Expression of 5'-deiodinase enzymes in normal pituitaries and in various human pituitary adenomas

A Baur, M Buchfelder and J Köhrle
Abteilung für Molekulare Innere Medizin und Klinische Forschergruppe der Medizinischen Poliklinik der Universität Würzburg, Röntgenring 11, D-97070 Würzburg, Germany and 1Neurochirurgische Klinik der Universität Göttingen, Robert-Koch-Str. 40, D-37075 Göttingen, Germany

(Correspondence should be addressed to J Köhrle; Email: josef.koehrle@charite.de)

Abstract

Objective: Local 5'-deiodination of L-thyroxine (T4) to active thyroid hormone 3,3',5-tri-iodothyronine (T3), catalyzed by the two 5'-deiodinase enzymes (D1 and D2), regulates various T3-dependent functions in the anterior pituitary and has been well studied in rodents. Only limited information about deiodinase expression and its cellular distribution in human anterior pituitaries is available.

Design: We examined 5'-deiodinase enzyme activities in pituitary adenomas (18 non-functioning, seven TSH-producing, one GH- and TSH-producing, five GH-producing, eight prolactin (PRL)-producing, two adenomas each from patients with Cushing’s disease and Nelson’s syndrome) and three normal anterior pituitaries.

Methods: Activities were measured as release of 125I from tyrosyl-ring labeled reverse T3 with or without propylthiouracil, a potent inhibitor of D1 which does not influence D2 activities.

Results: Most of the adenomas and normal tissues expressed both isoenzymes, with D2 activity higher than D1. In a few tissues D1 activity was higher than D2 and some tissues did not express D1 activity at all. Highest activities of both enzymes were found in TSH- and PRL-producing adenomas but absolute activities and the D1/D2 ratio were variable in the same kind of tumor in different patients.

Conclusion: The finding that all examined tissues expressed 5'-deiodinase activity, most of them expressing both isoenzymes, implies that both enzymes are still active in tumors and that local deiodination is important for the function and feedback regulation of human anterior pituitary.

European Journal of Endocrinology 147 263–268

Introduction

Thyroid hormones play an important role in various functions of the anterior pituitary, e.g. thyrotropin (TSH) (1), growth hormone (GH) (2) and prolactin (PRL) gene expression. 3,3',5-tri-iodothyronine (T3), the main active form of thyroid hormones, is generated by 5'-monodeiodination of L-thyroxine (T4), the (pro)hormone secreted by the thyroid gland. Two distinct 5'-deiodinase enzymes (D1 and D2) which differ in reaction kinetics, substrate specificity, inhibitor sensitivity and regulation contribute to systemic and local formation of T3. D1 is believed to be the main contributor to systemic T3 formation. Its expression is decreased under hypothyroid conditions. D2 activity is increased in hypothyroidism and is important for providing intracellular T3 in several tissues under these conditions. In rodents, D2 is mainly expressed in the pituitary, in brown adipose tissue, in the central nervous system (CNS) and in the heart (3). In humans, D2 mRNA and/or activity has also been demonstrated in placenta, skeletal muscle, and thyroid (4–6). The highest expression levels of D1 are found in thyroid, liver and kidney but also in eu- and hyperthyroid pituitaries of rats (7, 8). In contrast to rodents, no D1 activity is found in human adult CNS (9, 10). Therefore, expression profiles of deiodinase enzymes in different tissues cannot be transferred from rodents to humans.

In several human tissues such as liver, kidney and thyroid the enzyme activity of D1 is decreased when the tissues undergo neoplastic transformation (3, 11, 12). Decreased activity of D2 has also been described in human papillary thyroid carcinoma compared with normal tissues (13).

It is well known that in pituitaries of euthyroid rats, half of the T3 bound to specific T3 receptors originates from local, intrapituitary T4 to T3 conversion (14) and deiodinase expression and regulation has been extensively investigated in rat pituitary in vivo and in vitro. However, there is only one report of deiodinase expression in human anterior pituitary tumors (15) and one report of deiodinase expression in the human somatomammotroph GX cell line (16). To gain more insight into the distribution of deiodinase enzymes...
among various pituitary cell types and to elucidate if
diodinase activities are altered by neoplastic trans-
formation, possibly dependent on the endocrine type
of adenoma, we examined the activity of D1 and D2
in various pituitary adenomas and 3 normal pituitary
tissues.

