Clinical implications of glucocorticoid metabolism by 11β-hydroxysteroid dehydrogenases in target tissues

M Quinkler, W Oelkers and S Diederich
Department of Endocrinology, Klinikum Benjamin Franklin, Freie Universität Berlin, Berlin, Germany
(Correspondence should be addressed to M Quinkler, Division of Endocrinology, Universitätsklinikum Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany; Fax: +30-84454204)

Abstract
11β-Hydroxysteroid dehydrogenases (11β-HSD) are microsomal enzymes that catalyze the conversion of active glucocorticoids (GC) to their inactive 11-dehydro products and vice versa. Two isoenzymes of 11β-HSD have been characterized and cloned in human tissues. The tissue-specific metabolism of GC by these enzymes is important for mineralocorticoid (MC) and GC receptor occupancy and seems to play a crucial role in the pathogenesis of diseases such as apparent MC excess syndrome, and may play roles in hypertension, obesity and impaired hepatic glucose homeostasis. This article reviews the literature and examines the role and importance of 11β-HSD in humans.

Introduction
Glucocorticoid (GC) and mineralocorticoid (MC) receptors (GR, MR) belong to the family of intracellular hormone-binding receptors. Whereas GR are expressed in nearly every organ (1, 2), MR were initially believed to be restricted to epithelial cells in organs regulating sodium transport, although they are also widely distributed throughout the body in many organs, such as kidney, intestine, salivary glands, arteries, lung, heart and parts of the brain (3–6). Due to their lipophilic structure, steroids can penetrate the cell membrane and reach intracellular receptors.

In the classical MC target organs, aldosterone, and only to a small extent GC such as cortisol or corticosterone, activate MR. When MR are isolated and purified, or expressed in COS cells, they show in vitro the same affinity for cortisol and corticosterone as for aldosterone (7). The unbound plasma cortisol concentration, which is approximately 100 times higher than that of aldosterone, suggests that there is a gatekeeper in vivo that excludes cortisol from MR and allows aldosterone to bind to MR.

The solution to this paradox is the tissue-specific steroid metabolism of GC by 11β-hydroxysteroid dehydrogenases (11β-HSD) (8, 9). These microsomal enzymes catalyze the conversion of 11-hydroxysteroids (e.g. cortisol) to 11-ketosteroids (e.g. cortisone) and vice versa (10). Steroids with a keto group at position 11 (e.g. cortisone) show low affinity for GR (11) or MR (12), and show little or no transactivation activity (13–16). The oxidation of cortisol to cortisone by 11β-HSD is thus an inactivation of the steroid, while the reduction of cortisone to cortisol is an activating step. Aldosterone is not metabolized by 11β-HSD due to its aldehyde group at position C18, which, in aqueous solutions, forms an 11,18-hemiacetal or 11,18,20-hemiketal bridge (17).

This interconversion of 11-hydroxy- and 11-oxosteroids by 11β-HSD explains the observation in the late 1940s that cortisone is not effective when injected directly into a joint, but is systemically effective in rheumatic diseases when given orally (18, 19). Cortisol, which was available shortly afterwards, had an effect following either topical or oral application. The intracellular cortisol/cortisone equilibrium regulated by 11β-HSD seems thus to be as important as the plasma concentration of cortisol, which represents the extracellular supply of GC.

To date two ‘isoenzymes’ of 11β-HSD, which belong to the superfamily of short-chain alcohol dehydrogenases, have been characterized and cloned in human tissues (20, 21). Due to their differences, they should be regarded as separate enzymes and not as isoenzymes. These enzymes differ from each other also in their tissue distribution and function and play a crucial role for the intracellular organ-specific GC concentration.

Tissue distribution, functions and regulation of 11β-HSD isoforms

11β-HSD-type1
GR are expressed ubiquitously, and 11β-HSD-type1 enzyme is also localized in numerous tissues, such as the liver, testis, ovary and lung (1) (Table 1). In classical
MC target tissues like the kidney, salivary glands and distal colon, the expression of 11\(\beta\)-HSD-type1 gene is low (22). The enzyme exhibits bidirectional catalytic properties (reduction and oxidation) in vitro, but in vivo it seems to function mainly as a reductase (Fig. 1) converting the inactive 11-dehydro-GC cortisol to the active 11-hydroxy-GC cortisol with NADPH as co-substrate (23–25). This leads to an increased GC activity in cells that express 11\(\beta\)-HSD-type1 gene, and could thus be essential for cells which require high GC concentrations even during periods of low plasma cortisol. Hence, 11\(\beta\)-HSD-type1 contributes to the supply of active GC for GR (26). On the other hand, 11\(\beta\)-HSD-type1 is regulated itself by GC, which increase the enzyme activity (23, 27).

