Association of selenium with thyroid volume and echostructure in 35- to 60-year-old French adults

Hélène Derumeaux1, Pierre Valeix1,2, Katia Castetbon2, Michel Bensimon1, Marie-Christine Boutron-Ruault1, Josiane Arnaud3 and Serge Hercberg1,2

1UMR INSERM U557/INRA U1125/CNAM, Institut Scientifique et Technique de la Nutrition et de l'Alimentation, CNAM, Paris, France, 2Unité de Surveillance et d’Épidémiologie Nutritionnelle, InVS, Paris, France and 3Département de Biologie Intégrée, CHU Grenoble, Grenoble, France

Abstract

Objective: To investigate the relationship between selenium status, thyroid volume and gland echostructure.

Design: Cross-sectional.

Methods: In 792 men (45–60 years) and 1108 women (35–60 years) from the SU.VI.MAX study, thyroid volume and gland echostructure were determined ultrasonographically. At baseline, thyrotropin, free thyroxine, selenium, zinc, α-tocopherol, β-carotene, retinol, urinary iodine and thiocyanate concentrations were measured. Alcohol consumption, smoking, and menopausal status were assessed by a questionnaire. A stepwise linear and a logistic regression model were used, adjusting for antioxidant vitamins, trace elements status and age.

Results: In women, there was an inverse association between selenium status and thyroid volume (P = 0.003). A protective effect of selenium against goiter (odds ratio (OR) = 0.07, 95% confidence interval (CI) = 0.008–0.6) and thyroid tissue damage (OR = 0.2, 95% CI = 0.06–0.7) was observed. There was no evidence of an association between menopausal status and other antioxidant elements, thyroid volume or thyroid hypoechogenicity. Smoking, but not alcohol consumption, was associated with an increased risk of thyroid enlargement in women (OR = 3.94, 95% CI = 1.64–9.48). No association between thyroid volume, thyroid structure or selenium was found in men.

Conclusion: Our findings suggest that selenium may protect against goiter. Selenium was related to thyroid echostructure, suggesting it may also protect against autoimmune thyroid disease.

European Journal of Endocrinology 148 309–315

Introduction

The first known biological function of selenium, as a component of glutathione peroxidase (GPx), was reported in 1973 (1). The hypothesis that a relationship existed between selenium status and thyroid function was put forward only in the mid-1980s. Three diseases have been associated with severe selenium deficiency: Keshan disease, an endemic juvenile cardiomyopathy, Kashin–Beck disease, an endemic osteoarthropathy, both observed in selenium-deficient zones of China, and myxoedematous endemic cretinism prevalent in goiter-endemic countries with low selenium and GPx serum levels (2). These geographical observations in areas where selenium status is low were reinforced by the identification of the family of the iodothyronine deiodinases, named for their ability to catalyze the activation and inactivation of the thyroid hormones (3). The human thyroid produces hydrogen peroxide (H₂O₂) for oxidative thyroid hormone synthesis. In myxoedematous endemic cretinism, when selenium deficiency is combined with iodine deficiency, the oxidative challenge to the thyroid results in post-natally altered thyroid tissue (4). To protect itself from oxidative damage, the cytosolic GPx catalyzes the reduction of H₂O₂ and organic hydroperoxides. Likewise, prediagnostic low selenium concentrations were associated with higher incidence rates of thyroid cancer in a large-scale case–control Norwegian study (5).

Despite these observations, the advantage of selenium supplementation in patients with borderline selenium intakes has not been conclusively confirmed up to now (6). In combined iodine and selenium deficiency, selenium supplementation is not indicated without prior iodine supplementation (7, 8). All these studies were conducted in severely selenium- and iodine-deficient populations. To date, mild to moderate iodine deficiency is still prevalent in most European countries (9). This raises the question of the impact of iodine deficiency, in association with marginally low selenium status, on the epithelial thyroid tissue and on the
metabolic production of thyroid hormone and cell anti-
oxidant defenses.

