CLINICAL STUDY

Quantitative assessment of CYP11B1 and CYP11B2 expression in aldosterone-producing adenomas

F Fallo, V Pezzi1, L Barzon2, P Mulatero3, F Veglio3, N Sonino and J M Mathis4

Department of Medical and Surgical Sciences, Division of Endocrinology, University of Padua, Via Ospedale 105, 35128 Padua, Italy, 1Department of Pharmaco-Biology, University of Calabria, Arcavacata di Rende, Italy, 2Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, Padua, Italy, 3Department of Medicine and Experimental Oncology, University of Turin, Turin, Italy and 4Department of Cellular Biology and Anatomy, LSU Health Sciences Center, Shreveport, Louisiana, USA

(Correspondence should be addressed to F Fallo; Email: francesco.fallo@unipd.it)

Abstract

Background: The presence and pathophysiological role of CYP11B1 (11β-hydroxylase) gene in the zona glomerulosa of human adrenal cortex is still controversial.

Methods: In order to specifically quantify CYP11B1, CYP11B2 (aldosterone synthase) and CYP17 (17α-hydroxylase) mRNA levels, we developed a real-time RT-PCR assay and examined the expression in a series of adrenal tissues, including six normal adrenals from patients adrenalectomized for renal cancer and twelve aldosterone-producing adenomas (APA) from patients with primary aldosteronism.

Results: CYP11B1 mRNA levels were clearly detected in normal adrenals, which comprised both zona glomerulosa and fasciculata/reticularis cells, but were also measured at a lower range (P > 0.05) in APA. The levels of CYP11B2 mRNA were lower (P < 0.005) in normal adrenals than in APA. In patients with APA, CYP11B2 and CYP11B1 mRNA levels were not correlated either with basal aldosterone or with the change from basal aldosterone in response to posture or to dexamethasone. No correlation between CYP11B1 mRNA or CYP11B2 mRNA and the percentage of zona fasciculata-like cells was observed in APA.

Conclusions: Real-time RT-PCR can be reliably used to quantify CYP11B1 and CYP11B2 mRNA levels in adrenal tissues. Expression of CYP11B1 in hyperfunctioning zona glomerulosa suggests an additional formation of corticosterone via 11β-hydroxylase, providing further substrate for aldosterone biosynthesis. CYP11B1 and CYP11B2 mRNA levels in APA are not related to the in vivo secretory activity of glomerulosa cells, where post-transcriptional factors might ultimately regulate aldosterone production.

European Journal of Endocrinology 147 795–802

Introduction

In the human adrenal cortex, cortisol and aldosterone are synthesized by the isozymes CYP11B1 (11β-hydroxylase) and CYP11B2 (aldosterone synthase) respectively. CYP11B1 catalyzes the 11β-hydroxylation of 11-deoxycortisol to cortisol and of 11-deoxycorticosterone (DOC) to corticosterone and is regulated by adrenocorticotropic hormone (ACTH) (1, 2). CYP11B2 catalyzes the 11β-hydroxylation of DOC to corticosterone, the 18-hydroxylation of corticosterone to 18-hydroxycorticosterone (18-OH) and the 18-oxidation of 18-OH to aldosterone, predominantly under the control of angiotensin II and K+ (1–3). The two enzymes are respectively encoded by the CYP11B1 and CYP11B2 genes, which are 95% identical in coding sequence (4) and are located in close proximity (5). It is well accepted that the CYP11B2 gene is exclusively expressed in the zona glomerulosa and that the CYP11B1 transcript is localized in the zona fasciculata/reticularis of human adrenal cortex (6). The presence and pathophysiological role of the CYP11B1 gene in the zona glomerulosa are still controversial. Recent studies with conventional reverse transcription-polymerase chain reaction (RT-PCR) (3, 7) and in situ hybridization (8, 9) have shown the presence of CYP11B1 mRNA in human aldosterone-producing adenomas (APA), which are commonly believed to originate from glomerulosa cells, while others have not (10). To further investigate this issue, we quantified by real-time RT-PCR the CYP11B1 and CYP11B2 mRNA levels in a series of adrenal tissues. In comparison with conventional RT-PCR, this method allows an absolute quantitation, reduces many sources of error, and is much less labour and reagent
intensive (11). In addition, levels of CYP11B1 and CYP11B2 transcripts in APA were correlated with both the cell histotype of tumors and aldosterone response to dynamic tests in vivo.

