INVITED REVIEW

A psycho-endocrinological overview of transsexualism

A Michel, C Mormont and J J Legros

Department of Clinical Psychology, University of Liège, Liège, Belgium and 1 Endocrinology Service, Unit of Psychoneuroendocrinology, University of Liège, Liège, Belgium

(Correspondence should be addressed to A Michel, University of Liège, Department of Clinical Psychology, Boulevard du Rectorat – B33, B-4000 Liège, Belgium; Email: aude.michel@ulg.ac.be)

Abstract

The technical possibility of surgical sex change has opened up a debate concerning the legitimacy and utility of carrying out such an intervention at the request of the transsexual. Diagnostic, psychological, medical and ethical arguments have been brought forth, both for and against. Nonetheless, anatomical transformation by surgical means has currently become a practice as the frequency of serious gender identity disorders is constantly progressing.

After a brief introduction, the present paper will consider typological, aetiological and epidemiological aspects of transsexualism. Treatment of the sex change applicant is then defined and discussed in terms of psychological, psychiatric, endocrinological and surgical aspects. Finally, the question of post-operation follow-up will be examined.

European Journal of Endocrinology 145 365–376

Introduction

Throughout history, there have been a number of persons suffering from a major discordance between their physical appearance and their gender identity, but who have not had the opportunity of benefiting from a medical solution. Today, thanks to medical progress, such individuals can now be relieved of their gender identity disorder and frequently find a result in the gender dysphoria experience through surgical sex reassignment.

The first surgical case (consisting of a complete sex change: operation, hormone administration and post-operative follow-up), performed by a Danish team, received major media attention from the tabloid press (1). This case involved Georges Jorgensen, a photographer and ex-GI, who went to Denmark for the operation. At the same time, albeit in New York, Benjamin, an endocrinologist and sexologist, published one of the first scientific articles on the subject (2). In December 1953, during a symposium held by the Association for Advancement of Psychotherapy, Benjamin and Gutheil coined the term ‘transsexualism’.

The possibility of sex change then resulted in an impressively large number of sex change requests around the world (1). Today, surgical sex change operations are more and more practised, often carried out by specialised interdisciplinary teams. The request may also occur in quite different circumstances, leaving the consulting physician amazed when faced with such an unusual request.

The object of this article is to present, beyond a definition of the disorder, a general outline of the etiological, epidemiological, diagnostic, treatment and rehabilitative aspects of transsexualism.

Definition

The first definition of the term transsexualism dates from 1953, coined by Benjamin who associated biological normality with the conviction of belonging to the opposite sex and the sex reassignment request. In this sense, the transsexual is characterised by an unshakeable conviction of belonging to the opposite sex, presenting a most extreme gender identity disorder. Gender identity (gender identity refers to an identity experience expressed in terms of masculine or feminine ‘belongingness’, independent of the anatomical reality of the sex) is therefore totally in disharmony with corporal reality, forcing the individual to request sex reassignment surgery.

Transsexualism as a particular nosological category (gender dysphoria syndrome) was included in the Diagnostic and Statistical Manual of Mental Disorders, edn III (DSM-III) in 1980 (3), but was then removed from DSM-IV where it was assimilated into sexual identity disorders (4). DSM-IV therefore no longer adopted the view that the difference between transsexuals and other forms of gender dysphoria was an interesting differential criterion. Therefore, as a consequence, highly heterogenous cases are regrouped together in DSM-IV.
Typology

There are two types of sex change applicants. They may include the masculine transsexual (male to female, hereafter referred to as MF), where the male (karyotype XY) demands feminisation, or the feminine transsexual (female to male, hereafter referred to as FM), where the female (karyotype XX) aspires to a masculinisation of her body.

