EXPERIMENTAL STUDY

Unaltered pancreatic islet blood perfusion in islet amyloid polypeptide-deficient mice

Per-Ola Carlsson, Ella Karlsson, Hindrik Mulder and Samuel Gebre-Medhin

Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden, Department of Cell and Molecular Biology, Section for Molecular Signaling and Neuroendocrinology, Lund University, Lund, Sweden

(Correspondence should be addressed to Per-Ola Carlsson, Department of Medical Cell Biology, Biomedical Center, Box 571, SE-751 23 Uppsala, Sweden; Email: Per-Ola.Carlsson@medcellbiol.uu.se)

Abstract

Objective: Several biological activities have been ascribed to islet amyloid polypeptide (IAPP). However, their physiological relevance remains unclear. Previous studies in rats with exogenous administration of IAPP suggest that the peptide may increase splanchnic vascular resistance and redistribute the blood flow within the pancreas to the islets. In this study, the use of IAPP-deficient mice allowed us to evaluate possible effects of the lack of IAPP on splanchnic blood perfusion and we could thereby circumvent the potentially pharmacological actions of exogenously administered IAPP.

Design: Regional splanchnic blood flow was measured after exogenous administration of IAPP and in IAPP-deficient mice.

Methods: Blood flow values were determined using a non-radioactive microsphere technique in anesthetized animals.

Results: No differences in whole pancreatic blood flow or islet blood flow could be detected in IAPP-deficient mice when compared with control mice; neither did IAPP deficiency affect the glucose-induced increase in islet blood flow. Duodenal, ileal and colonic blood flows were similar in IAPP-deficient and control mice. Exogenous administration of IAPP selectively increased islet blood flow in wild-type control mice.

Conclusions: The present findings in the IAPP-deficient mice suggest that the vascular effects seen in the islets after exogenous administration of IAPP to normal mice reflect pharmacological, rather than physiological effects of the peptide. We conclude that the lack of endogenous IAPP within the splanchnic vascular system does not alter the blood perfusion of pancreatic islets or other splanchnic organs.

European Journal of Endocrinology 146 107–112

Introduction

Ever since the discovery of islet amyloid polypeptide (IAPP; also known as amylin) as the major constituent of amyloid deposits in a human insulinoma (1, 2) and in islets from patients with type 2 diabetes (3), the physiological role of this β-cell peptide (4) has remained enigmatic (5, 6). Several studies have suggested that IAPP restrains glucose handling in skeletal muscle (7, 8), and increases hepatic glucose output (9). A role for IAPP in the regulation of food intake (10) and gastric emptying (11) has also been suggested. Furthermore, possible effects of IAPP on insulin secretion have been extensively investigated (12–15); most studies have shown an inhibitory effect of IAPP on insulin release (12–15). However, the high concentrations of IAPP required, together with uncertainties about the structure and tissue distribution of IAPP receptors, question the physiological relevance of the results (16). Recently, the generation and phenotypic analysis of mice with a targeted disruption of the IAPP gene have shed some light on the physiological role of IAPP in islets (17, 18). IAPP-deficient mice are euglycemic during basal conditions, but show an accelerated rate of glucose disposal during hyperglycemia, mainly due to a concomitant augmentation of the glucose-stimulated insulin response. This demonstrates indirectly that IAPP under physiological conditions does indeed restrain glucose-induced insulin release.

IAPP has also been implicated in the control of regional blood perfusion (19, 20), for example in the islets (21). It is possible that IAPP, which is stored with insulin in β-cell secretory vesicles (22) and released in conjunction with insulin in response to β-cell secretagogues (23), may exert a local control on islet blood flow (cf. 21). In the present study, the use
of IAPP-deficient mice allowed us to examine the blood perfusion of the pancreatic islets and other splanchnic organs when endogenous IAPP is lacking, thereby potentially resolving the issue of physiological versus pharmacological effects of exogenously administered peptide. Here, the effects of exogenous administration of IAPP on islet blood flow were confirmed, whereas no alterations of islet blood flow were observed in IAPP-deficient mice.