Materials and methods

Patients

Twelve patients (eight women and four men, aged 31 - 64 years) with APA were studied at our centres (Table 1). All were hypertensive and had hypokalemia of varying degree, compared with the normal patients. Plasma renin activity (PRA) was suppressed and unresponsive to stimuli such as upright posture and captopril administration, and the plasma aldosterone (pmol/l)/PRA ratio (ng/ml/h) was greater than 1385 (i.e. 50 expressing aldosterone as ng/dl). The differential diagnosis between APA and hyperaldosteronism due to bilateral idiopathic adrenal hyperplasia was made by computerized axial tomography, adrenal scintiscan with 75Se-methyl-nor-cholesterol after dexamethasone suppression, and/or aldosterone/cortisol ratio measurements in adrenal venous blood (12). Glucocorticoid-remediable aldosteronism associated with adrenal tumors was excluded by either negative long PCR or Southern blotting for the chimeric gene in leukocyte DNA, as previously described (13). The subjects were on a diet containing 120 -150 mmol sodium and 60 mmol potassium daily for 2 weeks, and all medications, including spironolactone, were withdrawn for at least 2 weeks before the diagnostic tests. None of the patients had any other disease. Specifically, the patients with APA underwent: (a) postural test for PRA and plasma aldosterone defined by the hormone response, after overnight recumbency, to 2 h upright position from 0800 to 1000 h; and (b) supine plasma aldosterone change at 0800 h after short-term dexamethasone administration trial (0.5 mg 6-hourly for 4 days), with plasma cortisol suppression, i.e. < 138 mmol/l, as index of the dexamethasone effect. All patients underwent unilateral adrenalectomy, and the diagnosis of adenoma was surgically confirmed. After surgery, all APA patients showed normalization of serum potassium and hormone levels, with restoration of a normal aldosterone response to upright posture. Blood pressure normalization or satisfactory control by low-dose conventional anti-hypertensive drugs paralleled restoration of electrolyte and hormonal pattern. Six adrenal glands were obtained from patients undergoing unilateral expanded nephrectomy for kidney cancer and used as controls (Table 1); none of these patients (four men and two women, aged 47 - 66 years) had clinical symptoms of adrenal dysfunction. All patients gave informed consent before participating in this study, which was approved by the local Ethics Committees.

Tissues

After removal of adrenal tissue from patients who underwent unilateral adrenalectomy for APA or nephrectomy for renal cancer, a portion was frozen 796 F Fallo and others EUROPEAN JOURNAL OF ENDOCRINOLOGY (2002) 147 www.eje.org

Table 1 Details of patients with APA and normal adrenals.