Although these two types of sex change applicant both demand a surgical transformation, they present certain differences. Compared with MF, FM applicants are younger when they ask for interventional surgery (5–10), have more frequently adopted reversed behaviour (‘tomboy’ versus ‘sissy’) (7, 10, 11), have a higher educational level, are employed in more stable jobs (6, 11, 12 (except in studies 7, 10)), are more frequently single at the time of the request (6, 7, 10, 11), present a less marked psychopathology (e.g. less likely to attempt to commit suicide (6, 7, 10, 11)) and, finally, are more likely to adopt a homosexual sexuality (7, 11).

Apart from the above-mentioned fundamental distinction, other sexual dysphoric typologies have been proposed (14–27) and are based on particular aspects (choice of sexual object, the presence of transvestite behaviour, etc.). Among these, the typologies presented by Person & Ovesey (23–24) and by Blanchard (16) are considered fundamental. The former proposes a classification based on, among other aspects, the age of the subject at the time of the request, and the intensity of the subject’s dysphoria (present or not since childhood), whereas the latter classification is based on the nature of the choice of sexual object. Both the subject’s age at the time of the request and the choice of the sexual object are two essential prognostic factors (16, 28–31).

Aetiology

The aetiology of transsexualism remains uncertain in spite of the hypotheses that, for 40 years, have attempted to mark out the factors that interfering with biological, psychological and social processes of the construction of gender identity will explain the appearance of transsexualism (32).

The biological perspective

The majority of studies looking at biological factors in transsexual subjects fall within one of three areas of research (32).

Gender identity disorders in subjects presenting perinatal hormonal abnormalities

Gender identity disorders may be the consequence of an atypical hormonal environment such as congenital adrenal hyperplasia, resistance to androgens or even exogenous hormonal impregnation (the absorption of diethylstilboestrol treatment during pregnancy). In the majority of cases, these subjects do not develop towards transsexualism (33–43). Some researchers have documented changes in behaviour (e.g. behaving as a tomboy) and sexual orientation (44–48) in these subjects, although others have not done so (40, 49).

Alteration of gonadotrophin secretion

Based on perinatal sexual differentiation of the neuroendocrine areas of the central nervous system (CNS), regulation of luteinizing hormone (LH) seems to be a good indicator of sexual brain differentiation. These observations are based on animal experiments conducted by Dörner in the 1970s. The induction of an androgenic deficit (versus hyperandrogenia) during the sexual differentiation of the brain in male (versus female) rats resulted in the appearance of reversed sexual behaviour (50).

On the contrary, based on the observation of transsexuals, it has been shown that the the specific sexual response of LH to oestrogen (‘positive’ feedback in females, ‘negative’ feedback in males) is not definitely fixed during the perinatal period. Indeed, Gooren (51) observed, in MF transsexuals, negative oestrogen feedback before hormonal therapy (i.e. in accordance with their anatomical sex) while, after hormonal feminisation, the same subjects presented positive oestrogen retro-control.

Sexual morphological differentiation in the brain

Several studies have revealed sexual morphological differences in the CNS (both in terms of dimension and form), in particular, in the hypothalamic nuclei.

Based on morphometric analyses, an early study examining the preoptic area of the hypothalamus of human subjects suggested the existence of a sexually dimorphic nucleus (SDN). This nucleus was found to be twice as large and contained twice as many cells in male compared with female subjects (52). Other authors have shown that the anterior preoptic hypothalamus is the site of other SDN (53). These researchers also took an interest in the interstitial nucleus of the anterior hypothalamus (INAH), which can be divided into four distinct parts (INAH-1 to INAH-4). According to Allen et al. (53), zones INAH-2 and INAH-3 are larger in males than in females. A few years later, Allen & Gorski (54) observed that the anterior commissure of the brain was wider in male than female subjects.