Materials and methods

Animals

Wild-type (+/+ ) and IAPP-deficient (−/− ) 3-month-old male 129Ola/C57BL/6j hybrid mice were used in all experiments. As previously described (17), the IAPP-deficient mice were produced by disruption of the IAPP gene using targeted mutagenesis in embryonic stem cells (24). Briefly, the IAPP gene was disrupted by deletion of a major part of exon 3, which encodes the mature peptide (25). Deficient IAPP expression in IAPP (−/− ) mice was confirmed by the lack of exon 3 in genomic DNA subjected to Southern hybridization and by the lack of IAPP-like immunoreactivity in the pancreatic islets (17). The animals were bred at the Transgenic Core facility at Göteborg University, and had free access to autoclaved tap water and pelleted food throughout the course of the study. All mice were randomly assigned to the different experiments. The experiments were approved by the local animal ethics committee at Uppsala University.

Blood flow measurements and assessment of islet volume

The blood flow was determined with a microsphere technique, as previously described and evaluated (26). Briefly, the animals were anaesthetized with an intraperitoneal injection of 0.02 ml Avertin/g body weight (a 2.5% (v/v) solution of 10 g 97% (v/v) 2,2,2-tribromo-ethanol (Sigma, St Louis, MO, USA) in 10 ml 2-methyl-2-butanol (Kemila AB, Stockholm, Sweden)), heparinized and placed on an operating table maintained at body temperature (38 °C). Polyethylene catheters were inserted into the ascending aorta via the right carotid artery, and into the right femoral artery. The former catheter was connected to a pressure transducer (PDCR 75; Druck, Groby, Leics, UK) for continuous monitoring of the mean arterial blood pressure, which was allowed to stabilize for 10–15 min. In the first set of experiments using only control animals, rat IAPP (85 nmol/kg) dissolved in 0.2 ml saline or saline alone was injected intravenously. In the second set of experiments, using both control and IAPP (−/− ) mice, 0.25 ml 30% (wt/vol) d-glucose or saline was injected intravenously. Approximately 9 × 10⁴ non-radioactive microspheres (NEN-Trac; DuPont Pharmaceuticals, Wilmington, DE, USA) with a diameter of 11 μm were injected 30 (1st set of experiments) or 15 min (2nd set of experiments) later during 10 s via the aortic catheter. Starting 5 s before the microsphere injection, and continuing for a total of 60 s, an arterial blood reference sample was collected by free flow from the femoral catheter at a rate of approximately 0.10 ml/min. The exact withdrawal rate in each experiment was determined by weighing the samples.

Arterial blood was then collected from the femoral catheter for determination of blood glucose concentrations with test reagent strips (Medisense; Baxter Travenol, Deerfield, IL, USA) and for serum insulin determinations with a radioimmunoassay (Insulin RIA kit; Pharmacia-Upjohn Diagnostics, Uppsala, Sweden) using a rat insulin standard (Novo Research Institute, Bagsværd, Denmark). The RIA kit used for serum insulin measurements had both an intra-assay and an inter-assay variability of less than 5%.

The animals were killed and the whole pancreas, the adrenal glands, and parts of the duodenum (proximal part), ileum (distal part) and colon (descending part) were dissected free from fat and lymph nodes, blotted, weighed, and placed between object slides. Before placement between object slides each pancreas was cut into 20–24 pieces. The islets were visualized by a freeze-thawing technique (27), and the islet volume percentage was determined by a point-counting method (26, 28). For this purpose, the number of intersections overlapping islets was counted at a magnification of ×400 in a stereo microscope equipped with both dark and bright field illumination (Wild M3Z; Wild Heerbrugg Ltd, Heerbrugg, Switzerland). Approximately 20–24 different fields were counted in each mouse pancreas (corresponding to 2400–2900 points).

The total number of microspheres in the exocrine and endocrine parts of the pancreas, intestines and adrenal glands was then estimated with the aid of a stereo microscope (26). The number of microspheres in the arterial reference sample was determined by transferring the blood to glass microfibre filters with a pore size of less than 0.2 μm (Whatman, London, UK), and counting the microspheres in a microscope equipped with transmitted light. All microsphere counting and evaluations of islet volume percentage were performed by an observer unaware of the origin of the samples.

The blood flow values were calculated according to the formula Qorg = Qref × Norg/Nref where Qorg is organ blood flow (ml/min), Qref is withdrawal rate of reference sample (ml/min), Norg is number of microspheres present in the organ and Nref is number of microspheres present in the reference sample. The microsphere contents of the adrenal glands were used to confirm that the microspheres had been adequately mixed in the arterial circulation. A less than 10% difference in numbers of microspheres between the right and left adrenal gland was taken to indicate sufficient mixing. When the islet blood flow was expressed per islet.
Statistical analysis

Values are expressed as means±S.E.M. When only two groups were compared, the probabilities of chance differences between experimental groups were calculated with Student’s two-tailed unpaired t-test. Multiple comparisons between data were performed by using ANOVA and Fisher’s protected least significant difference (PLSD) test (Statview; Abacus Concepts, Berkeley, CA, USA). For all comparisons, a probability level of P < 0.05 was considered to be statistically significant.