Materials and methods

Tissue preparations

Human pituitary tissue aliquots were obtained from 43
patients with pituitary adenomas during trans-sphenoi-
dal surgeries; in addition, three normal pituitary tissue
aliquots which had to be removed during neurosurgical
procedures were analyzed. The neurosurgeon attempted
to obtain only solid tumorous material and avoided
contamination with hemorrhagic and necrotic regions.
Immunocytochemistry confirmed that the tissues con-
sisted either of normal pituitary or adenomas. Ethical
approval was obtained by the local committee. The tis-
sues were immediately frozen in liquid nitrogen and
stored at \(-80^\circ\text{C}\) until use. The frozen tissues were
then homogenized in ice-cold homogenization buffer
(250 mmol/l sucrose, 20 mmol/l HEPES, 1 mmol/l
ethylenediamine tetraacetic acid, 1 mmol/l dithiothreitol
(DTT), pH 7.0) by sonication (0.5 s, 100 W, 10
times). The protein contents of the homogenates were
determined by a modified Bradford protein assay
(Biorad, Munich, Germany) using gamma-globulin as
protein standard (17).

Biochemical assays

Specific activities of Type I and Type II 5′deiodinase (D1
and D2) were determined in parallel by the release of
\(^{125}\text{I}\) from 3,3′,5′-[\(^{125}\text{I}\)]tri-iodothyronine (rT3, DuPont,
Bad Homburg, Germany, specific activity: 35–45
MBq/\(\mu\)g) in the absence or presence of 1 mmol/l PTU
(6-n-propyl-2-thio-uracil) using 10 mmol/l non-radio-
active rT3, 20 mmol/l DTT and 20–60 \(\mu\)g protein
(18). Homogenates were incubated with the tracer
for 1 h in a total volume of 100 \(\mu\)l at pH 7.0. The frac-
tion of iodide release blocked by 1 mmol/l PTU was
assigned to D1 activity, the residual activity not inhib-
ited by PTU was ascribed to D2 activity. Deiodinase
activities of each sample were determined in triplicate
and expressed as fmol \(^{125}\text{I}\) released per min per mg
protein. The limit of detection for D1 activity was
0.05 fmol/mg/min and for D2 activity it was
0.18 fmol/mg/min.

Figure 1 Specific D1 and D2 activities in human pituitary tissues. Activities were determined as described in Materials and methods
and are given in fmol released iodide per mg protein per minute.
Table 1 Specific D1 and D2 activities in human pituitary tissues and corresponding serum levels of free (f) $T_3$, $fT_4$ and TSH in the patients. Activities were determined as described in Materials and methods and given in fmol released iodide per mg protein per minute.

