\(P < 0.05 \)). In the same fetuses a positive correlation was observed between birth weight and leptin levels (\(P < 0.05 \)).

\[\text{Figure 3} \] Circulating levels of GH, cortisol and leptin in AGA and IUGR fetuses. In both groups, GH levels correlated negatively with gestational age (\(P < 0.05 \)) while cortisol and leptin levels correlated positively with gestational age (\(P < 0.005 \) and \(P < 0.05 \) respectively). In IUGR fetuses, both GH and cortisol levels were significantly higher than in AGA fetuses (\(P < 0.05 \)), while leptin concentrations were not significantly lower in IUGR fetuses than in AGA fetuses after 34 weeks of gestation (see Table 2).
to be negatively correlated with body mass index, body fat mass and leptin levels (6). A similar pattern was also observed in full-term neonates who presented a positive correlation between leptin and birth weight, in agreement with previous reports (24, 25). Therefore, it is conceivable that high ghrelin levels may represent a ‘hunger signal’ in IUGR fetuses, which showed low levels of the ‘satiety signal’ leptin. Finally, since ghrelin has been demonstrated to increase ACTH and cortisol secretion in humans and rodents, a possible role of ghrelin in the activation of the hypothalamic–pituitary–adrenal axis in fetal distress could be envisaged (8). Accordingly, plasma cortisol concentrations were found to be higher in IUGR fetuses than in normally grown fetuses. Previous studies suggested that the increases in circulating cortisol may play an important role in the adaptation of the fetal cardiovascular system to intrauterine growth restriction (26). Taken together these data indicate that intrauterine growth restriction is associated with several hormonal changes that, although not strictly correlated, include the increase in ghrelin levels as well as the previously reported changes in GH, leptin and cortisol secretion.

In conclusion, our data indicate that ghrelin is present in fetal plasma from 20 weeks to term. Although the placenta is likely to be an important source of ghrelin, fetal production is consistent with the absence of differences between umbilical venous and arterial values together with the lack of correlation between maternal and fetal ghrelin levels. Moreover, the high levels of ghrelin observed in fetuses with intrauterine growth restriction suggest a possible role of this peptide during intrauterine life, especially in determining adaptations of the fetus to an adverse intrauterine environment.

Acknowledgements

This study was partially supported by grants Ricerca Corrente, Ospedale Maggiore IRCCS (Milan) and MURST (Rome).

References

Received 25 November 2002
Accepted 5 May 2003