CASE REPORT

Major hyperestrogenism in a feminizing adrenocortical adenoma despite a moderate overexpression of the aromatase enzyme

Hélène Bouraïma, Barbara Lireux1, Hervé Mitter2, Annie Benhaim, Michel Herrou2, Jacques Mahoudeau1, Françoise Guillou-Metz1, Marie-Laure Kottler2 and Yves Reznik1

EA 2608-USC INRA, Université de Caen 14032 Caen Cedex, France, 1 Service d’Endocrinologie et Maladies Métaboliques and 2 Département de Génétique et Reproduction, CHU Caen 14033 Caen Cedex, France

(Correspondence should be addressed to Yves Reznik, Service d’Endocrinologie et Maladies Métaboliques, CHU Caen 14033 Caen Cedex, France; Email: reznik-y@chu-caen.fr)

Abstract

A 30-year-old male was referred for the rapid development of gynecomastia, and dramatic hyperestrogenemia was assessed: plasma estrone, estradiol but also cortisol were not suppressed by high-dose dexamethasone, while gonadotropin pulsatility was completely abolished. A 60-mm right adrenal tumor was evidenced on computed tomography-scan, and the patient underwent adrenalectomy. The tumor was found to express a moderate increase in aromatase activity compared with adjacent non-neoplastic adrenal tissue. Quantitative RT-PCR also showed a weak and non-significant increase in total aromatase mRNA in the tumor compared with normal adrenal tissue. Aromatase transcripts were mainly promoter PII-derived, but different patterns of aromatase minor transcripts were found: promoter I.3- and I.6-derived transcripts were identified in the tumor, while only promoter I.4-derived transcripts were found in normal adrenal. This case report demonstrates that a sharp aromatase overexpression is not a prerequisite for clinical and biochemical hyperestrogenism, and further characterizes the aromatase promoter utilization in this feminizing adrenocortical tumor and in the normal adrenal cortex.

European Journal of Endocrinology 148 457–461

Introduction

Feminizing adrenal tumors are rare (1, 2) and few cases were extensively studied in order to characterize the adrenal origin of estrogen production and the involvement of aromatase P450 overexpression. Recent case reports have demonstrated the presence of aromatase immunoreactivity (3), high aromatase enzyme activity (3–5) and overexpression of CYP19 mRNA (5, 6) in adrenocortical feminizing tumors. In the present study, the hormonal, enzymatic and molecular characterization of one feminizing adrenal tumor occurring in a young adult male allowed us to observe a moderate overexpression of aromatase activity together with a mild parallel increase in aromatase transcripts, opening discussion on the mechanism of the marked estrogen overproduction evidenced by the plasma steroid pattern in this patient. Aromatase promoter utilization was further characterized within the tumoral and the normal adrenal cortex.

Case report

A 30-year-old man was admitted with a complaint of severe progressive bilateral gynecomastia associated with a 12 kg weight gain within the last 18 months, without other clinical hallmarks of Cushing’s syndrome. The patient denied any hormone, drug or alcohol consumption. Physical examination and testicular echography revealed testis of normal size (45 × 25 mm) and structure, normal virilization, and Tanner IV breasts. Blood pressure was 130/80 mmHg. Abdominal computed tomography revealed a 6-cm right adrenal mass. Hormonal studies (Table 1) showed high plasma estrone (E1) (6- to 10-fold) and estradiol (E2) (3- to 6-fold) levels, high delta-4-androstenedione (Δ4-A) and 17-hydroxyprogesterone (17OHP) levels but low testosterone and low apulsatile gonadotropin levels unresponsive to gonadotropin-releasing hormone (GnRH) stimulation (data not shown). Human chorionic gonadotropin (hCG) was undetectable. Free urinary cortisol was normal high (110 μg/day), but a high dose dexamethasone test
Table 1 Plasma hormone levels before and one month after adrenalectomy (AdrX).