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Diagnosis</th>
<th>Sex</th>
<th>Tumor diameter (mm)</th>
<th>Age</th>
<th>Drugs</th>
<th>D1 (fmol/mg/min)</th>
<th>D2 (fmol/mg/min)</th>
<th>$fT_3$ (ng/dl)</th>
<th>$fT_4$ (ng/dl)</th>
<th>TSH (mU/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Normal pituitary</td>
<td>f</td>
<td>73</td>
<td>Iodine</td>
<td>0.47</td>
<td>2.83</td>
<td>0.3</td>
<td>1.45</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Normal pituitary</td>
<td>m</td>
<td>35</td>
<td>Quinagolide</td>
<td>0.12</td>
<td>&lt;i.d.</td>
<td>0.42</td>
<td>1.22</td>
<td>1.02</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Normal pituitary</td>
<td>m</td>
<td>13</td>
<td>Carinzalone</td>
<td>1.64</td>
<td>2.07</td>
<td>0.4</td>
<td>0.71</td>
<td>2.27</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Non-secreting</td>
<td>m</td>
<td>80</td>
<td></td>
<td>0.27</td>
<td>3.4</td>
<td>0.29</td>
<td>1.04</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Non-secreting</td>
<td>m</td>
<td>50</td>
<td>Carinzalone, thyroxine, hydrocortisone</td>
<td>0.13</td>
<td>1.07</td>
<td>0.23</td>
<td>0.45</td>
<td>4.84</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Non-secreting</td>
<td>f</td>
<td>63</td>
<td></td>
<td>0.45</td>
<td>1.6</td>
<td>0.86</td>
<td>0.65</td>
<td>7.12</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Non-secreting</td>
<td>m</td>
<td>61</td>
<td></td>
<td>&lt;i.d.</td>
<td>11.85</td>
<td>0.33</td>
<td>1.16</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Non-secreting</td>
<td>m</td>
<td>73</td>
<td></td>
<td>0.79</td>
<td>1</td>
<td>0.30</td>
<td>1.24</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Non-secreting</td>
<td>m</td>
<td>70</td>
<td></td>
<td>&lt;i.d.</td>
<td>1.65</td>
<td>0.28</td>
<td>0.53</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Non-secreting</td>
<td>m</td>
<td>50</td>
<td></td>
<td>1.13</td>
<td>2.50</td>
<td>0.38</td>
<td>1.08</td>
<td>2.14</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Non-secreting</td>
<td>f</td>
<td>67</td>
<td>Thyroxine</td>
<td>&lt;i.d.</td>
<td>1.4</td>
<td>0.39</td>
<td>2.14</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Non-secreting</td>
<td>f</td>
<td>64</td>
<td></td>
<td>2.25</td>
<td>1.75</td>
<td>0.14</td>
<td>1.14</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Non-secreting</td>
<td>m</td>
<td>77</td>
<td></td>
<td>0.21</td>
<td>2.96</td>
<td>0.31</td>
<td>0.87</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Non-secreting</td>
<td>f</td>
<td>60</td>
<td>Bromocriptine</td>
<td>0.38</td>
<td>1.91</td>
<td>0.35</td>
<td>1.32</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Non-secreting</td>
<td>m</td>
<td>53</td>
<td></td>
<td>&lt;i.d.</td>
<td>4.16</td>
<td>0.32</td>
<td>1.71</td>
<td>1.53</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Non-secreting</td>
<td>m</td>
<td>62</td>
<td>Thyroxine</td>
<td>0.12</td>
<td>0.92</td>
<td>0.29</td>
<td>1.01</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Non-secreting</td>
<td>f</td>
<td>43</td>
<td></td>
<td>&lt;i.d.</td>
<td>2.42</td>
<td>0.31</td>
<td>0.63</td>
<td>1.75</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Non-secreting</td>
<td>m</td>
<td>61</td>
<td>Hydrocortisone, thyroxine, testosterone, fludrocortisone</td>
<td>&lt;i.d.</td>
<td>8.58</td>
<td>0.29</td>
<td>1.12</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Non-secreting</td>
<td>m</td>
<td>59</td>
<td></td>
<td>&lt;i.d.</td>
<td>1.78</td>
<td>0.39</td>
<td>0.48</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Non-secreting</td>
<td>m</td>
<td>65</td>
<td></td>
<td>&lt;i.d.</td>
<td>0.52</td>
<td>0.40</td>
<td>0.76</td>
<td>1.19</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Non-secreting</td>
<td>m</td>
<td>48</td>
<td></td>
<td>&lt;i.d.</td>
<td>2.27</td>
<td>0.91</td>
<td>8.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>TSHoma</td>
<td>f</td>
<td>18</td>
<td>Propanolol, carinzalone</td>
<td>0.43</td>
<td>0.27</td>
<td>0.91</td>
<td>8.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>TSHoma</td>
