Desethylamiodarone antagonizes the effect of thyroid hormone at the molecular level

Fausto Bogazzi, Luigi Bartalena, Sandra Brogioni, Alessandro Burelli, Francesco Raggi, Federica Ultimieri, Chiara Cosci, Mario Vitale, Gianfranco Fenzi and Enio Martino

Dipartimento di Endocrinologia e Metabolismo, Università di Pisa, Ospedale di Cisanello, Via Paradisa, 2, 56124 Pisa, Italy
(1) Cattedra di Endocrinologia, Università di Insubria, Varese and (2) Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico II, Napoli, Italy

Abstract

Objective: To evaluate the molecular mechanisms of the inhibitory effects of amiodarone and its active metabolite, desethylamiodarone (DEA) on thyroid hormone action.

Materials and methods: The reporter construct ME-TRE-TK-CAT or TSHβ-TRE-TK-CAT, containing the nucleotide sequence of the thyroid hormone response element (TRE) of either malic enzyme (ME) or TSHβ genes, thymidine kinase (TK) and chloramphenicol acetyltransferase (CAT) was transiently transfected with RSV-TRβ into NIH3T3 cells. Gel mobility shift assay (EMSA) was performed using labelled synthetic oligonucleotides containing the ME-TRE and in vitro translated thyroid hormone receptor (TRβ).

Results: Addition of 1 μmol/l T4 or T3 to the culture medium increased the basal level of ME-TRE-TK-CAT by 4.5- and 12.5-fold respectively. Amiodarone or DEA (1 μmol/l) increased CAT activity by 1.4- and 3.4-fold respectively. Combination of DEA with T4 or T3 increased CAT activity by 9.4- and 18.9-fold respectively. These data suggested that DEA, but not amiodarone, had a synergistic effect with thyroid hormone on ME-TRE, rather than the postulated inhibitory action; we supposed that this was due to overexpression of the transfected TR into the cells. When the amount of RSV-TRβ was reduced until it was present in a limited amount, allowing competition between thyroid hormone and the drug, addition of 1 μmol/l DEA decreased the T3-dependent expression of the reporter gene by 50%.

The inhibitory effect of DEA was partially due to a reduced binding of TR to ME-TRE, as assessed by EMSA. DEA activated the TR-dependent down-regulation by the negative TSH-TRE, although at low level (35% of the down-regulation produced by T3), whereas amiodarone was ineffective. Addition of 1 μmol/l DEA to T3-containing medium reduced the T3–TR-mediated down-regulation of TSH-TRE to 55%.

Conclusions: Our results demonstrate that DEA, but not amiodarone, exerts a direct, although weak, effect on genes that are regulated by thyroid hormone. High concentrations of DEA antagonize the action of T3 at the molecular level, interacting with TR and reducing its binding to TREs. This effect may contribute to the hypothyroid-like effect observed in peripheral tissues of patients receiving amiodarone treatment.

European Journal of Endocrinology 145 59–64

Introduction

Amiodarone is an iodine-rich benzofuranic derivative frequently used for the treatment of refractory cardiac arrhythmias. During chronic treatment, amiodarone and its main metabolite, desethylamiodarone (DEA), reach high concentrations in several tissues, including the thyroid gland (1). The massive increase in available iodine and the high intrathyroidal concentration of amiodarone and DEA are responsible for changes in thyroid function observed in a substantial proportion of patients during chronic treatment with amiodarone. Amiodarone-induced thyroid dysfunction occurs in 16–49% of patients (2–5) soon after initiation of treatment or even long after withdrawal of the drug.

Amiodarone treatment can cause both hypothyroidism and thyrotoxicosis; the latter can be due to excess iodine or to a thyroid-destructive process (6–10).

