EXPERIMENTAL STUDY

Expression of the cholecystokinin2-receptor in normal human thyroid gland and medullary thyroid carcinoma

Michael Bläker, Andreas de Weerth, Mareike Tometten, Martina Schulz, Wolfgang Höppner, Dorit Arlt, Cuong Hoang-Vu, Henning Dralle, Harald Terpe, Ludwig Jonas and Tammo von Schrenck

Medizinische Kernklinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Germany, 1Institut für Hormon- und Fortpflanzungsforschung, Hamburg, Germany, 2Universitätsklinik für Allgemeinchirurgie, Halle, Germany and 3Institut für Pathologie, Universität Rostock, Germany

(Correspondence should be addressed to M Bläker, Medizinische Kernklinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; Email: blacker@uke.uni-hamburg.de)

Abstract

Objective: The cholecystokinin2-receptor (CCK2R) promotes secretion and cell growth induced by its ligands cholecystokinin (CCK) and gastrin. The receptor has recently been shown to be expressed in human medullary thyroid carcinomas (MTCs). The objective of this study was to analyze CCK2R expression in MTC samples of different tumor stages as well as in non-malignant thyroid tissues.

Design and Methods: Using RT-PCR we investigated 19 MTC samples and TT-cells (a human MTC cell line), as well as samples of normal thyroid. In addition, we performed immunohistochemistry using calcitonin- and CCK2R-specific antibodies on MTCs and samples of C-cell hyperplasia.

Results: We demonstrate for the first time that CCK2R is expressed not only in MTCs but in all samples of normal thyroid tissue. Using immunohistochemistry the receptor could be localized on calcitonin-secreting C-cells. The highest incidence of CCK2R expression in MTCs was observed in early-tumor stages, whereas CCK2R could not be detected in advanced or metastasized tumors.

Conclusions: The expression of CCK2R in C-cells suggests a physiological function for gastrin and/or CCK in the regulation of calcitonin release, presumably related to bone and calcium metabolism. Moreover, these ligands might act as growth factors in MTCs. Efforts in the development of CCK2R scintigraphy for the detection of MTC lesions might have to consider a lower incidence of the receptor in advanced tumor stages.

European Journal of Endocrinology 146 89–96

Introduction

The G-protein coupled cholecystokinin2-receptor (CCK2R) mediates the functions of two enteroendocrine hormones, cholecystokinin (CCK) and gastrin. Stimulation of CCK2R leads to acid secretion as well as cell proliferation within the gastric mucosa (1). In addition, gastrin has been shown to induce growth of a variety of normal as well as malignant gastrointestinal cell types in vitro (2). Furthermore, in several tumor systems an autocrine loop has been proposed between gastrin, secreted by tumor cells, and CCK2R, expressed on tumor cells (3–6).

In recent years, CCK2Rs have been detected in various extraintestinal cell types and tumors (7, 8). Based on the well-established proliferative effects of gastrin, CCK2Rs might be important promoters of growth in these extra-intestinal organs and tumors and therefore might serve as interesting diagnostic and therapeutic targets.

Gastrin pentapeptide (pentagastrin) is a well-known secretagogue in medullary thyroid carcinomas (MTCs), which originate from calcitonin-producing C-cells (9). The increase in calcitonin serum levels after i.v. injection of pentagastrin is widely used as a diagnostic tool in MTCs. In 1996, Reubi & Waser (10) showed by autoradiography that MTCs express CCK2Rs with an incidence of 92%. This report was the first to demonstrate CCK2R expression in any kind of thyroid tissue. Subsequently, Amiri-Movasi et al. (11) detected CCK2R mRNA in six out of six MTCs. However, it remained unclear whether malignant transformation of C-cells leads to aberrant CCK2R expression or whether even in normal thyroid tissue CCK2R is expressed. Moreover, there are no available data on the relationship between CCK2R expression in MTCs and tumor stage, calcitonin levels and possible underlying mutations of the RET proto-oncogene (12).

The aim of the present study was to analyze CCK2R expression in normal thyroid tissues as well as in MTCs by RT-PCR and immunohistochemistry using a CCK2R-specific antibody. Furthermore, we compared receptor expression with clinical and pathological...
data. In addition, to address the possibility of an autocrine loop, we analyzed expression of the known CCK2R ligands, CCK and gastrin, in normal thyroid tissue and MTCs.