Results

Mean arterial blood pressure, blood glucose and serum insulin concentrations were determined in IAPP (+/+) mice after intravenous administration of saline or 85 nmol/kg IAPP (Table 1). Administration of IAPP resulted in a significant reduction of the mean arterial blood pressure within 2 min after administration (not shown). At 30 min post-injection, the blood pressure in IAPP-treated animals was approximately 25% lower than that in the saline-treated group (Table 1). Treatment with IAPP also increased blood glucose concentrations and decreased serum insulin concentrations compared with saline treatment (Table 1).

Mean arterial blood pressure was similar in IAPP (−/−) and IAPP (+/+) animals both during the basal state and after saline or glucose administration (Table 2). Blood glucose and serum insulin levels were determined in IAPP (−/−) mice and IAPP (+/+) controls 15 min after an intravenous load of saline or 0.25 ml 30% d-glucose (2.5 g/kg) (Table 2). There were no differences in the basal blood glucose or serum insulin concentrations between saline-treated IAPP (−/−) and IAPP (+/+) mice (Table 2). Glucose administration increased blood glucose and serum insulin concentrations in a similar manner in both IAPP (−/−) and IAPP (+/+) animals (Table 2). The pancreatic islet mass did not differ between the two genotypes (Table 2).

Whole pancreatic, islet, duodenal, ileal, and colonic blood flows were measured in IAPP (+/+) mice 30 min after intravenous administration of saline or 85 nmol/kg IAPP (Table 3). Administration of IAPP increased islet blood flow compared with saline treatment, both when expressed per pancreatic weight and per islet weight (Table 3). However, blood flows in whole pancreas, duodenum, ileum or the colon were unaffected by IAPP treatment (Table 3).

Whole pancreatic, islet and intestinal blood flow rates were determined in IAPP (+/+ ) and IAPP (−/−) mice following intravenous administration of saline or glucose (Table 4). The blood flow rates in the normoglycemic (saline-treated) state did not differ between IAPP (−/−) and IAPP (+/+ ) mice (Table 4). Compared with saline-treatment, glucose administration increased islet blood flow in both IAPP (−/−) and IAPP (+/+) mice and to a similar extent, whereas whole pancreatic, duodenal, ileal, and colonic blood flows were unaffected (Table 4).

Discussion

The blood flow to the pancreatic islets is dependent on complex interactions between hormonal, neural and local factors, with the ultimate goal of maintaining an
adequate islet blood perfusion both for oxygen and nutrient supply of the islet cells, and for the dispersal of insulin to target organs (29). IAPP, which is secreted together with insulin in response to nutrient stimuli, has been suggested to be involved in the pathogenesis of type 2 diabetes by forming islet amyloid (5, 6). Several biological activities, including vasoregulatory actions, have been ascribed to IAPP (cf. above), but a major concern when interpreting these results has been whether the reported effects of the peptide reflect pharmacological effects. In the present study, we extended the microsphere technique for measurements of regional blood flow to IAPP-deficient mice (17) to evaluate the possible vascular perturbations that might occur in the pancreas and other splanchnic organs following genetic removal of IAPP. No difference in whole pancreatic blood flow or islet blood flow could be detected in the IAPP-deficient mice when compared with wild-type control mice. Moreover, IAPP deficiency did not influence the glucose-induced increase of islet blood flow. In contrast, a more than doubled islet blood flow was seen after exogenous administration of IAPP to wild-type mice. Indeed, as in previous studies in rats, exogenous administration of IAPP had vascular effects which favoured the islet blood perfusion in the pancreas (21).