<td>f</td>
<td>25</td>
<td>Carinzalone, somatostatin analogs</td>
<td>9.8</td>
<td>35.2</td>
<td>0.38</td>
<td>13.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>TSHoma</td>
<td>f</td>
<td>15</td>
<td>Thyroxine</td>
<td>1.7</td>
<td>25.1</td>
<td>1.73</td>
<td>53.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>TSHoma</td>
<td>f</td>
<td>9</td>
<td>Carinzalone, propanolol</td>
<td>22.89</td>
<td>105.92</td>
<td>0.22</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>TSHoma</td>
<td>m</td>
<td>59</td>
<td>Somatostatin analogs, thyroxine</td>
<td>5.52</td>
<td>7.98</td>
<td>0.39</td>
<td>1.51</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>TSHoma</td>
<td>f</td>
<td>34</td>
<td>Somatostatin analogs</td>
<td>1.68</td>
<td>&lt;i.d.</td>
<td>0.36</td>
<td>1.94</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>TSHoma</td>
<td>m</td>
<td>36</td>
<td>Carinzalone</td>
<td>&lt;i.d.</td>
<td>1.94</td>
<td>0.75</td>
<td>3.53</td>
<td>7.48</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>TSH- and Goma</td>
<td>f</td>
<td>25</td>
<td>Carinzalone</td>
<td>0.15</td>
<td>2.7</td>
<td>1.6</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Goma</td>
<td>m</td>
<td>38</td>
<td></td>
<td>0.66</td>
<td>1.44</td>
<td>0.45</td>
<td>1.26</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Goma</td>
<td>m</td>
<td>39</td>
<td></td>
<td>0.05</td>
<td>0.62</td>
<td>0.38</td>
<td>0.85</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Goma</td>
<td>m</td>
<td>33</td>
<td>Somatostatin analogs</td>
<td>&lt;i.d.</td>
<td>1.29</td>
<td>0.33</td>
<td>1.19</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Goma</td>
<td>f</td>
<td>54</td>
<td>Somatostatin analogs, thyroxine</td>
<td>0.3</td>
<td>3.53</td>
<td>0.3</td>
<td>1.15</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Goma</td>
<td>m</td>
<td>48</td>
<td>Somatostatin analogs</td>
<td>0.08</td>
<td>2.8</td>
<td>0.3</td>
<td>1.08</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>PRLoma</td>
<td>f</td>
<td>40</td>
<td>Cabergoline</td>
<td>6.78</td>
<td>34.28</td>
<td>0.26</td>
<td>1.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>PRLoma</td>
<td>f</td>
<td>24</td>
<td></td>
<td>2.3</td>
<td>12.7</td>
<td>1.22</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>PRLoma</td>
<td>f</td>
<td>20</td>
<td>Bromocriptine</td>
<td>10.92</td>
<td>8.19</td>
<td>0.32</td>
<td>1.06</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>PRLoma</td>
<td>f</td>
<td>9</td>
<td></td>
<td>5.26</td>
<td>56.19</td>
<td>0.44</td>
<td>1.44</td>
<td>2.89</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>PRLoma</td>
<td>f</td>
<td>61</td>
<td></td>
<td>&lt;i.d.</td>
<td>6.93</td>
<td>0.20</td>
<td>1.17</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>PRLoma</td>
<td>f</td>
<td>38</td>
<td></td>
<td>1.61</td>
<td>1.44</td>
<td>0.29</td>
<td>1.46</td>
<td>1.15</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>PRLoma</td>
<td>m</td>
<td>48</td>
<td></td>
<td>&lt;i.d.</td>
<td>0.18</td>
<td>0.33</td>
<td>0.89</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>PRLoma</td>
<td>m</td>
<td>38</td>
<td>Hydrocortisone, quinagolide</td>
<td>&lt;i.d.</td>
<td>3.1</td>
<td>0.28</td>
<td>1.10</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>ACTHoma (Cushing's disease)</td>
<td>m</td>
<td>69</td>
<td>Thyroxine</td>
<td>&lt;i.d.</td>
<td>2.05</td>
<td>0.35</td>
<td>2.69</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>ACTHoma (Cushing's disease)</td>
<td>f</td>
<td>57</td>
<td></td>
<td>&lt;i.d.</td>
<td>2.48</td>
<td>0.34</td>
<td>1.66</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>ACTHoma (Nelson's syndrome)</td>
<td>f</td>
<td>58</td>
<td>Thyroxine, hydrocortisone</td>
<td>0.35</td>
<td>2.31</td>
<td>0.30</td>
<td>1.26</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>ACTHoma (Nelson's syndrome)</td>
<td>f</td>
<td>56</td>
<td>Hydrocortisone, fludrocortisone</td>
<td>0.32</td>
<td>3.07</td>
<td>0.39</td>
<td>1.29</td>
<td>1.55</td>
<td></td>
</tr>
</tbody>
</table>