Materials and methods

Patients

All patients gave informed consent to the study of their tissue samples and clinical data prior to surgery. The study was approved by the local ethics committee. Patient data corresponding to the investigated MTC samples are summarized in Table 1.

Tissue samples and cells

After surgical resection, aliquots of tissue samples were immediately frozen in liquid nitrogen and then stored at \(-80^\circ C\). Diagnosis of underlying disease was verified by histological examination. The tissue samples investigated were 19 MTCs and two samples of normal thyroid gland removed during surgery for non-toxic goiter (‘goiter 1’, ‘goiter 2’). In addition, commercially available pooled thyroid cDNA (Clontech, Heidelberg, Germany) was studied for the presence of CCK2R transcripts. Tissue samples of normal human stomach and normal human colon served as positive and negative controls respectively. TT cells were purchased from the American Type Culture Collection (Rockville, MD, USA) and cultured in Ham’s F12 medium, supplemented with 2 mmol/l glutamine, 1% non-essential amino acids, 1% sodium pyruvate and 10% fetal calf serum (Gibco Life Technologies, Eggenstein, Germany) at 37°C. When grown to confluence, cells were trypsinized (trypsin 0.05%, EDTA 0.02%) and RNA was extracted as described below.

Table 1 Patient data, tumor stage, calcitonin levels, RET mutation and CCK2R status in the investigated MTC tumor population. Note that pathological data according to the T, N, M classification system were not available for all investigated tumor samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Gender</th>
<th>Age</th>
<th>T</th>
<th>N</th>
<th>M</th>
<th>Calcitonin (ng/l)</th>
<th>RET mutation (codon)</th>
<th>Remarks</th>
<th>CCK2R expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>48</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1000</td>
<td>918</td>
<td>—</td>
<td>Positive</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>56</td>
<td>2</td>
<td>0</td>
<td>–</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Positive</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>67</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1033</td>
<td>—</td>
<td>—</td>
<td>Negative</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>53</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3330</td>
<td>—</td>
<td>—</td>
<td>Positive</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>60</td>
<td>4</td>
<td>–</td>
<td>1</td>
<td>1802</td>
<td>918</td>
<td>—</td>
<td>Negative</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>62</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Positive</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>56</td>
<td>2</td>
<td>–</td>
<td>—</td>
<td>483</td>
<td>—</td>
<td>—</td>
<td>Negative</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>56</td>
<td>–</td>
<td>1</td>
<td>—</td>
<td>3774</td>
<td>918</td>
<td>—</td>
<td>Positive</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>63</td>
<td>2</td>
<td>1</td>
<td>–</td>
<td>214</td>
<td>—</td>
<td>—</td>
<td>Positive</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>17</td>
<td>2</td>
<td>1</td>
<td>–</td>
<td>2810</td>
<td>—</td>
<td>MEN-2</td>
<td>Negative</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>33</td>
<td>3</td>
<td>1</td>
<td>–</td>
<td>2145</td>
<td>—</td>
<td>—</td>
<td>Negative</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>35</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3262</td>
<td>—</td>
<td>—</td>
<td>Positive</td>
</tr>
<tr>
<td>13</td>
<td>F</td>
<td>47</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>807</td>
<td>918</td>
<td>—</td>
<td>Positive</td>
</tr>
<tr>
<td>14</td>
<td>F</td>
<td>65</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1350</td>
<td>—</td>
<td>—</td>
<td>Positive</td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>63</td>
<td>–</td>
<td>1</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Negative</td>
</tr>
<tr>
<td>16</td>
<td>F</td>
<td>71</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Positive</td>
</tr>
<tr>
<td>17</td>
<td>F</td>
<td>45</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>—</td>
<td>918</td>
<td>—</td>
<td>Negative</td>
</tr>
<tr>
<td>18</td>
<td>M</td>
<td>57</td>
<td>3</td>
<td>1</td>
<td>–</td>
<td>900</td>
<td>—</td>
<td>PGT negative</td>
<td>Negative</td>
</tr>
<tr>
<td>19</td>
<td>M</td>
<td>56</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>238</td>
<td>634</td>
<td>MEN-2; PGT positive</td>
<td>Positive</td>
</tr>
</tbody>
</table>

PGT, pentagastrin test.