The aim of this study was to investigate the relation-
ship between selenium status and thyroid volume (TV),
adjusting for antioxidant vitamin and biological trace
element status, in a French population sample. A sec-
ondary objective was to examine the relationship
between selenium status and thyroid structure (nodular-
ity, echogenicity pattern) adjusting for the same factors.

Subjects and methods

Subjects

This study was conducted on a subsample of subjects
derived from the SU.VI.MAX cohort study. The
SU.VI.MAX study is a randomized, double-blind,
placebo-controlled, primary-prevention trial designed
to test the efficacy of daily supplementation with antiox-
didant vitamins (vitamin C, vitamin E and β-carotene)
and minerals (selenium and zinc) in reducing several
major health problems in industrialized countries,
including cancers and cardiovascular diseases (10). In
1994, 12735 subjects, women aged 35–60, and men
aged 45–60 were recruited into the study and
followed for 8 years. The SU.VI.MAX study was
approved by the Ethical Committee for Biological Studies
among Humans (CCPPRB no. 706) of Paris-Cochin, and
the Commission Nationale de l’Informatique et des
Libertés (CNIL no. 334641). Data on baseline charac-
teristics of the participants suggest that the sample
was close to the national population in terms of
geographical density and socioeconomic status for the
selected age groups (10). The subsample of subjects in
the current study was randomly selected from the
cohort, 1 year after inclusion, after stratifying on the
basis of sex, age and area. Altogether, 3621 subjects
were examined for TV through a mobile unit especially
equipped with an ultrasonograph. Only subjects having
complete data related to age, sex, menopausal status,
smoking, alcohol consumption and hormonal and
biological status were included in the current analyses.

Further exclusion criteria were urinary iodine concen-
tration ≥ 60 μg/100 ml, urinary thiocyanate concen-
tration ≥ 5 mg/100 ml, subjects treated with thyroid
hormones, antithyroid drugs or who were receiving
lithium treatment, and subjects with a history of prior
thyroid surgery (lobectomy or thyroidectomy). There-
dependence, the height in cm (12).

TV TV was estimated by ultrasonography (Sonoline
SI-400; Siemens, Erlangen, Germany) using a high
frequency 7.5 MHz linear array transducer. The exam-
inations were performed with the patient in a supine
position, the neck hyperextended. The lobes were
approximated to ovoids and their volume, expressed
in ml, was estimated using the formula: volume of
one lobe (ml) = length (mm) × width (mm) × depth
(mm) × 0.479 (13). The total TV was obtained by
computing the volumes of both lobes. Nodules and/or cystic
areas were included in volume determination whereas
the isthmus was not taken into account in volume
calculation. This method has been proven to be very
accurate (14). All ultrasonographic examinations
were performed and interpreted by the same experi-
enced blinded radiologist. A TV ≥ 25 ml in men and
≥ 18 ml in women was defined as goiter (15). Thyroid
nodularity (coded in five categories: one, two or three
nodules, paucinodularity, multinodularity), nodule
size (≥ 10 mm in diameter on ultrasonography), and
characteristics (solid and cystic components) were
classified qualitatively. Thyroid echogenicity, due to
the gland follicular structure, was dichotomized as
normal vs diffuse low echogenicity.