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Age/sex</th>
<th>BP (mmHg)</th>
<th>K (mmol/l)</th>
<th>Sup/Upr PRA (ng/ml per h)</th>
<th>Sup/Upr ALDO (pmol/l)</th>
<th>Post-dex ALDO (pmol/l)</th>
<th>Tumor size (cm)</th>
<th>ZF-like cells (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>43/M</td>
<td>205/110</td>
<td>2.8</td>
<td>0.1/0.1</td>
<td>1120/1310</td>
<td>980</td>
<td>1.6</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>57/F</td>
<td>190/110</td>
<td>3.0</td>
<td>0.2/0.1</td>
<td>1240/1080</td>
<td>1280</td>
<td>1.1</td>
<td>95</td>
</tr>
<tr>
<td>3</td>
<td>31/M</td>
<td>200/100</td>
<td>3.1</td>
<td>0.1/0.1</td>
<td>1688/2120</td>
<td>1350</td>
<td>2.4</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>64/F</td>
<td>210/100</td>
<td>2.7</td>
<td>0.1/0.1</td>
<td>920/1110</td>
<td>910</td>
<td>1</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>44/M</td>
<td>190/100</td>
<td>3.3</td>
<td>0.2/0.2</td>
<td>1775/2040</td>
<td>1460</td>
<td>2.2</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>53/F</td>
<td>200/120</td>
<td>2.5</td>
<td>0.1/0.2</td>
<td>1390/1270</td>
<td>1810</td>
<td>1.5</td>
<td>95</td>
</tr>
<tr>
<td>7</td>
<td>51/F</td>
<td>170/100</td>
<td>3.0</td>
<td>0.1/0.1</td>
<td>620/1250</td>
<td>410</td>
<td>1.5</td>
<td>70</td>
</tr>
<tr>
<td>8</td>
<td>42/F</td>
<td>205/115</td>
<td>3.4</td>
<td>0.2/0.1</td>
<td>760/1190</td>
<td>610</td>
<td>1.8</td>
<td>85</td>
</tr>
<tr>
<td>9</td>
<td>39/M</td>
<td>190/110</td>
<td>3.0</td>
<td>0.1/0.1</td>
<td>1800/1560</td>
<td>1740</td>
<td>2.4</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td>58/F</td>
<td>210/120</td>
<td>2.6</td>
<td>0.1/0.3</td>
<td>2240/2010</td>
<td>2560</td>
<td>1.2</td>
<td>70</td>
</tr>
<tr>
<td>11</td>
<td>41/F</td>
<td>200/100</td>
<td>2.8</td>
<td>0.2/0.2</td>
<td>720/1270</td>
<td>940</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>37/F</td>
<td>190/110</td>
<td>3.2</td>
<td>0.1/0.1</td>
<td>1380/1060</td>
<td>730</td>
<td>1.7</td>
<td>80</td>
</tr>
<tr>
<td>Means ± S.E.M.</td>
<td></td>
<td>48 ± 3</td>
<td>197 ± 3/108 ± 2</td>
<td>2.9 ± 0.1</td>
<td>0.1 ± 0.001/0.1 ± 0.02</td>
<td>1304 ± 146/1439 ± 114</td>
<td>1230 ± 158</td>
<td>1.7 ± 0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Normal</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>61/M</td>
<td>140/90</td>
<td>4.4</td>
<td>0.8/2.8</td>
<td>128/610</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>66/M</td>
<td>160/100</td>
<td>4.8</td>
<td>2.1/4.9</td>
<td>180/580</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>54/M</td>
<td>135/80</td>
<td>4.0</td>
<td>3.0/5.2</td>
<td>244/760</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>58/M</td>
<td>150/90</td>
<td>4.4</td>
<td>1.6/3.8</td>
<td>240/690</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>63/F</td>
<td>130/90</td>
<td>4.1</td>
<td>1.4/3.6</td>
<td>310/520</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>47/F</td>
<td>140/80</td>
<td>4.5</td>
<td>1.0/2.2</td>
<td>110/410</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Means ± S.E.M.</td>
<td></td>
<td>58 ± 3</td>
<td>143 ± 3/86 ± 3</td>
<td>4.4 ± 0.1</td>
<td>1.7 ± 0.8/3.7 ± 0.5</td>
<td>202 ± 31/595 ± 51</td>
<td>202 ± 31</td>
<td>595 ± 51</td>
</tr>
</tbody>
</table>

BP, blood-pressure; Sup/Upr PRA, supine/upright plasma renin activity; Sup/Upr ALDO, supine/upright plasma aldosterone; Post-dex ALDO, aldosterone levels after dexamethasone; ZF, zona fasciculata.
immediately in liquid nitrogen and stored at \(-80^\circ\text{C}\) until processing. The adrenal cortex was separated visually from adrenal medulla, while it was not possible to obtain an adequate separation of the outer zone, i.e. the glomerulosa part, from the remaining tissue of normal adrenal specimen. The central portion of each APA was studied. The adenomas weighed between 2.8 and 15.7 g.