Few studies have been carried out on transsexual subjects. The first study by Swaab & Fliers (55) was based on three MF subjects, and revealed the presence
of particular characteristics in the hypothalamic structures. Two of the subjects presented a large suprachiasmatic nucleus and a small SDN, whereas the last subject showed the opposite configuration. Ten years later, Zou et al. (56) were the first researchers to show the presence of a feminine structure of brain zones (BSTc) in male transsexuals. This study showed that the MF transsexuals presented a bed nucleus of the stria terminalis (BSTc) of the size and form of those of heterosexual women. This structuring of the brain was not due to a concomitant intake of hormones, as the authors failed to find a similar configuration in non-transsexual subjects who, for medical reasons, had to take a similar hormonal therapy.

The psychological perspective
Aside from the constitutional factors considered during the pre- and perinatal periods, various psychological and social aspects also play an important role in the aetiology of transsexualism. Psychological theories can be placed into two distinct categories: one envisaging transsexualism as the result of a non-conflictual process, where gender identity is precociously fixed (57–65), and the other considering transsexualism as a conflictual process, where gender identity is not fixed and continues to remain ambiguous throughout development (23, 24, 66–72).

The non-conflictual hypothesis
Here, transsexualism is considered to be an entirely particular phenomenon, so that its aetiology must be clearly distinguished from both perversions and atypical sex change requests. In addition, ‘true’ transsexualism is explained by the proximity (emotional as well as corporal) of the mother–son relation as a happy and prolonged symbiosis, where the boy identifies himself with the gender of his mother (64, 65).

According to this hypothesis, the individual who presents gender identity disorders has possessed, since early infancy, a nucleus of the feminine gender. This femininity has been adopted in a non-conflictual manner by the family system (where most often it is the mother who has gratified this reversed gender identity).

The conflictual hypothesis
Although different theories involving the conflictual hypothesis have been proposed, they all share a similar supposition, namely, that the sex change request is a ‘pathological compromise formation’ (71). In this context, transsexualism is considered a defence against homosexuality (73, 74), a form of perversion (72, 75), a narcissistic disorder (76–79) or a perturbation of the separation–individuation phase (80).

There is general agreement that transsexualism appears as a manifestation of a personality disorder, borderline type (68, 81–85). Referring to the theories of Kernberg (86, 87), it is argued that transsexuals present various characteristics similar to those of borderline subjects (chronic anxiety, diffuse and floating anxiety, depression, isolation, weak tolerance for stress, etc.) and, furthermore, are considered as consequences of a fundamental default of the structuration of the self, where femininity and masculinity appear to be insufficiently integrated.

Epidemiology
The prevalence of transsexualism is particularly difficult to evaluate. Most centres involved in treating gender identity disorders estimate that they treat the majority of the transsexuals of their country and therefore only refer to data based on their clinical practice in order to determine transsexual prevalence rates (8, 14, 59, 88, 89). However, not all transsexuals contact specialised services. Some are treated by their psychiatrists and independent surgeons, others through illegal channels (90).

Prevalence rates vary depending on the country and the era. For example, at the end of the 1960s, the estimated prevalence of transsexualism was much lower in the USA (1:100 000 men and 1:400 000 women (59)) than in Sweden (1:37 000 men and 1:103 000 women) (90)). Later studies, carried out in England (1:34 000 men and 1:108 000 women) (91)), Australia (1:24 000 men and 1:150 000 women) (92)), as well as in Germany (1:42 000 men and 1:104 000 women) (93)) confirm the previous prevalence rates established by Walinder (93). DSM-IV regrouped these different results and therefore report an average prevalence of 1:30 000 men and 1:100 000 women (4) (Table 1).

The men–women difference varies depending on the era, country and study. Apart from Poland, there are more men than women amongst sex change applicants: the ratio being 8:1 to 2.5:1 and, on average, 3:1 (three times more men than women). The Polish exception (sex ratio of 1 man for 5 (96) or 5.5 women (97)) has not yet been adequately explained. Some researchers argue that this may be due to different diagnostic criteria in Poland, whereas others have argued that this may be due to differing conceptions of the feminine role in Eastern European, compared with Western countries (98). However, these hypotheses have not been adequately investigated (Table 2).