Laboratory methods

At baseline, both a fasting venous blood sample and morning urine sample were
obtained from participants. Serum thyrotropin (TSH) and free thyroxine (FT4) were
measured in duplicate in the same assay on a fully automated MAGIA 8000
analyzer (Biotrol Diagnostic Company, Chenneviers-
lès-Louvres, France). Within- and between-run coeffi-
cients of variation for TSH and FT4 were less than
7.6% over a wide range of concentrations. TSH was
measured on a one-step, two-site ultra-sensitive ELISA
using two monoclonal antibodies. The detection limit
of the TSH assay employed was 0.02 mU/l, and the
reference range was 0.12–6.1 mU/l. The TSH standard
80/558 from the WHO was used to calibrate the equip-
ment for the TSH determination. Free T4 was measured
by a one-step competitive immunoassay. The reference
range used was 9–22 pmol/l.
Urinary iodine was measured for all participants in morning urine samples, and concentrations expressed as absolute concentrations (µg/100 ml) were used as an index of iodine intakes. The urinary iodine, after fully automated wet acid digestion (Technicon Auto Analyzer II, Technicon Instruments Corporation, Tarrytown, NY, USA), was measured using a highly sensitive spectrophotometric procedure based on the Sandell–Kolthoff reaction. Urinary thiocyanate concentrations, expressed as absolute concentrations (mg/100 ml), were assayed on the same urine sample by means of an automated continuous-flow technique (16). Serum selenium concentrations were determined after sample dilution by electrothermal atomic absorption spectrometry using a Perkin-Elmer 4100ZL model (Norwalk, CT, USA) fitted with longitudinal Zeeman background correction and an EDL lamp. Serum zinc concentrations were determined by flame atomic absorption spectrometry on a Perkin-Elmer 3110 instrument, Version no. 8, Cary, NC, USA. Analyses of urinary thiocyanate, iodine, and zinc were performed using the Technicon Autoanalyzer II (Chichester, West Sussex, UK). The mean (range) urinary iodine (µg/100 ml) was 14.8 ml (3.1–54.5 ml) in women and 9.8 ml (2.2–47.1 ml) in men, while 3.3% of women and 6.9% of men had a goiter. The mean (median) urinary iodine concentrations were 9.7 µg/100 ml (8.1 µg/100 ml) for the male population, and 9.8 µg/100 ml (7.9 µg/100 ml) in women. The proportion of subjects with a urinary iodine concentration < 5.0 µg/100 ml was 19.3% among men. The proportion of women with low iodine status varied from 19.3% in those aged 35–44 years to 22% in older women (P = 0.09).

Parameters estimated from the simple linear regression analysis between TV and explanatory variables are reported in Table 2 and the variables included in the initial model are shown. In univariate analyses, an inverse association existed between selenium and TV, but it was significant only for women (P = 0.0004 for women, P = 0.15 for men). In men, BMI (P < 0.0001), BSA (P < 0.0001), urinary thiocyanate concentration (P = 0.0005), smoking status (P < 0.0001) and alcohol consumption (P = 0.02) were significantly and positively associated with TV. In women, BMI (P < 0.0001), BSA (P < 0.0001) and smoking status (P = 0.02) were positively related to TV. TSH was negatively associated with TV in both men and women (r = –0.36, P < 0.0001, in men; r = –0.30, P < 0.0001, in women). Correlations between explanatory variables were positive between urinary thiocyanate and iodine concentrations (men P < 0.0001, women P < 0.0001) and negative between BMI and β-carotene level (men P < 0.0001, women P < 0.0001). Selenium was positively correlated with urinary iodine (r = 0.13, P = 0.0003, for men; r = 0.08, P = 0.006, for women), α-tocopherol (r = 0.07, P = 0.04, for men; r = 0.10, P = 0.0007, for women), retinol (r = 0.18, P < 0.0001, for men; r = 0.21, P < 0.0001, for women), and negatively correlated with urinary thiocyanate (r = –0.08, P = 0.02, for men; r = –0.06, P = 0.04, for women). The estimated negative association between selenium and TV remained significant in women (P = 0.003).

Statistical methods Data were compiled on an Alpha-VMS system using SAS statistical software (SAS Institute, Version no. 8, Cary, NC, USA). Analyses were carried out separately for men and women because of sex differences in variables such as weight, height, BSA, smoking habits, alcohol consumption and menopausal status.

The association between TV and selenium concentration was estimated by multivariate linear regression analysis. Co-linearity between explanatory variables was assessed by linear regression and estimation of Pearson’s correlation coefficient. The regression model and logistic regression model were built up by entering all variables with statistical significance of less than 20% in univariate analysis. Residuals analysis, the Kolmogorov–Smirnov test and the Durbin–Watson test were used to assess the validity of the normality and independence assumptions. The associations between goiter, ecomostructure of the thyroid tissue, nodularity and selenium status were estimated by logistic regression analyses. Hosmer and Lemeshow statistics were used to assess goodness of fit of the logistic equation. An association was defined as significant if the 95% confidence interval (95% CI) for an odds ratio (OR) did not include unity. Final models, with linear and logistic regression analyses, were selected after manual backward regression. Selection of adjustment variables was made using simple linear regression and chi-square at an α risk of 20%. The threshold for significance was set at 0.05 for multivariate final analyses.