Hormone assays

Plasma aldosterone and PRA were determined by radio-immunoassay (RIA), with kits purchased from Sorin Biomedical Diagnostics (Vercelli, Italy). The intra- and interassay coefficients of variation (CV) for aldosterone were 7.9% and 9.6% respectively; the normal range is 55–330 pmol/l supine and 140–830 pmol/l upright. The intra- and interassay CV values for PRA were 5.4% and 9.1% respectively; the normal range is 0.4–3.0 ng/ml per h supine and 1.5–6 ng/ml per h upright. Plasma cortisol was measured using an RIA kit from Diagnostic Products (Los Angeles, CA, USA). The intra- and interassay CV values were 4.1 and 5.0% respectively; the normal range is 138–550 nmol/l.

Histology

Adrenal tissues were fixed in neutral formalin and paraffin-embedded: 3–5 µm tissue sections were stained with hematoxylin–eosin, periodic acid–Schiff (PAS) and PAS–diastase reactions. Histological examination revealed the absence of tumor in the adrenal tissue specimen collected from nephrectomized subjects. The adrenal cells from confirmed APA were classified microscopically into different types, following the morphological criteria of Neville & O’Hare (14). Two main populations were considered. A first population included zona fasciculata-like cells, which are clear cells having large vacuolated lipid-laden cytoplasm and central round nuclei very similar to the normal counterpart cells of the fasciculata zone. A second population comprised non-zona fasciculata-like cells, including: (a) compact eosinophilic cells similar to those normally seen in the reticularis zone; (b) cells showing variable contents of clear lipid micro-vacuoles and granular eosinophilic cytoplasm, referred to as intermediate-type (hybrid) cells because of sharing some features of glomerulosa and some of fasciculata cells; and (c) lipid-poor glomerulosa-type cells. Cells were examined by the same observer from at least ten high-power fields (×250) randomly; and the percentage of zona fasciculata-like cells vs non-zona fasciculata-like cells were calculated.

Molecular analysis

Total RNA was isolated from tumor portions of APA specimens, and from whole adrenal glands of nephrectomized patients using TRIZOL reagent according to the protocol provided by the manufacturer (Molecular Research Center, Cincinnati, OH, USA). Single-strand cDNA was prepared from 250 ng cell or tissue total RNA using a TaqMan reverse transcription kit (Perkin-Elmer Applied Biosystems, Inc., Foster City, CA, USA). The reverse transcription reaction was initiated using random hexamer primers and the reaction were carried out at 48 °C for 30 min, followed by heat inactivation at 95 °C for 5 min.

Human CYP11B1, CYP11B2 and CYP17 cDNA templates

The human CYP11B1 cDNA (GenBank ID NM 000498) and CYP11B2 cDNA (GenBank ID NM 000498), sequences from +1208 to +1522, and the human CYP17 cDNA (GenBank ID NM 000102) sequence from +341 to +403 were isolated by PCR and subcloned into the pCR2.1 vector (Invitrogen, Carlsbad, CA, USA). The identity of each clone was confirmed by sequence analysis. Serial dilution of these plasmids marked as pCYP11B1, pCYP11B2 and pCYP17 were used as template to generate standard curves for absolute quantification of the expression of CYP11B1, CYP11B2 and CYP11B17 genes respectively, by real-time RT-PCR.