In the liver, 11\(\beta\)-HSD-type1 activity is very high around the hepatic central vein, while in the areas of the hepatic artery, portal vein and bile duct the expression is low (1, 28). Catheterization studies in patients are in accordance with this distribution, finding a much higher cortisol/cortisone ratio in the hepatic vein compared with the portal vein. This activation of GC has pharmacological importance: inactive GC like cortisol and prednisone given orally are activated by the liver to the potent 11-hydroxy-GC cortisol and prednisolone (10). In situations that call for high amounts of active GC, such as stress, 11\(\beta\)-HSD-type1 can be a second source of cortisol ‘production’ in addition to the adrenal glands. In the liver, 11\(\beta\)-HSD-type1 regulates paracrine/autocrine effects of GC, such as the stimulation of gluconeogenic enzymes (29). In an 11\(\beta\)-HSD-type1 knockout mouse, it was shown that homozygous mice could not activate GC, had an intrahepatic GC deficiency, and demonstrated weaker activation of gluconeogenesis enzymes, resulting in blunted hyperglycemia provoked by stress or obesity (29).

A further important function of 11\(\beta\)-HSD-type1 in the liver, but probably also in the lung, seems to be the detoxification of tobacco-specific nitrosamines (e.g. 4-(methylnitrosamino)-1-(3-pyridyl)-1-butane) by carboxyl reduction as first-step metabolism followed by glucuronidation (30–32).

Recently it has been demonstrated that GC enhance the differentiation of preadipocytes into adipocytes. Mature adipocytes express 11\(\beta\)-HSD-type1 activity, which leads to an increase in local GC concentration and further expansion of adipose tissue. This mechanism seems to be most effective in omental adipose tissue and may be important for the pathogenesis of central obesity (33, 34).

11\(\beta\)-HSD-type1 is also expressed in placental decidua. In the mother, the enzyme seems to be important for guaranteeing enough active GC to maintain a local immunosuppressive effect for the blastocyst implantation and an immunological tolerance of the alien tissue (35–37).

In fetal lung, 11\(\beta\)-HSD-type1 plays an important role in converting inactive to active GC, which are important for the induction of surfactant-phosphatidylcholine synthesis in type 2 pneumocytes in the process of lung maturation (38).

11\(\beta\)-HSD-type1 is also expressed in adrenal cortex. The most intense staining is found in the inner zones, and it is not found in adrenal medulla. It has been suggested that the reduction of cortisone to cortisol at the adrenal cortico–medullary junction is important for the induction of adrenaline synthesis (28) (Table 1).

11\(\beta\)-HSD-type2

11\(\beta\)-HSD-type2 enzyme is expressed in classical MC target tissues, such as kidney, salivary glands, ileum and distal colon, and in placenta (22, 39, 40). The enzyme acts as an exclusive dehydrogenase for endogenous steroids (cortisol, corticosterone) (Table 1), metabolizing the active 11-hydroxysteroids to their inactive 11-ketosteroids, thus protecting MR from high GC concentrations (8, 9). When this protective mechanism is disrupted, cortisol can bind to MR and acts as a potent MC (Fig. 2).

In the kidney, cortical and medullary collecting ducts are the structures which show highest expression of 11\(\beta\)-HSD-type2 (41), although the enzyme is also detectable by immunostaining in distal convoluted tubules, in thin and thick branches of Henle’s loop.

Table 1 Characteristics of 11\(\beta\)-HSD isoenzymes type1 and 2.