Results Distribution of quantitative variables among men and women according to age groups is shown in Table 1. In women, aging was associated with higher levels of TSH (P < 0.05), selenium (P < 0.001), α-tocopherol (P < 0.001), β-carotene (P < 0.001) and retinol (P < 0.05). Compared with women aged 45 years and over, men of the same age had significantly higher levels of selenium (P < 0.05), zinc (P < 0.001) and retinol (P < 0.001), and significantly lower levels of β-carotene (P < 0.001). Baseline selenium concentrations ranged from 0.62 to 1.68 µmol/l in men, and from 0.61 to 1.68 µmol/l in women. Mean (interquartile range (IQ)) selenium concentrations were 1.12 µmol/l in men (IQ, 0.99–1.22 µmol/l) and 1.08 µmol/l in women (IQ, 0.95–1.18 µmol/l). The mean (range) TV was 14.8 ml (3.1–54.5 ml) in men, and 9.8 ml (2.2–47.1 ml) in women, while 3.3% of women and 6.9% of men had a goiter. The mean (median) urinary iodine concentrations were 9.7 µg/100 ml (8.1 µg/100 ml) for the male population, and 9.8 µg/100 ml (7.9 µg/100 ml) in women. The proportion of subjects with a urinary iodine concentration < 5.0 µg/100 ml was 19.3% among men. The proportion of women with low iodine status varied from 19.3% in those aged 35–44 years to 22% in older women (P = 0.09).

Parameters estimated from the simple linear regression analysis between TV and explanatory variables are reported in Table 2 and the variables included in the initial model are shown. In univariate analyses, an inverse association existed between selenium and TV, but it was significant only for women (P = 0.0004 for women, P = 0.15 for men). In men, BMI (P < 0.0001), BSA (P < 0.0001), urinary thiocyanate concentration (P = 0.0005), smoking status (P < 0.0001) and alcohol consumption (P = 0.02) were significantly and positively associated with TV. In women, BMI (P < 0.0001), BSA (P < 0.0001) and smoking status (P = 0.02) were positively related to TV. TSH was negatively associated with TV in both men and women (r = –0.36, P < 0.0001, in men; r = –0.30, P < 0.0001, in women). Correlations between explanatory variables were positive between urinary thiocyanate and iodine concentrations (men P < 0.0001, women P < 0.0001) and negative between BMI and β-carotene level (men P < 0.0001, women P < 0.0001). Selenium was positively correlated with urinary iodine (r = 0.13, P = 0.0003, for men; r = 0.08, P = 0.006, for women), α-tocopherol (r = 0.07, P = 0.04, for men; r = 0.10, P = 0.0007, for women), retinol (r = 0.18, P < 0.0001, for men; r = 0.21, P < 0.0001, for women), and negatively correlated with urinary thiocyanate (r = –0.08, P = 0.02, for men; r = –0.06, P = 0.04, for women). The estimated negative association between selenium and TV remained significant in women (P = 0.003).
after covariate adjustment for age, BSA, TSH, thiocyanate and smoking status, in the final regression model (Table 3). In women, for a 1 μmol/l selenium concentration increase, TV decreased by 0.18 ml after adjusting for age, TSH, BSA and smoking status. In men, the selenium–TV association was not statistically significant (P = 0.36), after adjusting for age, urinary thiocyanate, BSA, TSH and smoking status. The final model explained 15% of the variance in TV in women, and 21% in men.