Primers, probes, and real-time PCR

The primers and probes for the CYP11B1, CYP11B2, and CYP17 genes were determined with the assistance of the computer program Primer Express (Perkin Elmer Applied Biosystems), which selected the theoretically optimized sequences for this system. Primer pairs were selected so that they were located on different exons to prevent amplification from any contaminating genomic DNA. The same forward amplification primer 5'-GGCAGAGGCAGAGATGCTG-3' for both the CYP11B1 and CYP11B2 genes and different reverse primers 5'-TCTTGCGTGTTGTCCTGCCACCGAGA-3' for CYP11B1 and 5'-CTTGGAGTTGCGCCCGCCGCAACTG-3' for CYP11B2 were respectively used. The sequence of probes for CYP11B1 and CYP11B2 were respectively 5'-TGCGCGCACTGTCGTAAGACCT-3' and 5'-CTGCACACGCTGCTGAAGCACGT-3' respectively. The primers and probes for CYP17 analysis were: forward 5'-GCTGAGTTGCTCCACCTG-3' and 5'-CTTGAGTTGCTTCCACCTG-3' and 0.1 mol/l probe. Negative controls contained water instead of first-strand cDNA. The PCR conditions were established as follows: after incubation at
50°C for 2 min and denaturing at 95°C for 10 min. 45 cycles were performed at 95°C for 15 s, at 60°C for 60 s. To quantify transcripts of the genes precisely, we monitored 18S ribosomal RNA (18S) levels as the quantitative control and each sample was normalized on the basis of its 18S content. The 18S quantification was performed using a TaqMan Ribosomal RNA Control Reagent kit (Perkin Elmer Applied Biosystems) and the method of PCR was followed using the manufacturer's protocol. Briefly, 50 μl reaction mixture containing 5 μl cDNA template, 25 μl TaqMan Universal PCR Master Mix, 50 nmol/l specific primer and 200 nmol/l probe (VIC™) was amplified by the program as follows: after incubation at 50°C for 2 min and denaturing at 95°C for 10 min, 40 cycles were performed at 95°C for 15 s and at 60°C for 1 min. The standard curves for CYP11B1 and CYP11B2 are shown in Fig. 1 and were generated using serially diluted solutions (21.75–0.002 175 attomoles) of plasmid clones containing either the CYP11B1 cDNA (Fig. 1A) or the CYP11B2 cDNA (Fig. 1C) as templates. The standard curve for CYP17 was generated using serially diluted solutions (19.38–0.001 938 attomoles) of pCYP17. The standard curve for 18S was generated using serially diluted solutions of standard cDNA derived from human mRNA included in the TaqMan Ribosomal RNA Control Reagent kit (Perkin Elmer Applied Biosystems). ABI Prism 7700 measured the ratio (defined as the normalized reporter signal Rn) between the fluorescence signal of reporter dye and the fluorescence of the passive reference dye of each sample in every cycle and calculated the ΔRn defined as Rn minus the baseline signals established in the first 15 cycles. The more template present at the beginning of the reaction, the fewer number of cycles it takes to reach a point at which the fluorescent signal is first recorded as statistically significant above background. This point is defined as Ct, and occurs during the exponential phase of amplification. The amount of target gene expression was calculated from the standard curves

![Figure 1](https://www.eje.org)
for CYP11B1 (Fig. 1B) or the CYP11B2 (Fig. 1D). The amount of target gene expression was calculated from the standard curve plotting log starting copy number versus Ct. Quantitative normalization of cDNA in each sample was performed using expression of the 18S as an internal control. CYP11B1, CYP11B2 and CYP17 mRNA levels are shown as attomoles/μg total RNA. Three different real-time PCR assays were conducted in duplicate for each sample and a mean value was used for calculation of the mRNA levels. The variability of Ct values between duplicates within the same run was no more than 3% while the CV values between different runs were no more than 5%. Tests of sensitivity revealed that our method can reliably detect activity revealed that our method can reliably detect.

Results

The mRNA levels of CYP11B1, CYP11B2 and CYP17 in APA tissues were clearly detected in normal adrenals, which comprised both zona glomerulosa and fasciculata/reticularis cells, but were also detected at a lower range in APA tissues (37.82 ± 4.17 vs. 4.04 ± 0.59 attomoles/μg total RNA, P < 0.05). The levels of CYP11B2 mRNA were lower in normal adrenals than in APA (0.04 ± 0.014 vs. 0.34 ± 0.056 attomoles/μg total RNA, P < 0.005). No correlation between CYP11B2 mRNA level and APA size was found (Z, i.e., correlation coefficient = −0.15, P = 0.88). In patients with APA, the levels of CYP11B1 mRNA (Z = −0.55, P = 0.57 supine; Z = 1.07, P = 0.28 upright) and CYP11B2 mRNA (Z = −0.16, P = 0.87 supine, Z = −0.89, P = 0.37 upright) were not correlated with basal aldosterone. In addition, there was no correlation between CYP11B1 mRNA (Z = 1.70, P = 0.09; Z = −1.04, P = 0.29) as well as CYP11B2 mRNA (Z = 1.58, P = 1.1; Z = 0.69, P = 0.48) and the change from basal aldosterone to dexamethasone administration (mean change 127 ± 99 pmol/l) respectively.