At the cellular level, in addition to the inhibition of type I and type II iodothyronine 5′-deiodinase (11, 12), amiodarone can also act as a competitive antagonist of tri-iodothyronine (T3) in cultured rat pituitary cells (13), and induce a hypothyroid-like condition. Similar to what is observed in hypothyroidism, amiodarone decreases the number of catecholamine receptors (14, 15), and reduces the effect of T3 on β-adrenergic...
receptors (16). Amiodarone is also likely to antagonize the effects of thyroid hormone by a competitively binding to thyroid hormone receptor (TR) both in vivo and in vitro (17–19). Furthermore, the drug inhibits the thyroid hormone-mediated increase in growth hormone mRNA levels in cell cultures (13). Hudig et al. (20) reported that, in amiodarone-treated animals, the drug-induced hypercholesterolaemia was due to a reduction of low-density lipoprotein (LDL) receptor mRNA levels, thus suggesting that the drug induced a hypothyroid-like condition in the liver. However, the molecular mechanisms underlying these competitive effects of amiodarone on thyroid hormone-responsive genes are not completely understood. In addition, although DEA is considered to be the active metabolite of amiodarone, it is not clear whether the effects observed at the molecular level are due to DEA alone.

This study was undertaken to investigate the interaction of amiodarone and DEA with T₃ and TR at the molecular level. For this purpose, we used either a malic enzyme (ME) or a thyroid-stimulating hormone (TSH) thyroid hormone response element (TRE)–thymidine kinase (TK)–chloramphenicol acetyltransferase (CAT) reporter cotransfected into NIH3T3 cells with RSV-TRβ in the absence or presence of thyroid hormone, amiodarone or DEA, alone or in combination. We herein demonstrate that DEA, but not amiodarone, is a weak thyroid hormone agonist that antagonizes T₃ action.

Materials and methods

Plasmids

The RSV-TRβ expression plasmid, containing the cDNA sequence of rat TRβ, inserted into the HindIII/HpaI restriction sites of RSV, has been described previously (21). The reporter plasmids ME-TRE-TK-CAT and TSH-TRE-TK-CAT containing the nucleotide sequence of the ME-TRE or TSHβ-TRE have also been described in detail (22). The plasmid PCH110 containing the β-galactosidase coding region was purchased from Pharmacia (Uppsala, Sweden) and used as an internal control to account for variations in transfection assays.

Cell culture and transfection assay

NIH3T3 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS) as described previously (21). Transfection assays were performed by the calcium phosphate precipitation methods as detailed previously (22). Briefly, 200 000 cells were seeded into a 35-mm dish 24 h before transfection in DMEM containing 10% FBS deprived of thyroid hormone by treatment with cationic exchange resin (AG-1-X8; Bio-Rad, Richmond, CA, USA) and activated charcoal. A typical experiment consisted of 4 μg reporter plasmid, 1.5 μg RSV-TRβ and 0.4 μg pCH110, cotransfected into each 35-mm dish. In a dose–response experiment, RSV-TRβ-containing plasmid in amounts from 0.1 to 1.5 μg were put in each 35-mm dish and the smallest amount allowing a T₃-specific response (0.25 μg) was chosen for competition experiments. Hormones or analogues were added at concentrations ranging from 1 pmol/l to 100 μmol/l, as appropriate. The CAT activity was determined 48 h later by a phase extraction method and normalized by measuring the β-galactosidase activity (21). Results represent the mean ± S.D. of at least five different experiments, each carried out in duplicate.

Gel mobility shift assay (EMSA)

Expression vector pSP72 containing cDNA of the rat TRβ was used for in vitro transcription–translation using a reticulocyte lysate system. The rat ME-TRE has been described elsewhere (21). For the binding reaction, 2.5 μl in vitro translated TRβ or control was used. After preincubation for 15 min on ice in a total volume of 20 μl (20 mmol/l Hepes, pH 7.9, 0.5 mmol/l dithiothreitol, 5 mmol/l MgCl₂, 0.5 mmol/l EDTA, 100 mmol/l KCl, 10% glycerol, 5 μg polydA-dT), 3 ng (15 000 c.p.m.) of probe was added and the incubation continued for 45 min. DNA–protein complexes were resolved on a 5% linear non-denaturing
polyacrylamide gel at room temperature in 0.5×TBE (45 mmol/l Tris, 45 mmol/l boric acid, 1 mmol/l EDTA). Gel was dried and exposed at −70 °C.

Results

Responsiveness of the ME-TRE-TK-CAT reporter gene to graded amounts of amiodarone or DEA was tested in transient transfection assays in NIH3T3 cells. DEA or amiodarone were added to the culture medium at concentration ranging from 1 nmol/l to 100 μmol/l. As shown in Fig. 1, the addition of 1 μmol/l DEA increased the expression of the reporter gene, as assessed by the level of CAT activity, by 3.4-fold. CAT activity doubled with a 100 nmol/l concentration of DEA; at variance with this, amiodarone caused only a slight increase over the basal level of CAT activity at 1 μmol/l concentration (1.4-fold). In keeping with previous reports (23), concentrations of amiodarone or DEA greater than 10 μmol/l were cytotoxic for NIH3T3 cells, therefore we used 1 μmol/l DEA or amiodarone in the next experiments.