When the presence or absence of goiter was studied, the final logistic regression model in men retained the following variables (Table 4): BSA (OR = 26.36, 95% CI = 4.26–163.1), TSH (OR = 0.36, 95% CI = 0.26–0.49) and age (OR = 0.99, 95% CI = 0.9–1.06). In women, the final model retained the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>β</th>
<th>95% CI</th>
<th>P</th>
<th>β</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>−0.003</td>
<td>−0.009, 0.002</td>
<td>0.26**</td>
<td>−0.002</td>
<td>−0.006, 0.001</td>
<td>0.19**</td>
</tr>
<tr>
<td>TSH (mU/l)</td>
<td>−0.188</td>
<td>−0.22, −0.15</td>
<td><0.0001**</td>
<td>−0.15</td>
<td>−0.18, −0.12</td>
<td><0.0001**</td>
</tr>
<tr>
<td>FT₄ (pmol/l)</td>
<td>0.027</td>
<td>0.014, 0.04</td>
<td>0.0001</td>
<td>0.024</td>
<td>0.01, 0.03</td>
<td><0.0001</td>
</tr>
<tr>
<td>Selenium (μmol/l)</td>
<td>−0.12</td>
<td>−0.27, 0.04</td>
<td>0.15**</td>
<td>−0.23</td>
<td>−0.36, −0.10</td>
<td>0.0004**</td>
</tr>
<tr>
<td>Urinary iodine (μg/100 ml)</td>
<td>7.10⁻⁴</td>
<td>−0.004, 0.005</td>
<td>0.76</td>
<td>−0.002</td>
<td>−0.006, 0.0006</td>
<td>0.11**</td>
</tr>
<tr>
<td>β-carotene (μmol/l)*</td>
<td>−0.032</td>
<td>−0.08, 0.01</td>
<td>0.17**</td>
<td>−0.027</td>
<td>−0.067, 0.01</td>
<td>0.2**</td>
</tr>
<tr>
<td>α-tocopherol (μmol/l)</td>
<td>0.001</td>
<td>−0.003, 0.005</td>
<td>0.55</td>
<td>−0.001</td>
<td>−0.005, 0.002</td>
<td>0.35</td>
</tr>
<tr>
<td>Zinc (μmol/l)</td>
<td>−0.013</td>
<td>−0.03, 0.003</td>
<td>0.11**</td>
<td>0.003</td>
<td>−0.01, 0.015</td>
<td>0.67</td>
</tr>
<tr>
<td>Retinol (μmol/l)</td>
<td>0.01</td>
<td>−0.04, 0.06</td>
<td>0.67</td>
<td>−0.035</td>
<td>−0.07, 0.005</td>
<td>0.09**</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>0.019</td>
<td>0.01, 0.03</td>
<td><0.0001**</td>
<td>0.012</td>
<td>0.006, 0.02</td>
<td><0.0001**</td>
</tr>
<tr>
<td>Alcohol consumption (g/day)</td>
<td>0.60</td>
<td>0.43, 0.77</td>
<td><0.0001**</td>
<td>0.52</td>
<td>0.37, 0.67</td>
<td><0.0001**</td>
</tr>
<tr>
<td>Urinary thiocyanate (mg/100 ml)*</td>
<td>0.10</td>
<td>0.04, 0.16</td>
<td>0.0005**</td>
<td>0.034</td>
<td>−0.008, 0.07</td>
<td>0.11**</td>
</tr>
<tr>
<td>Alcohol consumption (g/day)</td>
<td>0.002</td>
<td>2.10⁻⁴, 0.003</td>
<td>0.02**</td>
<td>0.001</td>
<td>−9.10⁻⁴, 0.004</td>
<td>0.25</td>
</tr>
<tr>
<td>Current smokers</td>
<td>0.17</td>
<td>0.08, 0.25</td>
<td><0.0001**</td>
<td>0.077</td>
<td>0.012, 0.14</td>
<td>0.02**</td>
</tr>
<tr>
<td>Former smokers</td>
<td>0.037</td>
<td>−0.02, 0.09</td>
<td>0.19**</td>
<td>0.032</td>
<td>−0.016, 0.08</td>
<td>0.19**</td>
</tr>
<tr>
<td>Menopausal status</td>
<td>−0.00</td>
<td>−0.09, 0.007</td>
<td>0.09**</td>
<td>−0.044</td>
<td>−0.05, 0.09</td>
<td>0.66</td>
</tr>
<tr>
<td>Endocervixin</td>
<td>−0.11</td>
<td>−0.16, 0.13</td>
<td>0.88</td>
<td>0.016</td>
<td>0.21, 0.34</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