Statistics

Data are expressed as means ± S.E.M. Intergroup differences in means were tested using unpaired Student’s t-test, and the least square method was used for correlations. When there was evidence of abnormal value distribution, non-parametric tests were used for testing differences in means (Wilcoxon signed rank) and for correlations (Spearman rank correlation). A P < 0.05 was considered significant.

Table 2

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>CYP11B1 mRNA (attomoles/μg total RNA)</th>
<th>CYP11B2 mRNA (attomoles/μg total RNA)</th>
<th>CYP17 mRNA (attomoles/μg total RNA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4.86</td>
<td>0.118</td>
<td>673.91</td>
</tr>
<tr>
<td>2</td>
<td>5.02</td>
<td>0.710</td>
<td>246.10</td>
</tr>
<tr>
<td>3</td>
<td>6.49</td>
<td>0.424</td>
<td>174.42</td>
</tr>
<tr>
<td>4</td>
<td>3.69</td>
<td>0.301</td>
<td>437.13</td>
</tr>
<tr>
<td>5</td>
<td>6.67</td>
<td>0.176</td>
<td>141.47</td>
</tr>
<tr>
<td>6</td>
<td>2.04</td>
<td>0.226</td>
<td>388.42</td>
</tr>
<tr>
<td>7</td>
<td>6.41</td>
<td>0.117</td>
<td>720.64</td>
</tr>
<tr>
<td>8</td>
<td>1.51</td>
<td>0.650</td>
<td>380.84</td>
</tr>
<tr>
<td>9</td>
<td>1.27</td>
<td>0.199</td>
<td>480.12</td>
</tr>
<tr>
<td>10</td>
<td>2.66</td>
<td>0.391</td>
<td>610.80</td>
</tr>
<tr>
<td>11</td>
<td>5.71</td>
<td>0.456</td>
<td>188.16</td>
</tr>
<tr>
<td>12</td>
<td>2.24</td>
<td>0.355</td>
<td>144.84</td>
</tr>
<tr>
<td>Means ± S.E.M.</td>
<td>4.04 ± 0.59</td>
<td>0.344 ± 0.056</td>
<td>373.90 ± 60.19</td>
</tr>
<tr>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>25.38</td>
<td>0.084</td>
<td>225.77</td>
</tr>
<tr>
<td>2</td>
<td>44.35</td>
<td>0.010</td>
<td>814.49</td>
</tr>
<tr>
<td>3</td>
<td>46.95</td>
<td>0.013</td>
<td>319.83</td>
</tr>
<tr>
<td>4</td>
<td>39.99</td>
<td>0.045</td>
<td>708.21</td>
</tr>
<tr>
<td>5</td>
<td>45.70</td>
<td>0.019</td>
<td>222.92</td>
</tr>
<tr>
<td>6</td>
<td>24.59</td>
<td>0.079</td>
<td>664.80</td>
</tr>
<tr>
<td>Means ± S.E.M.</td>
<td>37.82 ± 4.17</td>
<td>0.044 ± 0.014</td>
<td>492.67 ± 108.56</td>
</tr>
</tbody>
</table>
P = 0.12) or CYP11B2 mRNA (Z = 0.23, P = 0.81) and the percentage of zona fasciculata-like cells was observed in APA.

CYP17 mRNA levels were similar in normal adrenals and in APA (492.67±108.56 vs 373.90±60.19 attomoles/µg total RNA, P = not significant).

Discussion

Functional zonation of the human adrenal cortex, i.e. the ability of each zone to differentially produce aldosterone and cortisol, relies on the zone-specific expression of CYP11B1 and CYP11B2 isozymes. Zonal expression of the isozymes results from transcriptional regulation of their coding genes (6, 15). The high similarity of the two isozymes has hampered the production of specific antibodies for their immunohistochemical detection in adrenal tissues (16), and measurement of enzyme activities in different types of adrenal cells (17–19) does not distinguish between 11β-hydroxylation due to CYP11B1 or CYP11B2 genes. In our study, we have shown a large amount of CYP11B1 transcript in the whole normal adrenal, which included both zona glomerulosa and the much larger zona fasciculata/reticularis.