Pentagastrin stimulation test

Pentagastrin (Cambridge Laboratories, Cambridge, Cambs, UK) (0.5 U/kg body weight) was injected i.v. Blood samples were drawn 2 min before, immediately before, 2 min after and 5 min after pentagastrin injection.

RT-PCR

Total RNA was extracted from the tissue samples or TT cells using RNAzol (WAK-Chemie, Bad Homburg, Germany) according to the protocol supplied by the manufacturer. RNA was then treated with DNase I for 15 min at 37°C. First-strand cDNA was transcribed from 2μg total RNA. Three hundred nanograms of cDNA were used for PCR using the following primers: CCK2R forward: 5'-CGT GTG CTG CAG TGC GTG CA-3', CCK2R reverse: 5'-GGT GGT GTA GCT AAG CCT GG-3'; β-actin forward: 5'-ATC TGG TAC CAC ACC ACC TTC TAC A-3', β-actin reverse: 5'-GCT CAT TGC CAA TGG TGA TGA C-3'; gastrin forward: 5'-CAG CGA CTA TGT GCG TGG GAC GCC GCC CAT TAT GCT GCC AC-3'; CCK forward: 5'-TGC CAA GCC ACA AGC GCC G-3', CCK reverse: 5'-ATC CAT CCA GCC CAT GTC C-3'. The PCR conditions were: 5 min at 95°C followed by 35 cycles for 1 min at 94°C, 1 min
at 60 °C and 2 min at 72 °C, followed by 10 min at 72 °C. Aliquots (5 µl) of the PCR products were analyzed on 1.2% agarose gels. Specificity of CCK2R PCR products was confirmed by restriction endonuclease digestion.

Detection of RET oncogene mutations

For the detection of mutations in codon 918 (exon 16) of the RET proto-oncogene, RNA was extracted from sporadic MTCs by the RNAzol method and transcribed into cDNA (see above). PCR was performed using the following primers: exon 16 forward: 5'-AGG GAT AGG GCC TGG GCT TC-3', exon 16 reverse: 5'-TAA CCT CCA CCC GAA GAG AG-3'. PCR conditions: 1 min at 96 °C followed by 35 cycles for 1 min at 94 °C, 30 s at 65 °C and 45 s at 72 °C. PCR products were purified using a Qiagen purification kit (Qiagen, Hilden, Germany) and sequence analysis was performed using an automated DNA sequencer (Applied Biosystems, Foster City, CA, USA).

Immunohistochemistry

Paraffin sections of human C-cell hyperplasia or MTCs of about 5 µm thickness were deparaffinized in xylene, rehydrated and washed in PBS. The sections were incubated with 3% H2O2 for 20 min to block endogenous peroxidase activity followed by incubation in 5% swine normal serum. The sections were incubated with specific primary antibodies (anti-calcitonin IgG from rabbit (DAKO A0576; DAKO, Hamburg, Germany); anti-human CCK2R IgY from chicken (13, 14)) for 48 h at 4 °C in a moist chamber at dilutions between 1:30 and 1:1280. After washing three times with PBS, the sections were incubated with anti-rabbit IgG or anti-chicken IgY (Dianova, Hamburg, Germany) at a dilution of 1:50 for 1 h at 22 °C. After washing in PBS three times, the sections were incubated with peroxidase–anti-peroxidase complex and peroxidase–conjugated streptavidin (Dianova) respectively, for 1 h at a dilution of 1:50 at 22 °C. After washing, the horseradish peroxidase activity was detected by substrate solution, containing diaminobenzidine, 0.05 mol/l Tris–HCl buffer (pH 7.6) and 0.01% H2O2. Finally, the sections were counterstained with acidic haemalaun and, after embedding, were investigated by light microscopy.