* A logarithmic transformation was used to normalize the distribution.
** Explanatory variables included in the initial model.
associated with current smoking (OR = 0.6, 95% CI = 0.07–5.0). In women, selenium status was associated with a decreased hypoechogenic thyroid gland risk (OR = 0.2, 95% CI = 0.06–0.7), independently of age, TSH and BMI.

Discussion

In this large cross-sectional study, selenium was inversely related to TV, risk of goiter and hypoechogenicity in women, independently of other known risk factors, i.e. anthropometry, age, menopausal status, smoking habits, alcohol or antioxidants. In men, the odds for goiter occurrence did not reach statistical significance, but lack of power cannot be excluded. It is important to note that these associations have been shown in a population in which mild iodine deficiency is observed (9) and selenium deficiency (defined by selenium concentration ≤0.76 μmol/l (17)) is rare (1.1%). The observed mean (±s.d.) selenium concentration of 1.09±0.17 μmol/l was within the range of selenium concentrations reported in other French studies (0.50–1.36 μmol/l) (18). As selenium intake is considered to be the major determinant of the serum selenium level (19), the serum selenium concentration is commonly used to estimate selenium intake at a population level. The selenium concentration has been reported to be related to age, physiological status and lifestyle (20), but these factors were controlled in our study.

Experimental and sparse clinical data have suggested that selenium status is involved in thyroid function. The essentiality of selenium for maintaining thyroid hormone economy was later confirmed by the identification of deiodinases as selenoenzymes (21–24). In experimental studies, rats fed a combined selenium- and iodine-deficient diet had significantly increased thyroid weight compared with rats fed an iodine-deficient diet (25). Data in humans are sparse. An observational study in a selenium-deficient population showed decreased selenium levels in a small series of hyperthyroid patients compared with control

Table 3: Multiple linear regression analyses of thyroid volume* on determinants in men and women (SU.VI.MAX study, 1994–95).

<table>
<thead>
<tr>
<th>Variables</th>
<th>β</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men (final model)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>0.0008</td>
<td>0.76</td>
</tr>
<tr>
<td>Thiocyanate (mg/100 ml)*</td>
<td>0.07</td>
<td>0.01</td>
</tr>
<tr>
<td>BSA (m²)</td>
<td>0.57</td>
<td><0.0001</td>
</tr>
<tr>
<td>TSH (mU/l)*</td>
<td>−0.18</td>
<td><0.0001</td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current smokers</td>
<td>0.14</td>
<td>0.001</td>
</tr>
<tr>
<td>Former smokers</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>Women (final model)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>−0.001</td>
<td>0.38</td>
</tr>
<tr>
<td>TSH (mU/l)*</td>
<td>−0.15</td>
<td><0.0001</td>
</tr>
<tr>
<td>BSA (m²)</td>
<td>0.54</td>
<td><0.0001</td>
</tr>
<tr>
<td>Selenium (μmol/l)</td>
<td>−0.18</td>
<td>0.003</td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current smokers</td>
<td>0.09</td>
<td>0.006</td>
</tr>
<tr>
<td>Former smokers</td>
<td>0.02</td>
<td>0.32</td>
</tr>
</tbody>
</table>

* A logarithmic transformation was used to normalize the distribution.

Table 4: Logistic regression analyses for risk of goiter in men and women (SU.VI.MAX study, 1994–95).

