Inverse relationship between plasma adiponectin and leptin concentrations in normal-weight and obese women

Miyao Matsubara, Shoji Maruoka and Shinji Katayose

Division of Endocrinology and Metabolism, Otaru City General Hospital, Otaru and Otsuka Assay Institute, Sapporo, Japan

(Correspondence should be addressed to Miyao Matsubara, Division of Endocrinology and Metabolism, Internal Medicine, Otaru City General Hospital, Wakamatsu 1-2-1, Otaru 047-8550, Japan; Email: miyamatsuba@proof.ocn.ne.jp)

Abstract

Background: Adiponectin, a novel adipocyte-derived collagen-like protein, is the gene product of the adipose most-abundant gene transcript 1 (apM1), which has been considered to have anti-inflammatory and anti-atherogenic effects.

Objective: To characterize the relationship between adiponectin and leptin, the obese gene product, in normal-weight and obese women.

Design and methods: In this cross-sectional study, we measured fasting plasma adiponectin by ELISA, leptin concentrations by RIA, and related parameters such as blood pressure, body mass index (BMI), body fat mass, lipids, fasting blood glucose and insulin in 353 non-diabetic adult women with a wide range of BMI values.

Results: Plasma adiponectin concentrations in women with the highest tertile of BMI (at least 25.0 kg/m²) were decreased compared with those in the middle (22.0 – 25.0 kg/m²) or lowest (<22.0 kg/m²) tertile of BMI (mean±S.E.M.: 6.7±0.3 μg/ml compared with 8.6±0.4 μg/ml and 9.2±0.3 μg/ml; both P<0.0001). Serum leptin concentrations in women with the highest tertile of BMI were increased compared with those in women in the middle or lowest tertile of BMI (13.2±0.4 ng/ml compared with 8.1±0.2 ng/ml and 5.2±0.2 ng/ml; both P<0.0001). These relationships were similar after adjustment for BMI or body fat mass. Adiponectin was negatively correlated with serum leptin concentration, fasting immunoreactive insulin, calculated insulin resistance (homeostasis model assessment), BMI and body fat mass. These negative relationships became stronger after adjustment for BMI or body fat mass. In stepwise regression analyses, leptin was the significant independent variable for adiponectin, and adiponectin was also the significant independent variable for leptin before and after adjustment for BMI or body fat mass.

Conclusions: In this study, we found an inverse correlation between adiponectin and leptin in vivo.

Introduction

Adipose tissue was once considered to be an inert depot for storing fuel as lipids, to be released only during times of hardship such as starvation. Now adipose tissue is known to operate as an endocrinologically active tissue that releases peptides, such as plasminogen activator inhibitor 1 (1), leptin (2), resistin (3) and adiponectin (4), in response to specific extracellular stimuli or changes in metabolic status. Because these secreted peptides seem to share some structural properties of cytokines, they are called ‘adipocytokines’ (5).

Leptin, the obese (ob) gene product, is believed to be a lipostatic hormone that contributes to body weight regulation through modulating feeding behavior and energy expenditure (2, 6, 7). Serum leptin concentration was shown to be increased in humans with obesity, insulin resistance and dyslipidemia, after adjustment for body composition (7, 8). The increased serum leptin concentration in obesity was proposed to be secondary to ‘leptin resistance’. However, as leptin causes an oxidative stress in endothelial cells, and has a vascular calcifying effect, it has been suggested that leptin promotes atherogenesis (9 – 11). Adiponectin, the gene product of the adipose most-abundant gene transcript 1 (apM1) gene that is exclusively and abundantly expressed in white adipose tissue, is a 244-amino acid protein with high structural homology to collagen VIII, X and complement C1q (4, 12). This protein was also identified independently by three other groups using different approaches, and was named by them respectively as gelatin-binding protein
Subjects and methods