In agreement with previous reports using conventional RT-PCR (3) and in situ hybridization (8, 9), our technique has shown the presence of CYP11B1 transcript in the zona glomerulosa-derived cells of APA, and in addition allowed its absolute quantification.

The competitive RT-PCR analysis employed in a previous study (7) could not provide accurate measurements of CYP11B1 mRNA; e.g. stable differences in amplification efficiency between target and competitor would remain undetected (20). Furthermore, in our method, the Ct value used for quantitation is measured during a period when the PCR amplification is still in the log phase of amplicon accumulation. This circumvents many of the problems associated with quantitation in the plateau stage of a PCR amplification. Expression of CYP11B1 in hyperfunctioning zona glomerulosa suggests a formation of corticosterone via 11β-hydroxylase, additional to that driven by aldosterone synthase, which may be used as substrate for the increased aldosterone biosynthesis. *In vitro* studies on CYP11B2 transfected Chinese hamster COS-7 cells (21) and rat Leydig cells (22) show a better efficiency to metabolize DOC rather than corticosterone as exogenous substrate. However, in human APA, where high amounts of the corticosterone derivative 18-OHB are also secreted (23), the combination of abundant substrates available (i.e. DOC, corticosterone, 18-OHB) would reasonably contribute to the overproduction of aldosterone. The demonstration in APA of CYP17, encoding the 17α-hydroxylase enzyme required for cortisol but not for aldosterone biosynthesis, further supports the concept that cortisol can be produced by aldosteronoma cells, as shown in previous studies (9, 24–27).

At variance with CYP11B1, CYP11B2 mRNA levels were very low in normal adrenals. This does not appear
to be due to sample damage during processing, since
CYP11B1 and CYP17 mRNA were measurable in the
same specimens, but probably reflects anatomical zone
differences. As we measured CYP11B2 expression in
the mixed extract of zona glomerulosa and fasciculata/
reticularis, we cannot discuss its presence outside the
zona glomerulosa. However, studies reporting lack of in
vitro release of aldosterone from human zona fasciculata
cells (9), as well as barely distinguishable expression of
CYP11B2 by in situ hybridization in the same zone (8),
do not support this possibility. As expected (3, 7, 28),
the levels of CYP11B2 mRNA were consistently higher
in APA. The aldosterone-producing tumors are common-
ly believed to originate from zona glomerulosa; how-
ever, most adenoma cells have the histological
appearance of fasciculata cells and only a minority are
small and compact, similar to normal glomerulosa
cells. Several studies have shown distinct biochemical
characteristics of patients with primary aldosteronism
due to APA, based on different aldosterone responses to
upright posture (7, 29–31) and dexamethasone admin-
istration (12, 13, 32–34). Responsiveness to endoge-
 nous angiotensin II and ACTH inhibition may reflect a
different prevalence of zona fasciculata-like cells within
the tumor (30, 35). No relationship was found in our
patients with APA between CYP11B1 and CYP11B2
transcript levels and aldosterone secretion, either basal
or in response to dynamic testing. In this regard, lack
of data on related protein concentrations in our study
did not allow a thorough evaluation. Although a limi-
tation could also be the small number of tumors exam-
ined, post-transcriptional factors might ultimately
regulate aldosterone production, determining the vari-
ous functional features of APA. The lack of correlation
between the percentage of fasciculata-like cells and the
mRNA levels of either CYP11B1 or CYP11B2 seems to
exclude the possibility that expression of these genes
in the tumors defines cell phenotype in APA.

In conclusion, real-time RT-PCR can be reliably used
to quantify CYP11B1 and CYP11B2 mRNA levels in
adrenal tissues. Expression of CYP11B1 in APA
suggests an additional formation of corticosterone via
11β-hydroxylase. The mRNA levels of CYP11B1 and
CYP11B2 in APA are not related to the in vitro secretory
activity of glomerulosa cells, where post-transcriptional
factors might ultimately regulate aldosterone production.