<table>
<thead>
<tr>
<th>Variables</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men (final model)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>0.99</td>
<td>0.9, 1.06</td>
</tr>
<tr>
<td>BSA (m²)</td>
<td>26.36</td>
<td>4.26, 163.1</td>
</tr>
<tr>
<td>TSH (mU/l)*</td>
<td>0.36</td>
<td>0.26, 0.49</td>
</tr>
<tr>
<td>Women (final model)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>1.03</td>
<td>0.97, 1.09</td>
</tr>
<tr>
<td>TSH (mU/l)*</td>
<td>0.39</td>
<td>0.28, 0.55</td>
</tr>
<tr>
<td>Selenium (μmol/l)</td>
<td>0.07</td>
<td>0.008, 0.6</td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current vs non-smokers</td>
<td>3.94</td>
<td>1.64, 9.48</td>
</tr>
<tr>
<td>Former vs non-smokers</td>
<td>1.27</td>
<td>0.55, 2.94</td>
</tr>
<tr>
<td>BSA (m²)</td>
<td>20.75</td>
<td>2.53, 170.4</td>
</tr>
</tbody>
</table>

* A logarithmic transformation was used to normalize the distribution.
In Northern Zaire, a selenium-deficient area, 2 months of selenium supplementation without prior iodine supplementation resulted in a marked fall in total T4 levels among schoolchildren, and aggravated hypothyroidism in myxoedematous cretins (7). Our study is the first to underline the involvement of selenium status in the weight of the thyroid gland in a population without selenium deficiency.

An additional original finding of this study is the inverse association between selenium and thyroid hypoechogenicity. Low thyroid echogenicity accompanied lymphocytic infiltration in thyroiditis, and was highly correlated with thyroid autoantibodies in patients with Graves’ disease (27). In patients with thyroid hypoechogenicity, lymphocytic infiltration was found in excised thyroid tissue (28). In rats, combined selenium and iodine deficiencies increased necrosis, induced fibrosis and decreased compensatory epithelial proliferation (4). Our findings might therefore be explained by an excess of free radicals, generated by long-term mild iodine deficiency, and unopposed because of sub-optimal selenium status. In a recent study conducted by Gürtner et al. (29) in mildly selenium-deficient women with overt autoimmune thyroiditis and elevated thyroid peroxidase antibodies (TPOAb), selenium supplementation significantly decreased TPOAb concentrations and improved thyroid ultrasound echogenicity. These recent findings should prompt further experimental and clinical studies in order to understand better the relationship between selenium and thyroid-specific autoimmune diseases.

Previous studies had also evaluated the effect of alcohol and smoking on thyroid function. In a recently published study, mean TV was significantly higher in men and women who consumed high quantities of alcohol than in abstainers (30). In our study, an effect of alcohol consumption was confirmed, although it was not statistically significant. Therefore alcohol should be considered as a putative risk factor for high TV. The relationship between smoking and thyroid diseases was recently reviewed (31); current smokers are likely to be at higher risk of goiter than both former and non-smokers, with the latter groups having a risk comparable to each other. In our study, current smoking was also associated with increased TV in men and women, while it was related to goiter risk only in women. Past smoking was related to TV only in men. These observations stress the need for an accurate assessment of smoking in epidemiological studies which evaluate thyroid function and volume, and for further investigation, especially concerning the time lag between smoking cessation and assessment of thyroid function.

In our study, all biological indicators were assessed at inclusion, prior to any antioxidant supplementation, but thyroid ultrasonography was performed 1 year later. The general design of the SU.VI.MAX study did not allow non-blind randomization before the end of the study. However, an effect upon our results through unbalanced groups is unlikely. In addition, a 1 year supplementation probably had little effect on thyroid morphology.

In addition to iodine status, selenium status is likely to be a key factor in the maintenance of normal thyroid morphology and protection of the gland. Since thyroid diseases are very common in Western countries, both epidemiological and experimental studies are needed to evaluate further the effect of the nutritional environment on thyroid diseases.

Acknowledgements

This study was supported in part by Merck Lipha Santé, a subsidiary of the Merck group, F-69379 Lyon, France. The authors wish to thank E Ferguson (University of Otago, New Zealand) and L Mennen (USEN, InVS), for valuable critical reading of the manuscript. H D was the recipient of a Postgraduate Research Scholarship from the Fondation pour la Recherche Médicale.
References

Received 6 September 2002
Accepted 16 December 2002