l.d.: limit of detection;梭: no drugs.
Results

All pituitary tumors expressed either one or both of the 5'-deiodinase activities (Fig. 1 and Table 1). The highest activities were found in some TSH- and PRL-producing tumors. In most of the tissues D2 activity was higher than D1, but there were also 3 tumors (2 non-functioning, 1 prolactinoma) and one normal tissue where D1 activity was higher than D2. Some of the tumors showed no D1 activity at all (8 non-functioning tumors, 1 TSH-producing, 1 GH-producing, 3 PRL-producing and 2 adrenocorticotropin (ACTH)-producing). The relative activities of D1 and D2 and the D1/D2 ratio varied in pituitaries of different patients with the same type of tumor and even in normal tissues. A correlation between the gender of the patients and deiodinase activities was not observed. There was also no significant correlation between deiodinase activities and TSH levels in patients with TSH-secreting adenomas. Figure 2 shows the median activities of D1 and D2 in the different types of adenomas.

Discussion

In the present study we demonstrated for the first time that not only functional D2 but also D1 activity is expressed in human pituitary tissues, both in adenomas of different secretory activities and also in normal tissues. Itagaki et al. found only D2 activity in 12 human pituitary adenomas and one normal pituitary (15). This difference might be due to different enzyme substrates that were employed for the measurement of deiodinase activity. Itagaki et al. used radiolabeled T4 as substrate whereas we performed the assay with radiolabeled rT3 together with 10 nmol/l nonradioactive rT3, the substrate that is preferred by D1. As a control we also analyzed activity using T4 as substrate (data not shown). These experiments revealed that D2 activity with T4 as substrate was elevated in most cases (413±78%) compared with the assays with rT3 as substrate, whereas D1 activity was underestimated or not measurable with T4 as substrate (15%).

All examined tissues showed deiodinase activity. In most cases D2 activity was higher than D1, but there were also three adenomas and one normal tissue where D1 was higher than D2. In human tissues expressing high levels of functional D1 activity, such as liver, kidney and thyroid, the enzyme activity is decreased or even absent when the tissues undergo neoplastic transformation (3, 11, 12, 19). It is unlikely that the difference in the relative expression profile of the two 5'-deiodinases in most of the human adenomas is due to such a dysregulation in neoplastic tissues compared with normal, euthyroid rat anterior pituitaries, where D1 activity is an order of magnitude higher than D2 (7), because a higher specific D2 activity was also found in two of the three normal anterior pituitary tissues. It is more likely that this represents the normal conditions in the human anterior pituitary with higher activities of D2 than D1. Such a difference of the relative expression levels of the two 5'-deiodinase iso-enzymes between human and rat tissues has also been described for the CNS. In contrast to rat CNS, no or only negligible D1 activity was found in the human CNS (9, 10). D2 activity was not changed in tumors compared with normal tissues when expressed in relation to DNA content, but was significantly increased when expressed in relation to protein content (10). A high activity of D2 has recently been described in the human mesothelioma cell line MSTO-211H, whereas cells derived from normal mesothelium do not express D2 activity (20). Therefore, D2 seems to be induced by neoplastic transformation in some tissues but this observation cannot be extrapolated to all

Figure 2 Box plot illustrating median (–) specific activities of D1 and D2 in human pituitary tissues. Boxes show 5th to 95th percentiles. Symbols (●) indicate extreme datapoints outside the 5th and 95th percentiles and bar caps give 10th and 90th percentiles.
tissues; for example, in human papillary thyroid carcinoma D2 is decreased compared with normal controls (13). A decrease in D1 activity in tumors compared with normal tissue has been described for several tissues (thyroid, kidney etc.) (11, 12) whereas in human intestine no differences between D1 activity in tumors and normal tissue are found (3). Hence tumor-dependent regulation of the two 5'-deiodinase enzymes differs between different tissues.