References

1. White PC, Curnow KM & Pascoe L. Disorders of steroid 11β-
2. Kawamoto T, Mitsuuchi Y, Toda K, Yokoyama Y, Miyahara K,
Miura S et al. Role of steroid 11β-hydroxylase and steroid 18-
hydroxylase in the biosynthesis of glucocorticoids and mineralo-
3. Curnow KM, Tusie-Luna MT, Pascoe L, Natarajan R, Gu JL,
Nadler JL et al. The product of CYP11B2 gene is required for
aldosterone biosynthesis in the human adrenal cortex. Molecular
Endocrinology 1991 5 1511–1522.
genes encoding human steroid 11beta-hydroxylase (P-450(11)B).
5. Taymans SE, Pack S, Pak E, Torpy DJ, Zhuang Z & Stratakis CA.
Human CYP11B2 (aldosterone synthase) maps to chromosome
8q24.3. Journal of Clinical Endocrinology and Metabolism 1998
83 1033–1036.
6. Rainey WE. Adrenal zonation: clues from 11β-hydroxylase and
aldoosterone synthase. Molecular and Cellular Endocrinology 1999
151 151–160.
7. Wu KD, Chen YM, Chu JS, Hung KY, Hsieh TS & Hsieh BS. Zona
fasciculata-like cells determine the response of plasma aldosterone
to metoclopramide and aldosterone synthase messenger ribonu-
cleic acid level in aldosterone-producing adenoma. Journal of
Clinical and Molecular Endocrinology 1995 80 783–789.
8. Pascoe L, Jeunemaitre X, Lebrethon MC, Curnow KM, Gomez-
Sanchez CE, Ganc JM et al. Glucocorticoid-suppressible hyperal-
dosteronism and adrenal tumors occurring in a single French
L et al. In vitro release of aldosterone and cortisol in human adre-
nal adenomas correlates to mRNA expression of steroidogenetic
enzymes for genes CYP11B1 and CYP17. World Journal of Surgery
Zone-specific localization of cytochrome P45011B1 in human
adrenal tissue by PCR-derived riboprobes. Histochemistry and
11. Bustin SA. Absolute quantification of mRNA using real-time
reverse transcription polymerase chain reaction assays. Journal
Mutations in CYP11B1 gene converting 11β-hydroxylase into an
aldosterone-producing enzyme are not present in aldosterone-
producing adenomas. Journal of Clinical Endocrinology and Metab-
olism 1999 84 4228–4321.
Diagnosis of glucocorticoid-remediable aldosteronism in primary
aldosteronism: aldosterone response to dexamethasone and long
polymerase chain reaction for chimeric gene. Journal of Clinical
Endocrinology and Metabolism 1998 81 2571–2575.
14. Neville AM & O’Hare MJ. Histopathology of the human adrenal
15. Denner K, Rainey WE, Perai V, Bird JM, Bernhardt R & Mathis JM.
Differential regulation of 11β-hydroxylase and aldosterone
synthase in human adrenocortical H295R cells. Molecular and
Cellular Endocrinology 1996 121 87–91.
16. Sasano H, Okamoto M & Sanano N. Immunohistochemical study
of human adrenal cortex with mineralo- and glucocorticoid
17. Takasugi H, Miyamori I, Nogai K, Takeda R, Mochinuki H &
Katagiri M. Mitochondrial P-450 activities in aldosteronoma
38 533–535.
Sakagami Y, Kishimoto K & Mochinuki H. Human aldosterone
synthase gene mapping to chromosome 8q24.3. Human Mol.
cance of steroidogenic enzymes in the pathogenesis of hyperfunc-
tioning and non-hyperfunctioning adrenal tumors. Steroids 1995
60 42–47.
20. Raeymaekers L. Quantitative PCR: theoretical considerations
with practical implications. Biochemical and Biophysical
Research Communications 1993 204 582–585.
and CYP11B2 from normal human adrenal and their functional

Received 19 March 2002
Accepted 29 August 2002