Figure 2 illustrates the effect of 1 μmol/l T3, T4, amiodarone or DEA, alone or in combinations of two, on the expression of ME-TRE-TK-CAT reporter plasmid cotransfected with a standard amount (1.5 μg/dish) of TR-containing plasmid (see Materials and methods). T3 increased the CAT activity by 12.5-fold, T4 by 4.5-fold, DEA by 3.4-fold and amiodarone by 1.4-fold, whereas iodide was completely ineffective. Combination of amiodarone with T3 or T4 gave a 14-fold and a sixfold induction of CAT activity. Addition of DEA to T3- or T4-containing medium increased CAT activity 18.9- and 9.4-fold respectively. These results suggested that DEA, but not amiodarone, was a TR agonist. However, these data were somewhat surprising, because the expected DEA- or amiodarone-induced inhibition of the thyroid hormone-dependent activity of the ME-TRE-TK-CAT reporter gene was not observed. We decided to titrate the amount of RSV-TRβ plasmid, with the aim of obtaining a smaller amount of TR protein in the transfected cells (see Materials and methods). Cells were transfected with the RSV-TRβ-containing plasmid in amounts ranging from 0.1 to 1.5 μg per dish, and the smallest amount still giving a T3-specific response (2.5-fold of induction of CAT activity) was used for competition experiments (0.25 μg). Addition of 1 μmol/l T3 to the cells transfected with a reduced amount of RSV-TRβ (0.25 μg/dish) increased the CAT activity by 12-fold; 1 nmol/l and 1 pmol/l T3 gave a 7.5- and fourfold increase in reporter gene activity respectively (Fig. 3). DEA (1 μmol/l) was ineffective when added to the 1 μmol/l T3-containing medium, but it reduced the thyroid hormone-dependent activity of the reporter plasmid by 50% when in combination with 1 nmol/l or 1 pmol/l T3 (Fig. 3). Amiodarone in these experimental conditions was ineffective.

Figure 2 Thyroid hormone-dependent activity of ME-TRE-TK-CAT. Transient transfections were performed as described in Fig. 1 and in Materials and methods. A β-galactosidase-containing plasmid was included as an internal control. The cells were cultured in the absence or presence of 1 μmol/l thyroid hormone or analogue. Results were expressed as a ratio of CAT activity in the presence and absence of the ligand and represent the mean ± s.d. of at least four different experiments, performed in duplicate. W/O, without.

We next evaluated whether the reduction in T3 activity was due to the inhibition of TR binding to the ME-TRE, using an EMSA. Addition of DEA in the concentration range 1 nmol/l–1 μmol/l slightly reduced TR binding to ME-TRE. The same range of concentrations of amiodarone were less effective than...
DEA. Higher concentrations (1 mmol/l) of DEA or amiodarone abolished TR binding (Fig. 4). However, the drugs were cytotoxic when used at this concentration.

We then evaluated whether the TSH-TRE, a negative TRE arranged as a direct repeat without spacing, could be activated by DEA or amiodarone. Addition of 1 mmol/l DEA to NIH3T3 cells transfected with a limited amount of TR-expressing plasmid (0.25 μg) resulted in 35% reduction in CAT expression from the reporter gene compared with the basal level of CAT expression obtained in the absence of hormone or analogue (Fig. 5). Addition of amiodarone at the same 1 mmol/l concentration was ineffective (less than 10% reduction of the basal CAT activity). Combination of 1 mmol/l DEA with 1 nmol/l T3 reduced the TR–T3-mediated down-regulation of TSH-TRE to 55%.

Discussion
Pharmacological effects of amiodarone on cardiac functions consist of bradycardia, reduction of myocardial oxygen consumption and lengthening of the cardiac action potential and the effective atrial and ventricular refractory periods (24). These effects may be prevented at least in part by administration of T4 (25). Amiodarone treatment is also associated with an increase in serum cholesterol concentrations, and a reduction in cardiac β-adrenergic receptors (26).