Administration of IAPP resulted in increased blood glucose concentrations, as seen also in rats previously (21). An increased blood glucose concentration can selectively increase islet blood flow (26, 30), but the degree of hyperglycaemia must be, however, at least 25–30% higher than that observed in this study (26, 30). Several reasons may explain the increased blood glucose levels, including IAPP-induced insulin resistance in skeletal muscles (7), decreased glucagon secretion (31), increased catecholamine secretion induced by the decreased blood pressure, and decreased insulin secretion (12–15) with concomitant decreased serum insulin concentrations (21), as also observed in the present study. Enhanced insulin release and glucose elimination have been observed in male IAPP (+/−) mice following oral or intravenous glucose administration (17, 32), indicating that IAPP normally restrains glucose-induced insulin secretion. In the present study, no statistically significant differences in blood glucose or serum insulin concentrations were found between IAPP-deficient and control mice either in the basal state or 15 min after intravenous glucose administration. Nevertheless, there was a clear trend towards increased (+45%) glucose-induced insulin release at the latter time point. In addition, in our previous studies (17, 32), a lower dose of glucose was given (1 g/kg versus 2.5 g/kg), raising the possibility that when a supramaximal dose of glucose is used the modulatory effect of IAPP is lost. Also, plasma insulin and glucose levels were determined only at 15 min after glucose administration; at this time point, the differential dynamics of glucose and insulin homeostasis were not maximally expressed (17, 32).

The unaffected islet blood flow rates observed in IAPP-deficient mice could have several other possible

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Whole pancreatic, islet, duodenal, ileal and colonic blood flow in wild-type mice 30 min after administration of IAPP (85 nmol/kg) dissolved in 0.2 ml saline or saline alone. All values are means±S.E.M. for 11 animals.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole pancreatic blood flow (ml min⁻¹ x g pancreas⁻¹)</td>
<td>1.46±0.32</td>
</tr>
<tr>
<td>Islet blood flow (μl min⁻¹ x g pancreas⁻¹)</td>
<td>12±3</td>
</tr>
<tr>
<td>Ileal blood flow (μl min⁻¹ x mg islet weight⁻¹)</td>
<td>1.20±0.30</td>
</tr>
<tr>
<td>Duodenal blood flow (ml min⁻¹ x g⁻¹)</td>
<td>3.17±0.67</td>
</tr>
<tr>
<td>Ileal blood flow (ml min⁻¹ x g⁻¹)</td>
<td>1.65±0.40</td>
</tr>
<tr>
<td>Colonic blood flow (ml min⁻¹ x g⁻¹)</td>
<td>1.13±0.21</td>
</tr>
</tbody>
</table>

*P < 0.05 compared with saline-treated animals (Student’s unpaired t-test).

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Whole pancreatic, islet, duodenal, ileal and colonic blood flow in IAPP-deficient (−/−) and wild-type control (+/+ ) mice 15 min after administration of 0.25 ml 30% (wt/vol) D-glucose or saline. All values are means±S.E.M. for 7–9 animals.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wild-type (+/+)</td>
</tr>
<tr>
<td></td>
<td>Saline</td>
</tr>
<tr>
<td>Whole pancreatic blood flow (ml min⁻¹ x g pancreas⁻¹)</td>
<td>1.36±0.15</td>
</tr>
<tr>
<td>Islet blood flow (μl min⁻¹ x g pancreas⁻¹)</td>
<td>12±1</td>
</tr>
<tr>
<td>Ileal blood flow (ml min⁻¹ x mg islet weight⁻¹)</td>
<td>1.05±0.08</td>
</tr>
<tr>
<td>Duodenal blood flow (ml min⁻¹ x g⁻¹)</td>
<td>4.05±0.29</td>
</tr>
<tr>
<td>Ileal blood flow (ml min⁻¹ x g⁻¹)</td>
<td>1.50±0.16</td>
</tr>
<tr>
<td>Colonic blood flow (ml min⁻¹ x g⁻¹)</td>
<td>0.99±0.09</td>
</tr>
</tbody>
</table>

*P < 0.05 compared with saline-treated animals of the same genotype (ANOVA and Fischer’s PLSD-test).
Blood flow in IAPP-deficient mice

Acknowledgements

The skilled technical assistance of Astrid Nordin is gratefully acknowledged. The study was supported by grants from the Swedish Medical Research Council (72X-109, X0498), the Swedish-American Diabetes Research Program funded by the Juvenile Diabetes Foundation and the Wallenberg Foundation, the Swedish Diabetes Association, the NOVO Nordic Fund, Svenska barndiabetesfonden, Magnus Bergvalls stiftelse, Familjen Ernfors fond, Thurings stiftelse, Lars Hiertas Minne, Goljes Minne and the Swedish Medical Society.

References


23 Stridsberg M, Sandler S & Wilander E. Co-secretion of islet amyloid polypeptide (IAPP) and insulin from isolated rat pancreatic islets following stimulation or inhibition of beta-cell function. Regulatory Peptides 1993 45 363–370.

24 Capellicchi MR. Altering the genome by homologous recombination. Science 1989 244 1288–1292.