<table>
<thead>
<tr>
<th>11(\beta)-HSD-type1</th>
<th>11(\beta)-HSD-type2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enzyme kinetics</td>
<td>In vitro bidirectional, in vivo mainly reductase</td>
</tr>
<tr>
<td>Low substrate affinity ((K_m)-value in the (\mu)mol/l range)</td>
<td>High substrate affinity ((K_m)-value in mmol/l range)</td>
</tr>
<tr>
<td>NADP/H preference</td>
<td>NAD⁺ preference</td>
</tr>
<tr>
<td>High expression</td>
<td>Kidney, colon, salivary glands, placenta</td>
</tr>
<tr>
<td>Molecular biology</td>
<td>Kidney, colon, salivary glands, placenta</td>
</tr>
<tr>
<td>Gene</td>
<td>9 kb length, six exons</td>
</tr>
<tr>
<td>Enzyme</td>
<td>292 amino acids, 34 kDa</td>
</tr>
<tr>
<td>Function in vivo</td>
<td>Only 14% homology with 11(\beta)-HSD-type2</td>
</tr>
<tr>
<td>Protection of MC receptor from cortisol</td>
<td>Protection of MC receptor from cortisol</td>
</tr>
</tbody>
</table>

KSR = ketosteroid reductase.

www.eje.org
and in vascular smooth muscle cells (39, 40). In the latter, 11β-HSD-type2 seems to modulate the response of resistance vessels to GC by regulating catecholamine sensitivity (42–44). Positive immunostaining for 11β-HSD-type2 is found in surface and crypt colonic epithelial cells (41), and in striated ducts of the salivary glands (39). In the skin, 11β-HSD-type2 is located only in eccrine sweat glands, whereas sebaceous or apocrine glands are devoid of this ‘gatekeeper enzyme’ (45).

In the placenta, 11β-HSD-type2 is located in the syncytial trophoblast cells (fetal origin) that protect the fetus from high maternal GC concentrations (4, 39, 46, 47), whereas the human decidual cells, formed from endometrial stromal cells (maternal origin), express

Figure 1 Redox equilibrium of corticosteroids catalyzed by human kidney 11β-HSD-type2 (A) and liver 11β-HSD-type1 (B). In the kidney (A), the preferred reaction for natural (unhalogenated) steroids (e.g. cortisol) is oxidation, whereas for fluorinated steroids (e.g. dexamethasone) it is reduction. In the liver (B), 11β-reduction is preferred for natural and fluorinated steroids.
11β-HSD-type1. Expression of 11β-HSD-type2 in syncytial trophoblast cells seems to be ideal for this protective function, because they cover placental chorionic villi, thus forming an interface between the maternal and fetal circulation. Isotope studies have shown that the majority of circulating cortisol in the human fetus is derived from the fetal adrenal gland and not from maternal sources (48). As maternally administered dexamethasone is significantly less metabolized by 11β-HSD-type2 than is cortisol (49–51), this synthetic steroid can be used successfully to enhance fetal lung maturation, because it crosses the placenta largely unmetabolized. In the past the placenta was not believed to express MR; very recently, however, new evidence for placental MR expression has been presented (52).

11β-HSD-type2 is also detected in human lung epithelia and in epithelia of the trachea and bronchioli, where it seems to be co-localized with MR and may play a role in sodium and fluid transport of the airway epithelia, especially in the fetus (53).

11β-HSD-type2 is expressed in only some brain areas, such as the commisural portion of the nucleus tractus solitarius, the subcommissural organ and the ventrolateral ventromedial hypothalamus. MR expression matches 11β-HSD-type2 expression only in the ventrolateral ventromedial hypothalamus (54). The function of 11β-HSD-type2 in regions without MR is not understood at present.

Recently it was shown that the enzyme is a strong reductase for synthetic 9-fluorinated 11-ketosteroids (dehydrodexamethasone and 9α-fluorocortisone) (51, 55–57) (Fig. 1). These properties do not have physiological significance, but may be of pharmacological relevance.

11β-HSD-type1: clinical implications

The function of 11β-HSD-type2 is well understood, whereas the role of 11β-HSD-type1 has been less well examined. The preferred reaction in vivo of 11β-HSD-type1 is the reduction of 11-dehydro-GC to their active 11-hydroxy-GC (Fig. 1). This may be important for maintaining basal metabolic functions, especially at the diurnal nadir of GC secretion (58).

