RAPID COMMUNICATION

Ghrelin and motilin: two sides of one coin?

C Folwaczny, J K Chang and M Tscho¨p

Department for Internal Medicine, Innenstadt University Hospital, Munich, Germany and 1Phoenix Pharmaceuticals Inc, 530 Harbor Boulevard, Belmont, California, USA

(1Correspondence should be addressed to C Folwaczny, Medizinische Klinik Innenstadt, Ludwig-Maximilians Universität, Ziemssenstrasse 1, 80336 München, Germany; Email: Christian.Folwaczny@medinn.med.uni-muenchen.de)

We would like to emphasize structural and effect-related similarities between the gastrointestinal hormone motilin, the recently discovered agent motilin-related peptide and a novel endogenous ligand of the growth hormone secretagogue receptor (GHS-R), ghrelin. In our opinion, the information summarized below indicates the existence of a family of gastrointestinal hormones linking endocrine control of energy balance and growth with the regulation of gastrointestinal motility.

A neuroendocrine system controls gastrointestinal motility at three different levels: the gut itself (enteric nervous system), the autonomic system and higher centers of the central nervous system (1). One way to quantify gastrointestinal motility is to measure the rate of gastric emptying. Gastric emptying depends on several factors: for example in hypoglycemia, rapid gastric emptying is observed (2, 3), whereas physiologic gastroparesis, resulting in impaired absorption of nutrients in the small bowel, has been described in hyperglycemia (4). It is not clear whether the effects of hyperglycemia on gastric motility are the aftermath of direct effects on the smooth muscle since smooth muscle contraction and relaxation are not affected by hyperglycemia in vitro (5). Moreover, foods with a high caloric content are emptied slowly from the stomach as compared with low caloric meals (5). The composition of a meal, (e.g. the proportion of fat, proteins and carbohydrates) is also believed to influence gastric emptying (5). Obviously, a close feed-back control regulation between the above mentioned parameters and the central nervous system exists in healthy individuals and could be disturbed in patients with a neuropathy of the enteric nerve system, (e.g. in patients with long-standing diabetes mellitus (4)). It is still unknown how information about composition and calorific content of a meal is signalled from the stomach to the central nervous system and vice versa. The new hormone ghrelin (6, 7) may participate in this putative regulatory feedback loop between the gastrointestinum and the central structures controlling food intake.

Recently Kojima and coworkers identified ghrelin as a ligand of the growth hormone secretagogue receptor (GHS-R) (6), based on its ability to induce GH secretion from pituitary cells. The 28 amino acid peptide hormone is characterized by an octanoyl side chain at serine 3 and its primarily secreted from distinct endocrine cells in the stomach (8). The unique octanoylation feature appears to be essential for the hormone’s bioactivity (at least as far as the stimulation of growth hormone secretion is concerned (6)).

Prepro-motilin-related peptide (prepro-MTLRP) was first described by Tomasetto and coworkers as a novel hormone originating from enteroendocrine cells of the stomach (9) and shares sequence and structural features with motilin. Despite its motilin like appearance, the authors summarize their findings as follows: “The physiologic contribution of MTLRP to the endocrine regulation of important aspects of GI function such as contraction and/or acid secretion remains to be tested” (9).

Although the physiologic roles of motilin, MTLRP and ghrelin are not fully understood, we would like to point out the following facts that may extend the proposed role of this peptide family.

Effects on food intake

We have recently described that ghrelin, in addition to its role in regulating GH-secretion, induces adiposity via a central mechanism of increasing food intake and decreasing fat utilization (10). Similar findings, showing acute ghrelin induced stimulation of food intake confirm a role for ghrelin in the regulation of energy balance (11, 12, 13).

For more than a decade motilin also has been shown to have orexigenic effects (14, 15, 16).

Effects on growth hormone secretion

Ghrelin, as the first known endogenous ligand of the GHS-R stimulates GH secretion from pituitary cells with a potency similar to growth hormone releasing hormone (GHRH). This has been shown in several studies in vitro, in rodent models (6, 17) and in clinical studies (18–20).

Motilin has also been shown to be a potent growth hormone secretagogue (20, 21).

Structural similarities

Both ghrelin and MTLRP are synthesized in the stomach (6, 8, 9) although motilin is mainly expressed
in the small intestine (23). The amino acid sequence of human prepro-MTLRP is identical with human prepro-
ghrelin, except Serine 26 is not octanoylated in prepro
MTLRP (6, 9). In addition, the human motilin-related
peptide fragment [24–41] is identical with human Des-
octanoyl3-ghrelin [1–18]. These observations indicate
close structural relationships between motilin, motilin-
related peptide and ghrelin as well as their respective
precursor peptides (Fig. 1).

The gastrointestinal motilin receptor (MTL-R1A) and
the GHS-R are both G-protein coupled receptors and
show a high degree of structural homology (24, 25).

Involvement in the regulation of
gastrointestinal motor activity
Motilin stimulates gastrointestinal motor activity in the
antrum and upper duodenum and plays a key role in
the regulation of interdigestive motility (26). There is
evidence for the presence of motilin in various regions of
the central nervous system (26).

Ghrelin stimulates gastric acid secretion and motility
in rats and circulating ghrelin levels are correlated with
gastric emptying time in humans (27, 28).

Conclusions
In conclusion, the gastrointestinal hormones motilin,
MTLRP and ghrelin share not only structural properties
regarding both the ligands as well as their G-protein
coupled receptors but also appear to have comparable
central and peripheral effects. Further studies should
address the question whether these similarities are only
coincidental or if two endocrine systems that have been
considered independent from each other are just two
sides of the same coin.

Acknowledgements
We would like to thank Todd M Suter, Indianapolis, for
reviewing and editing the manuscript.

References
1 Malagelada JR, Azpiroz F & Mearin F. Gastroduodenal
motor function in health and disease. In Gastrointestinal
Disease: Pathophysiology, Diagnosis, Management, vol 1, edn 5,
Saunders, 1993.
2 Schwarze E, Palmer M, Aman J & Berne C. Hypoglycemia
increases the gastric emptying rate in healthy subjects. Diabetes
Care 1995 18 674–676.
3 Schwarze E, Palmer M, Aman J, Lindkvist B & Beckman KW.
Hypoglycemia increases the gastric emptying rate in patients
with type 1 diabetes mellitus. Diabetic Medicine 1993 10 660–
663.
4 Jebbink RJ, Samsom M, Bravenboer B, Akkermans LM,
Vanberge-Henegouwen GP et al. Hyperglycemia induces abnor-
malities of gastric myoelectrical activity in patients with type I
5 Fowlanz C, Riepl R, Tichop M & Landgraf R. Gastrointestinal
involvement in diabetes mellitus: Part I (first of two parts),
Epidemiology, pathophysiology, clinical findings. Zeitschrift für
6 Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H &
Kangawa K. Ghrelin is a growth-hormone-releasing acylated
7 Lundgren O. The stomach talks with the pituitary. Gut 2000 47
168–169.