Because these effects resemble those observed in hypothyroidism, it was postulated that a possible mechanism of action of amiodarone might be to induce a local hypothyroidism-like condition (27). However, the serum thyroid hormone pattern in patients chronically treated with amiodarone – increased serum T4, reduced serum T3 and transiently increased serum TSH concentrations, mimics that found in patients with non-thyroidal illness (17). It is generally accepted that this condition, known as Euthyroid Sick Syndrome, is not associated with hypothyroidism, and T4 treatment is not useful (17). Most of the changes in serum thyroid hormone are due to the inhibitory effect of amiodarone on type I and II 5′-deiodinase (11, 12). However, the inhibition of 5′-deiodinase alone cannot explain all the effects of amiodarone treatment; indeed, treatment with iopanoic acid, which exerts similar inhibitory effects on 5′-deiodinase, reproduces only part of the effects of amiodarone administration (28).

Amiodarone can reduce the expression of thyroid hormone-sensitive genes, such as LDL receptor (29), and of rat pituitary gene (13, 30, 31). Moreover, amiodarone and DEA inhibit the binding of T3 to its nuclear receptor (32, 33). However, the fact that amiodarone was ineffective in NIH3T3 cells might also be due to the probable absence of its metabolism in this cell line. Our data clearly demonstrate that DEA, but not amiodarone, exerts a direct effect on genes that are either positively or negatively regulated by thyroid hormone: this effect is direct and specific and occurs only in the presence of TR and a TRE. Our results expand those of Bakker et al. (19), who found that, in transient transfection assays,
amiodarone was a weak activator of the LDL receptor gene and had an additive effect when used in combination with T3. This finding was not in keeping with Northern blot results showing that animals fed with an amiodarone-containing diet had a reduction in LDL receptor mRNA levels (20). We showed that DEA antagonizes the action of T3 at the molecular level when in large excess, in keeping with its weak TR-agonist activity. This effect was evident only when the amount of TR expressed in the transfected cells was limited. When greater amounts of TR-containing expression plasmid were used, a combination of T3 was limited. When greater amounts of TR-containing expression plasmid were used, a combination of T3 and DEA induced a greater induction of the reporter plasmid than that observed with T3 alone. Under these experimental conditions, probably not all TR molecules were bound to T3, and remained available for DEA binding and activation. Although we could not measure the concentration of TR proteins expressed in the cells after transfection, it is conceivable that lower amounts of transfected plasmids produced lower amounts of TR proteins. This is supported by the fact that the competition by DEA was apparent only with 0.25 μg RSV-TR plasmid. The inhibitory effect of DEA was, at least partially, due to a reduced TR binding to the TRE, as shown by EMSA. However, a conformational change in the TR–DEA complex, leading to less feasible formation of the initiation complex, could not be excluded.

In conclusion, our data demonstrate that DEA binds to TR and activates, although weakly, thyroid hormone-sensitive genes, and that high concentrations of DEA, but not of amiodarone, are functional inhibitory competitors of T3 binding to TR. These effects might contribute to the hypothyroid-like effect observed in patients receiving treatment with amiodarone.

Acknowledgements
This work was in part supported by grants from Ministero dell’Università e della Ricerca Scientifica e Tecnologica, Rome, and by grants from the University of Pisa (Fondi d’Ateneo), Pisa, Italy to EM and LB. We wish to thank Professor Aldo Pinchera for his continuous encouragement and advice.

References
12 Sogol PM, Hershman JM, Reed AW & Dilmann WH. The effects of amiodarone on serum thyroid hormones and hepatic thyroxine 5′-monodeiodination in rats. Endocrinology 1983 113 1464–1469.
14 Rani CS. Amiodarone effects on thyrotropin receptors and responses stimulated by thyrotropin and carbacbol in cultured dog thyroid cells. Endocrinology 1990 127 2930–2937.
20 Hudig F, Bakker O & Wiersinga WM. Amiodarone decreases gene expression of low-density lipoprotein receptor at both the mRNA and the protein level. Metabolism 1998 47 1052–1057.


33 Bakker O, van Beeren HC & Wiersinga WM. Desethylamiodarone is a noncompetitive inhibitor of the binding of thyroid hormone to the thyroid hormone β1-receptor protein. Endocrinology 1994 134 1665–1670.

Received 12 September 2000
Accepted 4 April 2001