<table>
<thead>
<tr>
<th>Hormone</th>
<th>Before AdrX</th>
<th>After AdrX</th>
<th>Normal values</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1 (pg/ml)</td>
<td>466</td>
<td>63</td>
<td>15–90</td>
</tr>
<tr>
<td>E2 (pg/ml)</td>
<td>120</td>
<td>24</td>
<td>8–45</td>
</tr>
<tr>
<td>Testosterone (nmol/l)</td>
<td>31</td>
<td>31</td>
<td>8–18</td>
</tr>
<tr>
<td>SHBG (nmol/l)</td>
<td>43</td>
<td>31</td>
<td>16–38</td>
</tr>
<tr>
<td>DHEA (ng/ml)</td>
<td>2.1</td>
<td>nd</td>
<td>1–10</td>
</tr>
<tr>
<td>DHEA-S (ng/ml)</td>
<td>1200</td>
<td>nd</td>
<td>700–3900</td>
</tr>
<tr>
<td>Cortisol (ng/ml)</td>
<td>130</td>
<td>130</td>
<td>100–250</td>
</tr>
<tr>
<td>Aldosterone (pmol/l)</td>
<td>78</td>
<td>82</td>
<td>30–300</td>
</tr>
<tr>
<td>β-hCG (mU/ml)</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>Basal LH (mU/ml)</td>
<td><0.3</td>
<td>1.9</td>
<td>(3.5–10)</td>
</tr>
<tr>
<td>LH/GnRH (mU/ml)</td>
<td>4</td>
<td>32</td>
<td>9–21</td>
</tr>
<tr>
<td>Basal FSH (mU/ml)</td>
<td>0.4</td>
<td>1.5</td>
<td>2–6.5</td>
</tr>
<tr>
<td>FSH/GnRH (mU/ml)</td>
<td>0.4</td>
<td>4</td>
<td>3.5–10</td>
</tr>
</tbody>
</table>

SHBG, sex hormone binding globulin; DHEA, dehydroepiandrosterone; DHEA-S, DHEA sulfate; LH, luteinizing hormone; FSH, follicle-stimulating hormone; nd, not determined.

(8 mg/day for 2 days) failed to suppress plasma cortisol (160 ng/ml), E1 (1066 pg/ml) and E2 (210 pg/ml) plasma levels. Exogenous adrenocorticotropin (ACTH) and corticotropin-releasing hormone (CRH) failed to stimulate plasma cortisol, testosterone, E1 and E2.

The patient underwent a right coelioscopic adrenalectomy which revealed an adrenocortical tumor of 55 £ 60 × 50 mm size and 100 g weight. Pathological examination revealed a proliferation of pseudo-follicular large cells with sinusoidal but no vascular invasion and no evidence of atypical mitotic figures. No hemorrhage or necrosis were identified on the cut surface of the tumor. The Weiss and Hough score was 4/9. Immunocytochemistry was positive for chromogranin and KL-1 (epithelial marker). One month after surgery, the patient exhibited normal E1 and E2 levels, normal androgen levels and recovery of gonadotropin pulsatility (data not shown) and response to GnRH (Table 1). Within a 13-month follow-up period, no recurrent disease was identified by biological markers, thorax and abdominal magnetic resonance imaging and computed tomography.

Materials and methods

Tissue steroid concentrations

One tumor fragment and one normal adrenal fragment were homogenized in a phosphate buffer solution (0.1 mol/l, pH 7.4) and centrifuged at 800 g for 5 min. The supernatant was centrifuged at 100 000 g for 60 min. Supernatants from both tumor fragments were pooled, and E1, E2, Δ4-A and 17OH were measured by RIA. Aromatase activity was determined in the pellet.

Aromatase activity assay

Aromatase activity was determined in fragments from the adrenal tumor, from the non-neoplastic adrenal tissue adjacent to the tumor, and from three normal human adrenals and rabbit granulosa cells as control. The aromatase assay of the particulate fraction was estimated based on the incorporation of tritium from [1β-N-3H]androst-4-ene-3,17-dione (24 Ci/mmol, New England Nuclear, NEN Life Science Products, Paris, France) into 3H2O as described by Conley et al. (7). A reagent blank was set up by substituting 1 mg/ml BSA (bovine serum albumin) in the particulate fraction’s buffer. The aromatase activity in tissue was inhibited by letrozole (Novartis Pharma), a non-steroid aromatase inhibitor, in order to assess the specificity of the measured aromatase activity.