Treatment strategies
At present, most transsexual treatment clinics refer to the recommendations given in the standards of care set out by the Harry Benjamin International Gender Dysphoria Association (HIGDA) (100), which sets out minimal criteria for the treatment of transsexual
applicants. In the HBIGDA, all gender identity disorder interventions are required to arise from an interdisciplinary team which includes psychiatrists, psychologists, endocrinologists and surgeons. The standards of care determined by the HBIGDA advocate treatment in two phases. The first stage consists of establishing a diagnosis based on precise and commonly accepted criteria (DSM-IV) and the second stage, or the real-life test, confronts the subject with the everyday reality that the subject will meet once she/he has successfully completed the sex change process.

At the University of Liége, sex reassignment surgery in gender dysphoria is considered to be a serious intervention which cannot be carried out without the full assurance that the sex change applicant has truly thought out his/her request and has balanced out the consequences. In this context, long-term psychotherapeutic work preceding the intervention is, if not obligatory, at least strongly recommended.

The diagnostic phase

The transsexual requests assume different forms. It is thus appropriate to detect, among individuals who suffer from diverse forms of gender dysphoria, those who fulfill the requirements of a transsexual diagnosis and who, as a last resort, would benefit from surgical sex change.

During the diagnostic phase, there are two objectives: to assess the amplitude of gender dysphoria and the degree of transsexual conviction and to give information concerning the treatment procedure, including both the possibilities and the limitations of surgery.

Even though well-defined criteria are available to the psychologist and psychiatrist, the diagnosis of transsexualism remains difficult; in particular concerning the evaluation of such aspects as authenticity, duration and intensity of the gender dysphoria. For example, in order to convince the examiner, the transsexual candidate frequently tends to exaggerate his/her personal history. Also, the objectivity of the testimony is often difficult to evaluate, especially since in the majority of cases it is impossible to obtain authentic third party information (e.g. parents, spouse, other close relations), as they either endorse the request personally or are opposed to it. Under such conditions, a prolonged and meticulous assessment (through cross-checking and repeating questions) is necessary in order to come to an adequate diagnosis. This phase lasts a minimum of 6 months, but can last up to 12 months.

To begin with, the major objective here is to identify those cases that present psychological (such as psychotic syndromes, perversions or occasional transsexual crises (perturbed or fragile gender identity)) or biological perturbations (intersexual states or endocrine disorders), and this in the most reliable way possible. The amplitude of the dysphoria is then assessed based on a thorough review of the subject’s medical history.

Differential diagnostic issues

Anatomical–biological disorders As stated in DSM-IV, it is appropriate to ensure that the sex change applicant does not correspond to a diagnosis of intersexuality: ‘the affection is not concomitant to an affection responsible for a hermaphrodite phenotype’. It is important that there is a congruence between the genital organs of the sex change applicant and the
The majority of clinicians (17/19) interrogated by Peterson & Dickey (116) follow-up the sex change applicant for at least 3 months (this phase can in certain cases be extended to 2 years) before making a precise diagnosis.

The real-life test: a social integration phase

The objective of the real-life test is to make sure that the patient takes on the appearance of the desired sex in everyday activities, both social and professional, for at least 1 month. During this period, the subject receives a medical certificate justifying the wearing of clothing of the opposite sex to reduce worries associated with the possibility of having to prove his identity (which would reveal his true sex, in spite of appearing to belong to the opposite sex). Also, the sex change applicant must choose a new first name, dress in accordance with his new gender, inform his/her different social partners of
his future sexual reassignment, and live correctly in his/her new gender role.

During this period, which may last from 12 to 18 months, the sex change candidate must supply proof of his social life and integration (e.g. a certificate of attendance at school, work, etc.). This allows an evaluation of the degree of conviction. Indeed, everyday confrontation with reactions from the social milieu represents one of the major difficulties in sexual conversion. A (simulated) sex change inevitably radi-cally disrupts the subject’s social environment. Relations with parents and colleagues and close relations are all perturbed. During the real-life test, therapy may also focus on the subject’s confrontation of hostile reactions in his/her environment.