Results

RT-PCR studies

Using primers specific for human β-actin cDNA, a PCR product of the expected size was amplified in all investigated samples. A 729 bp CCK2R-specific PCR product was amplified from the following samples: normal human stomach cDNA, commercially available pooled cDNA from normal human thyroid, normal thyroid tissue of two patients who underwent surgery for non-toxic goiter (‘goiter 1’, ‘goiter 2’), TT-cells (a human MTC cell line), and 11 out of 19 MTC samples. No CCK2R-specific PCR product could be detected in eight MTC samples (Figs 1 and 2; Table 1). Expression of gastrin was not detected in any of the investigated samples (data not shown). CCK expression was detected in normal thyroid cDNA as well as in one thyroid sample from a patient with non-toxic goiter but was not detected in any of the MTC samples (Fig. 1).

Immunohistochemistry

In addition to RT-PCR, CCK2R expression was detected in human MTCs by immunohistochemical analysis. Using a CCK2R-specific antibody, directed against the extracellular N-terminal portion of the receptor protein, receptor expression was visualized in three out of five investigated MTCs (Fig. 3). In addition to MTCs, CCK2R immunoreactivity was observed in C-cell hyperplasia, which is defined as an increase in the number of non-malignant C-cells. Immunohistochemistry using antibodies against calcitonin and CCK2R demonstrated that only C-cells express CCK2R (Fig. 4).

Comparison of clinical, molecular and pathological data

Table 1 summarizes the available clinical and pathological data in the MTC patients. All patients had elevated baseline calcitonin levels. Only in two patients were results of pentagastrin tests available. One test was negative (patient 18) and the corresponding tumor sample did not show CCK2R expression (Fig. 1a). The positive pentagastrin test (patient 19) is shown in Fig. 1b. In the corresponding tumor sample, CCK2R was detected (Fig. 1a). This patient and patient 10 had MTC as part of the multiple endocrine neoplasia type 2 (MEN-2) syndrome. All other MTCs were sporadic tumors.

Activating mutations of the RET proto-oncogene have been shown to play a key role in the pathogenesis of MEN-2 and MTC (12). Consistent with previous reports (15), we found mutations of codon 918 within exon 16 of the RET gene in 30% of the sporadic MTCs investigated. No correlation was found between RET mutations and CCK2R expression.

Comparison with pathological data revealed that detectable CCK2R expression was restricted to T1- and T2-stage tumors which did not show metastases. In contrast, in none of the further advanced tumor stages (T3, T4, Mx) was CCK2R expression detected (Fig. 2).

Discussion

CCK2R was originally cloned from parietal cells (16, 17) and later found to be identical to the CCK receptor in human stomach cDNA.
Figure 1 Detection of CCK₂R expression. (a) CCK₂R is expressed in human stomach as well as in all samples of normal thyroid tissue (lanes 2–4, upper panel). CCK₂R expression is also detectable in TT-cells and MTCs. Lane 6 represents the tumor sample from patient 19 (see Table 1). The asterisk indicates that the pentagastrin test shown in (b) corresponds to the result shown in this lane. Not all MTCs express CCK₂R; lane 7 represents the tumor sample from patient 18 (see Table 1) in which no CCK₂R expression is detected. As expected, CCK₂R is not expressed in the colon (lane 8). The housekeeping gene β-actin is expressed in all investigated samples (lower panel of (a)). (b) Positive pentagastrin stimulation test in patient 19 (a) (see Table 1). Pentagastrin was injected i.v. (arrow). Calcitonin serum levels rose from 238 to 1717 ng/l after 2 min and to 3523 ng/l after 5 min. The pentagastrin test is considered positive if calcitonin levels rise >200 ng/l after pentagastrin injection. (c) Detection of CCK expression. CCK mRNA is detectable in samples of small intestine and normal thyroid but not in MTC.
brain (18). In recent years, it has become apparent that expression of this receptor subtype is more widespread than initially expected. Using molecular detection techniques as well as immunohistochemistry and autoradiography, expression of CCK$_2$R has been detected in pancreatic acinar cells, monocytes, T lymphocytes, kidney, and in a wide variety of human tumors (7, 8, 19). In most of these tumors CCK$_2$R expression occurs aberrantly, possibly related to dedifferentiation of the tumor cells.