Subjects

Three hundred and fifty-three Japanese women residing in Hokkaido, Japan, aged 16–86 years (mean±S.E.M.: 52.6±0.6 years) were included in this cross-sectional study. Women taking the birth control pill, and any with diabetes mellitus (fasting blood glucose >7.0 mmol/l or blood glucose >11.1 mmol/l 2 h after 75 g oral glucose loading), renal failure (serum creatinine >159 µmol/l or blood urea nitrogen (BUN) >10.7 mmol/l) or untreated endocrine diseases were excluded. Approximately 34% and 12% of the women had hypercholesterolemia (total cholesterol >5.69 mmol/l) and hypertriglyceridemia (>1.69 mmol/l) respectively. Approximately 30% and 21% of them had systolic (>160 mmHg) and diastolic hypertension (>90 mmHg), and 48 were receiving calcium channel blockers, angiotensin converting enzyme inhibitors, or both. Body mass index (BMI) was calculated as weight in kilograms divided by the square of the height in meters. Body fat mass was determined by bioelectrical impedance analysis; this value was the average determined using both a Tanita Body Fat Analyzer (TBF-541, Tanita, Tokyo) and an Omron Body Fat Analyzer (HBF-301, Omron, Tokyo) (23). All the women provided informed consent.

Biochemical analyses

Blood glucose was measured by the glucose oxidase method; serum lipids, total protein, albumin, uric acid and BUN were measured using commercially available kits. Immunoreactive insulin (IRI) was determined by a specific EIA with reagents from Dainabot Co. Ltd, Japan (8). Insulin resistance was calculated by the homeostasis model assessment (HOMA) method, using fasting blood glucose and insulin concentrations (8, 24). Assuming that normal-weight normal individuals <35 years of age have an insulin resistance of 1, the value for insulin resistance can be assessed by the formula: fasting blood glucose (mmol/l) × fasting IRI (µU/ml)/22.5. Serum leptin concentration was measured with an RIA (Linco Research Inc., St Charles, MO, USA), which uses a polyclonal antibody against recombinant human leptin, raised in rabbits (6, 8). Blood samples for measurement of fasting plasma adiponectin concentrations were drawn into 1/10 volume EDTA-–aprotinin tubes, and immediately placed on ice. All tubes were centrifuged at 4°C for collection of plasma and stored at −80°C until required for analysis at Otsuka Assay Institute, Tokushima, Japan. Adiponectin was determined with a validated sandwich ELISA using an adiponectin-specific monoclonal and polyclonal antibody (16). Cross reaction with leptin, insulin and several cytokines, such as TNF-α and interleukin (IL) 1-β and IL-8, was not observed in this ELISA system. The recovery rate was almost 100%, and the intra- and interassay coefficients of variation for adiponectin were 3.3% and 7.4% respectively (22).

Statistical analyses

All the women were stratified into tertiles of BMI values (≤22.0 kg/m², 22.0–25.0 kg/m², ≥25.0 kg/m²), because in Japan a BMI value >25.0 kg/m² is considered an increased value, according to Japan Obesity Society criteria. The differences across tertiles of various continuous parameters, leptin and adiponectin before and after adjustment for BMI or body fat mass were tested with analysis of variance (ANOVA). Because preliminary analyses indicated that the distributions of plasma adiponectin, leptin, triglycerides, IRI and calculated insulin resistance were skewed, log transformation was used, which yielded more normally distributed data. Linear regression was performed to determine which factor among serum total protein, albumin, fasting blood glucose, IRI, calculated insulin resistance (homeostasis model assessment) and leptin correlated with log-transformed adiponectin before and after adjustment for BMI or body fat mass. We had previously reported significant positive correlations between adiponectin and age, BUN and HDL-C concentrations, and the negative correlation of adiponectin with serum triglyceride concentrations (22). Stepwise multiple regression analyses were used to identify independent determinants for adiponectin before and after adjustment for BMI or body fat mass, and the percentage of variance in adiponectin that they explained (r²). The same analyses were also used to identify independent determinants for leptin. Two-way ANOVA was performed to determine possible relations for plasma adiponectin concentration, adjusting for...
body fat mass (kg), between tertiles of leptin and several
stratified parameters, such as age, diastolic blood
pressure (DBP), BMI, serum triglycerides, HDL-C or
calculated insulin resistance. Results are expressed as
means±S.E.M. A P value less than 0.05 was considered
to be statistically significant.