However, a number of sex change applicants attempt to avoid this test, or they try to reduce it to a minimum, as they consider it a waste of time. For example, certain applicants are persuaded that their change will be accepted without problem by their colleagues and that they have nothing to prove. Others argue that presenting themselves in the role before being operated on will result in them being the victim of a hoax (and therefore they must obtain this transformation). Yet others argue that, since they own their own body, they have a right to have recourse to such a surgical intervention, even if this transformation turned out to be an error (107).

Not all treatment centres consider psychotherapeutic follow-up to be necessary (108). Cohen-Kettenis & Walinder (117) noted that several clinicians refuse to comply to the sex change request without such a investigation. Supportive psychotherapy may be used in this context, where issues such as the consequences of reassignment surgery (loss of a partner, contact with children, work, etc.) and eventual disorders indirectly linked to the gender dysphoria (109) may be taken up in treatment sessions.

Hormonal therapy

Although the psychologist and the psychiatrist play the major roles at the various phases of the gender identity diagnosis and reassignment, the endocrinologist must also be involved in the very first step of the process. As summarized in Table 3, the endocrinologist’s role will be first to detect unknown intersexual disease through careful anamnesis, clinical examination and basal hormonal check up. The karyotype is also evaluated because it is mandatory to obtain administrative permission for reassignment of sex in Belgium. Although some patients suffering from intersexual status did consult our group, we have, however, never diagnosed such an unknown pathology in the patients referred to our group for a gender identity problem.

When the diagnosis of transsexuality is ascertained, the endocrinologist must then control the absence of absolute contraindications (see Table 4) and carefully explain to the patients the possible undesirable side-effects of various hormonal treatments (see Table 5). Even at this first step, patients should also be aware that the hormonal treatment after castration will be life long to avoid well-known metabolic and psychophysio-

Table 3 Role of the endocrinologist in the interdisciplinary group for the management of transsexualism.

<table>
<thead>
<tr>
<th>Phase of the reassignment</th>
<th>Role of the endocrinologist</th>
<th>Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-inclusion phase</td>
<td>Confirms absence of endocrine disorders (mainly intersexuality)</td>
<td>Anamnesis and clinical evaluation</td>
</tr>
<tr>
<td></td>
<td>Controls absence of contraindication for further hormonal treatment</td>
<td>Karyotype BASAL biological and endocrine check-up Dynamic neuroendocrine test (TRH, OGTT) (optional)</td>
</tr>
<tr>
<td>Pre-surgical (pre-castration)</td>
<td>Absence of undesirable clinical and biological side-effects (Table 5)</td>
<td>Anamnesis and clinical evaluation Basal biological and endocrine testing (each 3–6 months)</td>
</tr>
<tr>
<td></td>
<td>Absence of undesirable side-effects</td>
<td>Anamnesis and clinical evaluation Basal biological and endocrine testing (+PSA?) Dynamic tests if mandatory (TRH, OGTT) Osteodensitometry (each 1–2 years)</td>
</tr>
<tr>
<td>Post-surgical (post-castration)</td>
<td>Control of a good ‘physiological’ equilibrium</td>
<td>Basal biological and endocrine testing (each 3–6 months) Dynamic tests if mandatory (TRH, OGTT) Osteodensitometry (each 1–2 years)</td>
</tr>
</tbody>
</table>

TRH, thyrotrophin-releasing hormone test; OGTT, oral glucose tolerance test; PSA, prostate specific antigen test.
genetic male (XY) after more than 10 years of oestrogen therapy have been described (118) and since recent data indicate an increased PSA level in a genetical female (XX) receiving androgen therapy (120).