Aromatase mRNA quantification by RT-PCR

Aromatase transcripts were measured in fragments from the adrenal tumor, from the non-neoplastic adrenal tissue adjacent to the tumor, and from three normal human adrenals. Total RNA was isolated from the tumor and from normal adrenal tissues as described by Chomczynski & Sacchi (8). The cDNAs obtained by retrotranscription with oligo-dT12-18 were amplified using a polymerase chain reaction with the primers described in Table 2. DNA bands were visualized after staining with ethidium bromide and the intensity of the bands was evaluated with a camera (Vilber Lourmat, France). The sequences of PCR products were controlled by direct sequencing with ABI377 sequencer (Applied
The quantitation of aromatase transcripts was performed as described by Breard et al. (9). PCR products were visualized on a 3% non-denaturing agarose Metaphore gel with ethidium bromide staining, and the quantitation of individual cDNA was based on the assumption that bands of equal amounts of PCR products from an individual cDNA and from the corresponding internal standard exhibited identical photometric intensity. The quantitation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was performed in all samples and the results were expressed as the amount of aromatase transcript/amount of GAPDH transcript.

Statistical analysis

The comparison of mRNA levels measured in the tumor and in the adjacent non-neoplastic adrenal fragments was performed by Student’s *t*-test. The level of significance was *P* < 0.05.

Results

Steroid measurements in adrenal tissues showed that E2 and E1 concentrations were respectively 14-fold and 7-fold higher in the tumor than in normal adrenal. 17OHP and testosterone concentrations were respectively twofold and threefold higher in the tumor than in normal adrenal, while Δ4-A concentrations were comparable in both tissues (Table 3).

Enzymatic experiments showed that aromatase activity was sevenfold higher in the tumor compared with the adjacent non-neoplastic adrenal cortex and only weakly enhanced in comparison with three normal human adrenal controls. Aromatase activity measured in granulosa cells used as a positive control was threefold higher than in the adrenal tumor (Table 3). Addition of letrozole blunted aromatase activity in all adrenal extracts.

Molecular studies identified aromatase mRNA in all adrenal fragments from tumor and control human adrenals. Quantitation of aromatase mRNA was thus performed by quantitative RT-PCR analysis, which showed a weak and non-significant increase in the total aromatase mRNA in the tumor compared with the adjacent non-neoplastic adrenal, while the former was not different from three normal human adrenal controls which also expressed low levels of aromatase mRNA (Table 4). Promoter analysis was then performed after a 30-cycles RT-PCR, identifying PCR products from the tumor and from normal human adrenal cortex mainly derived from exon PI (Fig. 1A). After a second 30-cycles amplification, nested PCR revealed the presence of low levels of secondary PCR products, with different profiles in both tissues: the tumor expressed low PL.4-derived transcript levels compared with normal human adrenal cortex (ratio 1/30 to 1/70), while PL.3- and PL.6-derived transcripts were weakly expressed in the tumor but not expressed in the normal human adrenal cortex (Fig. 1B).

Discussion

In this study, a feminizing adrenal adenoma in a man exhibiting very high circulating levels of estrogens was extensively analyzed. Biochemical, enzymatic and molecular experiments surprisingly revealed only moderate enhancement of aromatase expression in this tumor when compared with the low measurable aromatase expression detected in the normal human adrenal cortex.

Previous investigations on feminizing adrenocortical tumors have emphasized the very high aromatase activity measured in these tumors, indeed at levels in the order of magnitude of placental aromatase activity (3–6, 10). The protein expression was detected within estrogen-producing tumors by Western blot and by immunohistochemistry (3, 10), with the demonstration of an immunoreactivity in the tumor cells but not in the adjacent non-neoplastic adrenal cells (3). Molecular studies by RT-PCR techniques have confirmed the expression of aromatase mRNA in an estrogen-producing adrenal tumor (5), and allowed the measurement of high levels of aromatase mRNA by quantitative RT-PCR (6, 10). Normal human adrenal was previously considered to express very low, if any, aromatase mRNA concentrations (4, 6, 10). Our results