Reubi & Waser (10) reported the expression of CCK$_2$Rs with very high incidence in human MTCs but did not find expression of the receptor in normal thyroid tissue using autoradiography. We now demonstrate by RT-PCR that CCK$_2$R is expressed not only in MTCs but also in all investigated samples of non-malignant thyroid tissues. This difference from the report by Reubi & Waser is probably explained by the higher sensitivity of the RT-PCR method. Moreover, in normal thyroid glands, C-cells are found singularly or in groups of

Figure 2 Comparison of MTCs which do express (white bars) and do not express (gray bars) CCK$_2$R. In the investigated tumor population for which pathological data according to the T, N, M classification were available, CCK$_2$R-positive samples are smaller in size and have not metastasized to other organs, whereas the group of CCK$_2$R-negative tumors includes large and metastasized tumors.

Figure 3 Immunohistochemical detection of CCK$_2$R in MTC. (a) Staining of tumor tissue with antibodies against calcitonin (magnification ×3.2). (b) Adjacent section showing immunoreactivity using a CCK$_2$R-specific antibody (magnification ×3.2). (c) Adjacent section after incubation with IgY antibodies which were preabsorbed using the antigen (magnification ×3.2). (d) High power magnification (×40) of CCK$_2$R-positive tumor cells.
two to five cells and are located primarily in the
dorsolateral part of the organ. Therefore, in microscopic
studies these cells might be missed. Based on these
considerations we used samples of non-malignant
C-cell hyperplasia for immunohistochemical studies
and were able to show for the first time that CCK 2R is
expressed in normal C-cells.

The detection of CCK 2R expression supports the con-
cept of a physiological function of gastrin and/or CCK in
C-cells. Thirty years ago, it was shown for the first time
that both hormones induce calcitonin secretion (20, 21).
The physiological and pathophysiological rele-
vance of these early findings has been discussed contro-
dversially (22, 23). It is well known that gastrectomy,
including the removal of the antrum, where gastrin-
producing G-cells are located, leads to a significant
reduction in bone density and alterations in calcium
metabolism (24, 25). In fact, it has been shown in gas-
trectomized patients that in response to a meal,
increases in calcitonin levels were significantly smaller
than in control groups, most likely based on impaired
gastrin secretion (23). Animal models have confirmed
the importance of gastrin for calcium and bone homeo-

Figure 4 Immunohistochemical detection of CCK 2R in C-cells. (a) Immunoreactivity against calcitonin in a sample of benign C-cell
hyperplasia (magnification x25). (b) Immunohistochemical detection of CCK 2R in C-cells (magnification x25). (c) High power
magnification (x80) of calcitonin reactivity in C-cells. (d) High power magnification (x80) of CCK 2R-reactivity in C-cells.

stasis; in rats, antrectomy and total gastrectomy, both
resulting in hypogastrinemia, lead to osteopenia and
reduction in bone mineral content (26, 27). However,
a direct positive correlation between gastrin levels and
calcitonin levels could be established neither in these
models nor in rats after fundectomy and refectorary
hypergastrinemia (28). One explanation might be that
gastrin leads to pulsatile calcitonin release in response
to enteral stimulation rather than influencing basal
secretion of calcitonin from C-cells. In addition, CCK
might compensate in part for the lack of gastrin after
gastrectomy, albeit not to a degree that prevents osteo-
penia. The detection of CCK 2R on C-cells reported in
this study clearly supports the concept of an inter-
relationship among calcemic hormones and gastro-
intestinal hormones (29).

Given the physiological expression of CCK 2R in C-cells
we speculate that the pentagastrin stimulation test,
which is used as a diagnostic tool, reflects the vast
increase in the number of C-cells in MTCs rather than
a specific expression of the receptor in malignant vs
CCK₂R expression in human thyroid gland

non-malignant cells. This view is supported by the fact that the pentagastrin test has been shown to be positive in cases of benign C-cell hyperplasia (30, 31). Furthermore, pentagastrin injection has been shown to cause a slight yet significant increase in calcitonin serum levels in normal subjects (32). All patients investigated in our study already had substantially elevated baseline calcitonin levels (Table 1). Therefore, in most cases pentagastrin stimulation was not performed. Only for two patients were the results of pentagastrin tests available. As expected, CCK₂R expression was detectable in the tumor sample corresponding to the positive result, whereas CCK₂R expression was not detected in the sample from the patient with the negative pentagastrin test (Table 1, Fig. 1). Although performed only in a limited number of patients, the pentagastrin test appears to correlate with CCK₂R expression in MTCs.