Although there is an increase in the number of thrombo-embolic disorders in oestrogen-treated MF patients (less marked, however, since the use of transdermal oestrogens after the age of 40), the mortality of MF transsexuals is similar to that of the normal population (121). Very exceptionally, the development of a pituitary prolactin-secreting microadenoma has been described (122); we have recently observed a 3 mm hypophysial microadenoma (prolactin and growth hormone (GH)) in a hyperoestrogenized MF patient: the image and endocrine abnormalities disappeared after a decrease in the dose of oestrogen. Other metabolic and endocrine effects of the treatment (123) include: increase in bone density (124), decrease in plasma insulin-like growth factor-I (125) and decrease in hair growth and sebum formation (126).

The use of progesterone for 10–15 days to ‘mimic’ physiological fluctuations of gonadal steroid hormone is still controversial and, as a rule, not prescribed. In our experience, however, a few patients suffering from abnormal psychological irritability and mammary tenderness may be given oral natural progesterone with some psychological and clinical benefits. In FM patients, androgen treatment induces a constant increase in the haematocrit and a slight decrease in

Table 4 Contra-indications of hormonal treatment in transsexual patients (after Futterwut et al. 1998, modified (118)).

<table>
<thead>
<tr>
<th>MF (XY)</th>
<th>FM (XX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute contraindication</td>
<td>Severe diastolic hypertension</td>
</tr>
<tr>
<td></td>
<td>Thrombophlebitis or thromboembolic disease</td>
</tr>
<tr>
<td></td>
<td>Cerebrovascular disease</td>
</tr>
<tr>
<td></td>
<td>Severe hepatic dysfunction</td>
</tr>
<tr>
<td>Relative contraindication</td>
<td>Heavy cigarette consumption</td>
</tr>
<tr>
<td></td>
<td>Family history of breast cancer</td>
</tr>
<tr>
<td></td>
<td>Hyperprolactinaemia</td>
</tr>
<tr>
<td></td>
<td>Marked obesity (WHR>0.95)</td>
</tr>
</tbody>
</table>

WHR, weight to height ratio.

Table 5 Favourable (‘wanted’) and unfavourable (‘unwanted’) side-effects of hormonal treatment in transsexual patients.

<table>
<thead>
<tr>
<th>MF (XY)</th>
<th>FM (XX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favourable side-effects (wanted, phase A1 and A2)</td>
<td>Psychological</td>
</tr>
<tr>
<td></td>
<td>Secondary to body transformation</td>
</tr>
<tr>
<td></td>
<td>Biological</td>
</tr>
<tr>
<td></td>
<td>Decreased blood testosterone</td>
</tr>
<tr>
<td></td>
<td>Increased blood oestriadiol</td>
</tr>
<tr>
<td></td>
<td>Anatomical</td>
</tr>
<tr>
<td></td>
<td>Mammary gland hyperplasia</td>
</tr>
<tr>
<td></td>
<td>Decreased erection</td>
</tr>
<tr>
<td></td>
<td>Decreased facial hair</td>
</tr>
<tr>
<td></td>
<td>Modification of speech</td>
</tr>
<tr>
<td></td>
<td>Gynoid fat deposit</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Unfavourable side-effects (unwanted)</td>
<td>Psychological</td>
</tr>
<tr>
<td></td>
<td>Depression (mainly secondary due to the use of anti-androgens)</td>
</tr>
<tr>
<td></td>
<td>Abnormally decreased libido</td>
</tr>
<tr>
<td></td>
<td>Biological</td>
</tr>
<tr>
<td></td>
<td>Bilirubin</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
blood high density lipoprotein (HDL) levels. The development of androgenic obesity rarely leads to type 2 diabetes; a family history of diabetes therefore led us to systematically perform an OGTT before beginning treatment. In those ‘at risk’ patients advice on diet is mandatory. Increase in facial hair growth (126) and modifications of behavioural and cognitive function (increase in spatial ability, decrease in verbal fluency) (127, 128) are well documented and are considered to be very favourable effects of androgen therapy by the patients. It is, however, important to inform FM patients that androgen therapy often leads to endometrial hypertrophy, a putatively precancerous state: this renders hysterectomy nearly mandatory once the real-life test phase has been terminated.