The expression pattern of 5'-deiodinases in human anterior pituitary tumors depended on the endocrinological type of tumor since the highest activities were found in most of the TSH- and PRL-producing adenomas although the absolute activities and the D1/D2 ratio varied among patients with the same type of tumor. This is in accordance with the early report of Itagaki et al. who also described substantial variability of the D2 activity among individuals with the same kind of tumor (15). During the last few years it has been clearly demonstrated that most pituitary tumors are monoclonal in origin with a mutation in a single cell that subsequently undergoes clonal expansion (21, 22). This could be an explanation for the variability of the deiodinase activities in the same kind of tumor since endocrine cells which produce the same hormone are a heterogenous population with some cells differing in function and regulation (23). Whether the cytokine expression pattern, known to be changed in pituitary adenaoma, or tumor-induced alterations in cellular communication and interaction between hormone producing and folliculo-stellate cells (24–27) leads to individual tumor-specific changes in the expression of deiodinases remains to be analyzed.

Another component of thyroid hormone action, the thyroid hormone receptors are also cell type-dependently expressed in human pituitary adenoma. It has been shown by RT-PCR that mRNAs for thyroid hormone receptors (TR) β1, α1 and α2 were expressed in nonfunctioning adenomas, TRβ1 and TRα1 in prolactinomas, TRβ1 in GHomas but there was no expression of these three isoforms in one TSHoma and in ACTH-producing adenomas (28). Gitoes et al. (29) also reported abnormal expression of thyroid hormone receptors in TSH-producing adenoma compared with normal pituitaries and they postulated that this is the reason for the defective negative feedback of thyroid hormones on TSH production from human TSHomas. Nevertheless, the expression of both 5'-deiodinase isoenzymes, D1 and D2, in human thyrotroph cells furthers our understanding of TSH feedback regulation. The expression of D1 and its stimulation by T3 helps to explain the observations that TSH secretion is not only correlated with plasma T3 but also with plasma T4 levels (30, 31), thus formulating a logical TSH feedback regulation.

Besides TSH production and release, several other functions of the anterior pituitary are regulated by T3 and have been well studied in rodents. Chomczynski et al. demonstrated that T3 stimulates GH gene transcription in the deiodinase expressing human somatomammotroph GX cell line (32) compatible with in vivo observations in humans that GH production and release is influenced by thyroid hormone levels (2).

The expression of 5'-deiodinases in ACTH-producing adenomas indicates that thyroid hormones are also important for the function of corticotroph cells. In rat anterior pituitaries pro-opiomelanocortin mRNA is not influenced by thyroid hormones. However, the prohormone processing enzymes, PC1 and PC2, are regulated by thyroid hormone levels (33), and in mouse corticotroph AtT 20 cells thyroid hormone receptors are expressed and PC1 mRNA is decreased by T3 (our own unpublished data). Furthermore, cell proliferation and/or differentiation of pituitary cells can be influenced by thyroid hormones (34).

These data, together with our findings that all examined adenomas and normal pituitary tissues expressed either one or both of the two 5'-deiodinases, indicate that thyroid hormones and the local conversion of T4 to the active T3 is involved in the regulation and function of all hormone-producing cells in the human anterior pituitary even in neoplastic pituitary adenoma.

Acknowledgements

This work was supported by a grant from the Deutsche Forschungsgemeinschaft (Kö 922/3-1/2).

References


9 Campos-Barros A, Hoell T, Musa A, Sampaio S, Stoltenburg G, Pinna G et al. A phenolic and tyrosyl ring iodothyronine deiodina-
tion and thyroid hormone concentrations in the human central nervous system. *Journal of Metabolism* **81** 2179–2185.


11 Köhrle J. Thyroid carcinoma: interrelationships between local thyroid hormone metabolism by the type I 5'-deiodinase and the expression of thyroid hormone receptors and other thyroid-specific (de-)differentiation markers. *Current Topics in Pathology* 1997 **91** 83–116.


30 Emerson CH, Lew R, Braverman LE & De Vito W. Serum thyrotropin concentrations are more highly correlated with serum triiodothyronine concentrations than with serum thyroxine concentrations in thyroid hormone-infused thyroidectomized rats. *Endocrinology* **1989** **124** 2415–2418.