In contrast to multiple other tumors, in which CCK₂R expression most likely occurs due to loss of differentiation of the tumor cells, the expression of CCK₂R in MTCs appears to be related to maintained differentiation of the malignant C-cell. Thus, CCK₂Rs are found in almost all early-stage tumors (T1 and T2 stages) while further growth and potential loss of cell differentiation, i.e. in T3 and T4 tumors and metastasized tumors, might be associated with a loss of receptor expression. This phenomenon has also been reported for somatostatin receptors in MTCs (33, 34). The conclusion that CCK₂R expression in MTCs depends on the degree of tumor differentiation is further supported by a recent report by Kwekkebom et al. (35). In that study, aimed at visualization of CCK₂Rs on MTCs in vivo using radiolabeled CCK-8 (which has high affinity for CCK₂R), scintigraphic detection of known tumor metastases could not be achieved in one of two patients. Autoradiographic analysis of one of the respective liver lesions revealed the absence of CCK₂R expression in the investigated sample; in addition, the pentagastrin test in the patient remained negative (35). Therefore, in the light of encouraging technical results (35–37), CCK₂R scintigraphy for visualization of MTC lesions might be more useful in earlier stages of the disease than in far-advanced metastasized tumors. However, studies with larger numbers of patients comparing clinical, scintigraphic and molecular data are required to reach a final conclusion.

Gastrin is a well-known major growth factor for enterochromaffin-like (ECL) cells in the stomach (38). In mouse models, lack of gastrin or its receptor leads to marked reduction in the number of ECL cells (39, 40). In addition, differentiation and maturation of ECL cells appears to be highly dependent on gastrin (39). In conditions associated with hypergastrinemia ECL cells become hyperplastic and may ultimately transform into malignant carcinoids (38). Like ECL cells, C-cells are neuroendocrine cells and both cell types share several histomorphological and biological features. Therefore, in analogy to ECL cells, C-cells might become hyperplastic in states of hypergastrinemia either due to disease (pernicious anemia, Zollinger–Ellison syndrome) or due to pharmacotherapy (e.g. proton pump inhibitors). Moreover, gastrin might act as a growth factor in MTCs.

In several tumor models, an autocrine loop involving gastrin and CCK₂R has been proposed, based on the coexpression of both the ligand and the receptor in these tumors (3–6). Our data do not indicate that such an autocrine loop exists in MTCs. Neither of the two CCK₂R ligands, gastrin or CCK, is expressed in MTCs. In contrast, CCK mRNA, together with CCK₂R mRNA, is detectable in normal thyroid tissue and in one sample of goiter (Fig. 1c). CCK has been identified as a secretory product of rat MTC cells (41, 42). It is not known whether CCK is expressed in normal rat thyroid. Given the fact that we found CCK expression only in two samples of non-malignant human thyroid tissue while in none of the tumor samples was CCK detectable, one might speculate that CCK and CCK₂R are involved in an autocrine loop which contributes to normal C-cell function.

In summary, we have shown for the first time that CCK₂R is expressed in normal thyroid tissue, specifically in C-cells. These findings support previous reports which suggest that CCK₂R ligands might play a physiological role in calcitonin-related bone and calcium metabolism. It appears that in MTC the incidence of CCK₂R is particularly high in small primary tumors. CCK₂R might therefore serve as a marker of differentiation in MTCs and might be an interesting diagnostic and therapeutic target.

Acknowledgements

We thank Prof. Sören Schröder, Prof. Jochen Kußmann and Dr Jürgen Kahl for providing tissue samples. This work was supported by the Deutsche Forschungsgemeinschaft.

References

5 McWilliams DF, Watson SA, Crosbee DM, Michaeli D & Seth R. Coexpression of gastrin and gastrin receptors (CCK-B and delta CCK-B) in gastrointestinal tumour cell lines. Gut 1998 42 795–798.

www.eje.org

Received 20 June 2001
Accepted 22 August 2001

www.eje.org