Surgical transformation

Surgical transformation in MF consists of an ablation of the testicles and penis and vaginal plastic surgery. These interventions are frequently accompanied by mammoplasty. In FM, the surgical procedure consists of bilateral mastectomy, ovariectomy, hysterectomy and phallic plastic surgery.

Surgery is most often performed at least 1 year after starting hormonal treatment. The decision to proceed with such an intervention may be reconsidered if there are difficulties in getting past the real-life phase (psychosocial, psychiatric instability) or evidence of substance abuse (e.g. drugs, alcohol) (116). Other reasons for postponing surgical reassignment may include unsatisfactory family support and/or an environment hostile towards the transformation, or an unannounced divorce.

Post-transformation

It is impossible to compel the transsexual to follow long-term assessment (129). Indeed, a major obstacle in conducting follow-up studies is that it is very difficult to find transsexuals who have been operated on, and even more difficult to find those who accept reassessment (130–132). Therefore, those few who do agree to participate in follow-up studies do not constitute a representative sample of the population of transsexuals who have been operated on.

Apart from this methodological problem, since the first publication by Hertz et al. (133), a large number of studies have examined the consequences of sex change and these have been the subject of several reviews (59, 134–141). In the great majority of cases, transsexuals seem satisfied with their transformation, with only about 10% of subjects being unsatisfied. This percentage is lower in FM (6% (135); 9.7% (137); 3% (139))

<p>| Table 6 Summary of hormonal treatment in MF and FM transsexual patients at the different phases of gender reassignment. |</p>
<table>
<thead>
<tr>
<th>Phase</th>
<th>MF (XY)</th>
<th>FM (XX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-surgical</td>
<td>LHRH superagonists (i.m. monthly?) and/or spironolactone (100–200 mg/day) or cyproterone acetate (50–100 µg/day)</td>
<td>LHRH superagonists (monthly?) and/or norethisterone acetate (5–10 µg/day)</td>
</tr>
<tr>
<td>Pre-surgical A.1.: suppression of the original sex characteristics (optional)</td>
<td>Ethinyloestriadiol (50–100 µg/day) or conjugated oestrogen (1.25–2.50 mg/day) or oestradiol benzoate, oestradiol phenylpropionate (25 mg/2 weeks)</td>
<td>Norethisterone acetate (5–10 mg/day) or testosterone undecanoate (3 x 80 mg/day p.o.) or testosterone propionate, phenylpropionate, isoaprate, decanoate (250 mg for 2,3 or 4 weeks i.m.)</td>
</tr>
<tr>
<td>Pre-surgical A.2.: induction of designed sex characteristics</td>
<td>Ethinyloestriadiol (50–100 µg/day) or cyproterone acetate (50–100 µg/day)</td>
<td>Oestrogens (see A.2.) or transdermal form (50–100 µg/day) or subcutaneous implant</td>
</tr>
<tr>
<td>A1 and A2 maximum 2 years</td>
<td>Oestrogens (see A.2.) or transdermal form (50–100 µg/day) or subcutaneous implant</td>
<td>Testosterone p.o. or i.m. (see A.2.) or transdermal androgens?</td>
</tr>
<tr>
<td>B. Post-surgical (post-castration)</td>
<td>Progesterone (100 mg/day for 2 weeks/month) or classical post menopausal hormonotherapy (+subcutaneous implant?)</td>
<td></td>
</tr>
</tbody>
</table>

www.eje.org
compared with MF subjects (8.1% (135); 10.3% (137); 13% (139)).

A temporary dissatisfaction can be observed immediately after the sex change. Certain transsexuals find themselves confronted with various difficulties (post-operation pain, surgical complications, dissatisfaction with surgical results, departure of the partner, loss of job, familial conflicts, etc.) and experience a phase of dissatisfaction that can lead to regret in some cases. However, most often this dissatisfaction disappears during the year following the surgical transformation where no other intervention was deemed necessary (142).