Results

The mean age of the women studied was 52.6 years
and their mean BMI was 22.9±0.2 kg/m² (range
14.8–36.3 kg/m²). The fasting serum leptin concentra-
tion ranged from 1.2 to 44.5 ng/ml, with an arithmetic
mean of 8.1 ng/ml, and the fasting plasma
adiponectin concentration ranged from 0.9 to
26.1 µg/ml, with an arithmetic mean of 8.4 µg/ml.
Age, systolic blood pressure (SBP) and DBP, body fat
mass, serum uric acid, total cholesterol, triglycerides,
fasting blood glucose, IRI and calculated insulin
resistance were increased when the values in the
highest tertile of BMI were compared with those in
the lowest tertile (all P<0.0001), whereas serum
HDL-C decreased (P<0.0001) (Table 1). Serum
leptin concentrations increased gradually by BMI tertile
(5.2±0.2 ng/ml and 8.1±0.2 ng/ml compared with
13.2±0.4 ng/ml; both P<0.0001), and this signifi-
cant increase remained after adjustment for BMI or
body fat mass. Plasma adiponectin concentrations by
BMI tertile decreased progressively (9.2±0.3 µg/ml
and 8.6±0.4 µg/ml compared with 6.7±0.3 µg/ml;
both P<0.0001), and this significant decrease also
remained after adjustment for BMI or body fat mass
(Table 1).

BMI (r = −0.26, P < 0.0001), body fat mass
(r = −0.25, P < 0.0001), fasting IRI (r = −0.39,
P < 0.0001), calculated insulin resistance
(r = −0.37, P < 0.0001) and leptin concentration
(r = −0.35, P < 0.0001) were negatively correlated
with plasma adiponectin concentrations (Table 2) and
the correlations became stronger after adjustment
was made for BMI or body fat mass (Table 2; Fig. 1).

In a stepwise regression analysis model, age, BUN,
triglycerides, calculated insulin resistance and leptin
concentration were significant independent deter-
minants of adiponectin concentration, explaining a
total of 32% of the variance in these measures
(r² = 0.32) (Table 3). These relationships became
stronger after adjustment for BMI or body fat mass,
explaining a total of 47–63% of the variance in these
measures, adding BMI as the significant independent
determinant (r² = 0.47–0.63) (Table 3). Moreover,
adiponectin was independently associated with leptin concentration before and after adjustment for BMI or body fat mass in women in these stepwise regression analysis models (Table 4). In contrast, age, DBP, serum triglycerides and BUN were not independently related to the leptin concentrations. The results presented in Tables 3 and 4 were essentially unchanged when fasting IRI was substituted for calculated insulin resistance, serum HDL-C was substituted for triglycerides, or SBP was substituted for DBP (data not shown).

In two-way ANOVA, despite adjustment for stratified age, DBP, BMI, serum triglycerides, HDL-C or calculated insulin resistance, the plasma adiponectin/body fat mass (kg) value was lower in the highest tertiles of serum leptin concentrations than in the lowest tertiles (Fig. 2).

Discussion

The present study demonstrated that plasma adiponectin concentrations were inversely correlated with leptin concentrations in non-diabetic normal-weight and obese women. We also confirmed that the mean plasma adiponectin concentration before and after adjustment for body composition was decreased, and that leptin increased in obesity. Plasma adiponectin/body fat mass was lower in the high-leptin group after adjustment was made for age, blood pressure, BMI, lipids and calculated insulin resistance.