<table>
<thead>
<tr>
<th>Steroid concentration (ng/g protein)</th>
<th>Tumor</th>
<th>Adjacent adrenal</th>
<th>Control adrenal</th>
<th>Rabbit granulosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2</td>
<td>55</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>109</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ4-A</td>
<td>43250</td>
<td>53570</td>
<td>1178</td>
<td></td>
</tr>
<tr>
<td>Testosterone (ng/g protein)</td>
<td>3250</td>
<td>1178</td>
<td>8890</td>
<td></td>
</tr>
<tr>
<td>17OHP (ng/g protein)</td>
<td>15750</td>
<td>326±109*</td>
<td>2350</td>
<td></td>
</tr>
<tr>
<td>Aromatase activity (fmol/mg protein/h)</td>
<td>750</td>
<td>105</td>
<td>44±26*</td>
<td></td>
</tr>
<tr>
<td>+ Letrozole 10 nmol/l</td>
<td>47</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Results expressed as mean of three controls ± S.E.M.
are in contrast, since aromatase activity measured by the same tritium water-releasing method was only 0.7 pmol/mg protein/h in the present tumor, a level much lower than those reported previously, which ranged between 30 and 6000 pmol/mg protein/h (3, 4, 6, 10). Accuracy of our enzymatic study was assessed by the level of aromatase activity in granulosa cells which was in the same order of magnitude as previously reported in the rat ovary (11). Despite this low aromatase activity, we were able to compare the tumor and the non-neoplastic adjacent adrenal tissue, and found a sevenfold higher aromatase activity in the former. Estrogen concentrations were higher in the tumor compared with the control adrenal, in the same order of magnitude as for the enzyme activities. Using a quantitative RT-PCR protocol, we found a weak but not significant increase in aromatase transcripts in the tumor compared with the adjacent non-neoplastic adrenal. The contrast between an increased aromatase activity in the tumor compared with adjacent non-neoplastic adrenal and the control adrenals, and the absence of an overexpression of aromatase mRNA in the tumor suggests translational modifications such as an increased translational level or an increased half-life of the translated protein. Although we cannot exclude a non-homogenous expression of the aromatase enzyme within the tumor due to putative endogenous aromatase inhibitors, the present results suggest that hyperestrogenemia may result from the tumor production of the precursor Δ4-A which provides substantial amounts of estrogens from a huge mass of steroidogenic tumoral tissue exhibiting a moderate aromatase activity. Despite high circulating levels of Δ4-A, its concentration in the tumor was similar to normal adrenal, which suggests that Δ4-A was more rapidly metabolized in the tumor than in the normal adrenal. We cannot exclude the possibility that a part of the circulating estrogens may issue from extra-adrenal aromatization (12) which may be enhanced by inductive factors for aromatase from the tumor, such as eicosanoids or cytokines (13–15). Our findings, based on enzymatic studies and quantitative PCR techniques, also suggest that aromatase is weakly expressed in the normal human adrenal, as observed by Kimura et al. (4). These data are in accordance with previous studies based on adrenal vein catheterization (16, 17) and cell culture studies (18) which suggested production of estrogens by the human adrenal glands. As a whole, our results suggest that a moderate aromatase activity exists in normal human adrenal cortex as in the adrenal tumor investigated in this case report. A mass effect from this steroidogenic tumor which maintains a capacity for aromatization may explain the actual clinical and biochemical hyperestrogenism.

Another concern was to further characterize at the molecular level the regulation of aromatase expression in this adrenal tumor. Previous reports have highlighted that the gonadal promoter PII is mainly responsible for the expression of aromatase in feminizing adrenal tumors, with an exclusive PII pattern (5) or with the co-expression of PII and the minor proximal PI3-derived transcript normally expressed in the adipose tissue (6, 10). In the present work, we were able to confirm the presence of the major transcript PII in the tumor as in the adjacent non-neoplastic adrenal and in normal adrenals, but we also detected specific patterns for minor transcripts in both tissues: in the tumor, PI3-, PI4- and PI6-derived transcripts were detected at very low levels, while in normal adrenal,
only PI.4 was detected at higher levels than in the tumor. Although the significance of such patterns of aromatase promoter utilization remains unknown, the switching of the alternative exon I may result from the expression of regulatory factors in tumoral tissues, as previously observed in breast cancer (19).

In conclusion, a low level expression of the aromatase enzyme and of aromatase transcripts was demonstrated in this feminizing tumor as in the normal adrenal cortex, with a switch in promoter utilization characterizing non-neoplastic to neoplastic transition. This work provides a clue for an expression of aromatase in the normal human adrenal cortex, which needs to be confirmed by further studies.

References

Received 21 August 2002
Accepted 4 December 2002