More deep regrets are rare. Studies report only less than 1% of FM subjects regrett ing the intervention, and 1.5% of MF subjects (142, 143). An analysis of the responses shows that these regrets may come from one of three major sources: (1) erroneous diagnosis (certain subjects showed clear signs of psychosis); (2) absence of a real-life test (subjects had not been submitted to this procedure); (3) insufficiently adapted surgical interventional protocol and deceptive surgical results (certain subjects had to wait for long periods of time before proceeding to the surgical intervention; unsatisfactory results from cosmetic surgery).

Finally, dissatisfaction can be so profound that it may lead the subject to suicide. Nonetheless, the rate of suicide has been reported at a little more than 1% in MF and less than 1% in FM (134, 135, 137, 143, 144). However, it must be mentioned that they may not necessarily be attributed directly to the sex change. For example, errors in medication, overdoses, medical complications (not related to the surgical transformation (145)), loss of employment or emotional difficulties (130, 131, 146) may also be related to this fatal gesture.

In addition, according to Pfäfflin & Junge (144), the success of a sexual transformation depends closely on several concrete intervening factors, either before the surgical transformation (keeping in contact with the treatment centre; living in the desired role; receiving hormonal treatment; benefitting from a psychological and psychiatric follow-up) or during and after the transformation (proceeding to a surgical transformation; profiting from quality surgical interventions; proceeding to a change of civil status).

Prognostic issues
As sex change is a major and irreversible transformation, it is most appropriate to identify, before the operation, the factors that would predict a favourable or unfavourable outcome after the operation. Several researchers have concerned themselves with this aspect (30, 31, 147–151).

No less than 20 different negative criteria have been mentioned in the literature (increasing age, personal and social instability, inappropriate physical build, etc.). Although these different factors cannot be considered true contraindications, their presence should suggest caution. Indeed, the appropriateness of surgical transformation lessens in individuals presenting these factors, as there is a greater risk of an unfavourable outcome in these subjects.

Certain criteria for a good prognosis have been defined. Apart from the absence of psychopathology, the most frequently mentioned are mental and emotional stability, that the request was demanded before the age of 30, that subjects have completed an adaptation period (both physical and behavioural) of at least 1 year in the desired sex, that there is an integration of the limitations and direct consequences of surgery, that the subject undergoes preliminary psychotherapy related to the surgical treatment, and the choice of a homosexual sex object.

In light of the various studies mentioned earlier, it is quite clear that surgical anatomical transformation results in largely positive effects. Based on this, and where treatment is carried out correctly from the diagnostic phase to the operation, there is no empirical reason why a sex change request should be refused.

Conclusions
The transsexual suffering from an extreme form of gender dysphoria syndrome often invests all his/her hopes on surgical reassignment. Due to its irreversible character and its considerable consequences, this procedure cannot be performed before a careful analysis of the request has taken place and a gender dysphoria diagnosis (type transsexualism) has been conducted. This diagnosis is difficult and necessitates a multidisciplinary approach. Before proceeding to the surgical sex reassignment intervention, the transsexual should consult an endocrinologist, psychiatrist and psychologist for a period of at least 3 years.

References
9 Weitze C & Osburg S. Transsexualism in Germany: empirical data on epidemiology and application of the German transsexuals’
376 A Michel and others

108 La Torre RA & Piper WE. Gender identity and gender role in schizophrenia. Journal of Abnormal Psychology 1979 88 68–72.

126 Giltay E & Gooren LJG. Effect of sex steroid deprivation, administration on hair growth and skin sebum production in transsexual males and females. Journal of Clinical Endocrinology and Metabolism 2000 85 2913–2921.

Received 6 April 2001
Accepted 30 May 2001

www.eje.org