Increased serum leptin concentrations in obesity have been suggested to be the result of 'leptin resistance'. However, they have also been observed in patients with insulin resistance, dyslipidemia and hyperuricemia, after adjustment for body composition (8, 25, 26). Bouloumie et al. (9, 10) reported that leptin exerts angiogenic and atherogenic effects through the generation of oxidative stress in endothelial cells. Parhami et al. (11) recently demonstrated a vascular calcifying effect of leptin. It has also been reported that leptin promotes human platelet aggregation (27). Increased adipose tissue in obesity requires an increased vascular bed to maintain its baseline circulation (10, 28). Thus this adaptation may, conversely, promote arteriosclerosis over long periods of

Table 2 Correlation between plasma adiponectin and leptin concentrations, before and after adjustment for body composition, and the variables associated with metabolic syndrome.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Plasma adiponectin*</th>
<th>Adiponectin/BMI*</th>
<th>Adiponectin/BFM (kg)*</th>
<th>Adiponectin/BFM (%)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum total protein</td>
<td>−0.155 0.0036</td>
<td>−0.175 0.0010</td>
<td>−0.193 0.0003</td>
<td>−0.202 0.0002</td>
</tr>
<tr>
<td>Albumin</td>
<td>−0.124 0.0205</td>
<td>−0.095 0.0761</td>
<td>−0.085 0.1158</td>
<td>−0.107 0.0475</td>
</tr>
<tr>
<td>FBG</td>
<td>−0.113 0.0348</td>
<td>−0.162 0.0025</td>
<td>−0.167 0.0019</td>
<td>−0.160 0.0030</td>
</tr>
<tr>
<td>Fasting IRI*</td>
<td>−0.375 <0.0001</td>
<td>−0.458 <0.0001</td>
<td>−0.479 <0.0001</td>
<td>−0.456 <0.0001</td>
</tr>
<tr>
<td>HOMA-ratio*</td>
<td>−0.359 <0.0001</td>
<td>−0.447 <0.0001</td>
<td>−0.466 <0.0001</td>
<td>−0.443 <0.0001</td>
</tr>
<tr>
<td>BMI</td>
<td>−0.264 <0.0001</td>
<td>−0.526 <0.0001</td>
<td>−0.683 <0.0001</td>
<td>−0.561 <0.0001</td>
</tr>
<tr>
<td>BFM (kg)</td>
<td>−0.254 <0.0001</td>
<td>−0.498 <0.0001</td>
<td>−0.705 <0.0001</td>
<td>−0.561 <0.0001</td>
</tr>
<tr>
<td>BFM (%)</td>
<td>−0.215 <0.0001</td>
<td>−0.458 <0.0001</td>
<td>−0.660 <0.0001</td>
<td>−0.563 <0.0001</td>
</tr>
<tr>
<td>Serum leptin*</td>
<td>−0.353 <0.0001</td>
<td>−0.525 <0.0001</td>
<td>−0.638 <0.0001</td>
<td>−0.567 <0.0001</td>
</tr>
<tr>
<td>Leptin/BMI*</td>
<td>−0.341 <0.0001</td>
<td>−0.468 <0.0001</td>
<td>−0.556 <0.0001</td>
<td>−0.506 <0.0001</td>
</tr>
<tr>
<td>Leptin/BFM (kg)*</td>
<td>−0.278 <0.0001</td>
<td>−0.333 <0.0001</td>
<td>−0.330 <0.0001</td>
<td>−0.341 <0.0001</td>
</tr>
<tr>
<td>Leptin/BFM (%)*</td>
<td>−0.340 <0.0001</td>
<td>−0.458 <0.0001</td>
<td>−0.524 <0.0001</td>
<td>−0.473 <0.0001</td>
</tr>
</tbody>
</table>

* Log-transformed statistics. BFM, body fat mass; FBG, fasting blood glucose; IRI, immunoreactive insulin; HOMA, homeostasis model assessment.

Table 3 Stepwise regression analyses of selected variables (age, BMI, diastolic blood pressure (BP), blood urea nitrogen (BUN), log-transformed triglyceride, homeostasis model assessment ratio (HOMA-R) and leptin) on log-transformed plasma adiponectin, before and after adjustment for body composition. The F value was set at 4.0 at each step.