To examine the importance of this enzyme in vivo, mice with targeted disruption of 11β-HSD-type1 gene were generated. These 11β-HSD-type1 knockout mice were unable to convert 11-dehydrocorticosterone to corticosterone (29, 59). As compensation for this defective ‘generation system’, the homozygotic mice showed increased adrenocorticotropic hormone (ACTH) and corticosterone levels, and developed adrenal hyperplasia. They showed lower fasting serum glucose concentrations and an expanded reservoir of hepatic glycogen (60). On starvation, they appeared to be deficient in hepatic gluconeogenic responses (attenuated activation of the key hepatic gluconeogenic enzymes glucose-6-phosphatase and phosphoenolpyruvate carboxykinase), presumably because of relative intrahepatic GC deficiency. The knockout mice seemed to have an increased insulin sensitivity, similar to that of humans after inhibition of 11β-HSD-type1 with carbenoxolone (61). 11β-HSD-type1-deficient mice resisted hyperglycemia provoked by obesity or stress (29).

Abnormalities of 11β-HSD-type1

Until now four patients with possible 11β-HSD-type1 reductase deficiency have been described (62–66). They were all women with hirsutism and acne and adrenal androgen excess. Due to deficiency of 11β-HSD-type1, reduction of cortisone to cortisol was impaired. Consequently, urinary excretion of cortisone metabolites was increased and urinary excretion of cortisol metabolites reduced. The lack of hepatic production of active GC seems to lead to a state of systemic GC deprivation and to increased hypophyseal ACTH production, which could explain adrenal enlargement and the increased androgen secretion in these patients. The patients were screened for mutations in the 11β-HSD-type1 gene, but none were found, suggesting that the defect might not be in the coding region of the 11β-HSD-type1 gene. The most sensitive parameter of this disorder is the urinary ratio of (5α-tetrahydrocortisol (THF) + 5β-THF)/tetrahydrocortisone (THE), which is below 0.8–1.0 in 11β-HSD-type1 reductase deficiency. After suppression of endogenous steroid secretion with dexamethasone, patients with 11β-HSD-type1 deficiency showed decreased reduction of orally given cortisone, resulting in an impaired increase of plasma cortisol concentration (66).

Recently a patient with 21-hydroxylase deficiency (adrenogenital syndrome (AGS)) and 11β-HSD-type1 reductase deficiency was described. 11β-HSD-type1 deficiency was discovered when cortisone acetate treatment of the patient with AGS was not successful. Treatment with prednisolone and cortisol, however, was successful in decreasing the elevated 17-OH-progesterone and androgen plasma concentrations (67).

A mild defect in cortisone to cortisol conversion has also been described in some women with polycystic ovary syndrome and may play a role in the hyperandrogenemia in this syndrome (68).

Diabetes mellitus

Inhibition of hepatic 11β-HSD-type1 increases insulin sensitivity in humans in vivo. Experiments in rats showed that hepatic 11β-HSD-type1 inhibition by estradiol caused a reduced expression of GC-inducible genes such as phosphoenolpyruvate carboxykinase, the key enzyme of gluconeogenesis (69). This suggests that hepatic 11β-HSD-type1 plays an important role in
maintaining expression of key GC-regulated hepatic genes and in hepatic glucose homeostasis.

On the other hand, an inappropriate increase in hepatic 11β-HSD-type1 activity could be a contributing factor in central insulin resistance syndromes, including type 2 diabetes mellitus. An increased local hepatic cortisol concentration could lead to increased gluconeogenesis and attenuated insulin sensitivity. In contrast to the situation in patients with type 2 diabetes, Dullaart et al. (70) reported a decreased (5α-THF + 5β-THF)/THE urinary ratio in patients with type 1 diabetes, which indicates an attenuated 11β-HSD-type1 activity. Furthermore, a reduced 5α-reductase activity due to a decreased 5α-THF/5β-THF ratio was suggested.

Recently it was demonstrated that growth hormone (GH) inhibits hepatic 11β-HSD-type1 via insulin-like growth factor-I (24, 71). If GH levels decrease, the hepatic reduction of cortisone to cortisol increases and could lead to an elevated glucose output by the liver and to central obesity. Approximately 25% of patients with acromegaly have impaired glucose tolerance that seems to be due to a post-insulin receptor effect of GH itself. However, patients with adult GH deficiency may also exhibit central obesity and insulin resistance (72), which may be caused by increased 11β-HSD-type1 activity and enhanced conversion of cortisone to cortisol in the liver (71, 73).