<table>
<thead>
<tr>
<th>Independent variable</th>
<th>Plasma adiponectin</th>
<th>Adiponectin/BMI</th>
<th>Adiponectin/BFM (kg)</th>
<th>Adiponectin/BFM (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r^2</td>
<td>β</td>
<td>F</td>
<td>r^2</td>
</tr>
<tr>
<td>Age</td>
<td>0.323</td>
<td>0.279</td>
<td>22.204</td>
<td>0.465</td>
</tr>
<tr>
<td>BMI</td>
<td>0.016</td>
<td>0.016</td>
<td>−0.293</td>
<td>16.940</td>
</tr>
<tr>
<td>Diastolic BP</td>
<td>0.012</td>
<td>0.012</td>
<td>0.011</td>
<td>0.649</td>
</tr>
<tr>
<td>BUN</td>
<td>0.122</td>
<td>4.566</td>
<td>0.110</td>
<td>4.650</td>
</tr>
<tr>
<td>Log(triglyceride)</td>
<td>−0.297</td>
<td>27.326</td>
<td>−0.267</td>
<td>27.667</td>
</tr>
<tr>
<td>Log(HOMA-R)</td>
<td>−0.210</td>
<td>11.606</td>
<td>−0.180</td>
<td>10.532</td>
</tr>
<tr>
<td>Log(leptin)</td>
<td>−0.161</td>
<td>6.659</td>
<td>−0.146</td>
<td>4.005</td>
</tr>
</tbody>
</table>
time. It has been indicated that adiponectin has potential anti-atherogenic and anti-inflammatory properties (4, 12, 16–19). In the early stages of atherosclerosis, endothelial cell activation by various inflammatory stimuli, including TNF-α, results in the synthesis of adhesion molecules and increases the adherence of monocytes. This adhesion of monocytes to the arterial endothelium is considered crucial for the development of vascular diseases. Adiponectin has been shown to inhibit both the production and action of TNF-α, a cytokine which has direct effects on the adhesion molecules (12, 16–19). Hotta et al. (29) reported that plasma adiponectin (determined as an arbitrary value) decreased, and leptin concentrations increased, in parallel with the progression of non-insulin-dependent diabetes mellitus in male rhesus monkeys. A recent genomic

Figure 1 Correlation between log-transformed plasma adiponectin and leptin concentrations before and after adjustment for body composition. BFM, body fat mass.
scan study (30) has revealed linkage of the metabolic syndrome both to regions on chromosome 3q27 where the gene encoding adiponectin is located (31), and to regions on chromosome 17p12 that are strongly linked to plasma leptin concentrations.

The mechanism underlying the decreased adiponectin production in obesity remains unknown, but a decreased mRNA expression of apM1 in adipose tissue has been reported in obesity (32). Hyperleptinemia or 'leptin resistance' might contribute to the decrease in
adiponectin production in adipose tissue. Alternatively, the excess of adipose tissue and calories in obesity might cause ‘leptin resistance’ and the decline in adiponectin production, separately. Further study is needed to clarify this mechanism. Yamauchi et al. (33) reported that the concomitant replenishment of adiponectin and leptin completely resolved the insulin resistance in lipaotropic and obese diabetic mice. Because adiponectin increases the gene expression of fat-combustion-related substances such as CD36, acyl CoA oxidase and uncoupling protein-2 in muscle, this peptide causes both the decrease in triglyceride and free fatty acid content, blood glucose and body weight, and the improvement in insulin resistance (33, 34). Supplementation of adiponectin in insulin resistance and obesity may possibly become the standard treatment for these diseases.

Conclusion

We observed hypoadiponectinemia and hyperleptinemia in non-diabetic obese women, and a significant inverse relationship between plasma adiponectin and leptin concentrations that was independent of age, BUN, blood pressure, body composition, lipid and insulin resistance. Whether hypoadiponectinemia and hyperleptinemia may work together to accelerate atherosclerosis in obese individuals merits further investigation.

References

Received 7 February 2002
Accepted 10 April 2002