The role of 11β-HSD-type1 in the pathogenesis of diabetes mellitus is still unclear and needs further investigation.

Central obesity

GC regulate the differentiation and function of adipocytes, with expression of 11β-HSD-type1 higher in omental than in subcutaneous adipocytes. The enzyme shows predominantly reductase activity, and its expression is increased by GC. As differentiation of stromal cells of adipose tissue into mature adipocytes is promoted by GC and insulin, it has been suggested that overactivity of 11β-HSD-type1 in omental adipose tissue may be one factor that enhances central obesity (33, 34, 74), an important risk factor for premature mortality due to cardiovascular disease, diabetes mellitus, hypertension and hyperlipidemia. Although it has been suggested that patients with central obesity might benefit from selective inhibition of 11β-HSD-type1 (33, 61), central obesity (visceral or omental obesity) is a more complex problem.

In gynoid obesity (hip and thigh fat) the urinary ratio of (5α-THF + 5β-THF)/THE shows a direct relation to the body mass index (BMI), supporting the hypothesis of an enhanced activity of 11β-HSD-type1 in adipose tissue. In android obesity (scapular and waist fat), on the other hand, the urinary ratio of (5α-THF + 5β-THF)/THE is inversely related to BMI, suggesting an inhibited 11β-HSD-type1 (73, 75).

The distribution of 11β-HSD-type1 in adipose tissue and the autocrine generation of active cortisol by 11β-HSD-type1 may therefore be of critical importance in explaining the different effects of GC on various adipose tissues. Furthermore, it is possible that 11β-HSD-type1 of the omentum and the liver are regulated in different ways.

11β-HSD-type2: clinical implications

Apparent MC excess syndrome

In the early 1970s, case reports were published describing children with the features of MC hypertension (hypokalemia, low plasma renin, very high blood pressure, plus successful treatment with spironolactone), plus weakness and failure to thrive (76, 77), with no elevated levels of aldosterone or deoxycorticosterone found (78). Therefore, this syndrome was named ‘apparent MC excess’ (AME) syndrome. The steroid analysis of this syndrome revealed a prolonged half-life of plasma cortisol (120–190 min compared with 80 min in healthy subjects) and an elevated ratio of cortisol metabolites over cortisone metabolites in the urine (79). It was concluded that AME is caused by a defect in 11β-HSD-type2 leading to an unprotected MR and binding of cortisol to MR, resulting in a ‘hyper-mineralocorticoid status by normal plasma cortisol concentrations’. After cloning of 11β-HSD-type2, this hypothesis was proven by the discovery of mutations in the 11β-HSD-type2 gene in patients with AME syndrome. Two mutations were compound heterozygotes with each allele coding for an enzyme devoid of activity (80, 81); all other mutations found were homozygous (82, 83). The autosomal-recessive AME syndrome is the third monogenic form of hypertension with Liddle’s syndrome (84) and dexamethasone-suppressible hyperaldosteronism (85). To date approximately 50 patients with AME syndrome have been described. Because the syndrome is so rare, homozygous mutations of 11β-HSD-type2 enzyme probably do not have an epidemiological relevance for the pathogenesis of ‘essential’ hypertension.

The characteristic urinary steroid metabolite profile is essential for the diagnosis of AME. The prolonged plasma cortisol half-life can be measured easily with 11α-tritium-labeled cortisol, but this has not become routine. The urinary ratio of ring-A-reduced metabolites of cortisone and cortisol ((5α-THF + 5β-THF)/THE) is not a sensitive marker for 11β-HSD-type2 deficiency, since this ratio largely reflects the activity of hepatic 11β-HSD. In addition, in AME other unexplained abnormalities of cortisol metabolism are described (e.g. defective 5β-reductase). Therefore, the urinary ratio of free cortisol to free cortisone seems to be the most sensitive and reliable parameter for AME.

AME can be treated with triamterene and/or amiloride, but most physicians and patients use
spironolactone. Dexamethasone has been reported to be effective in some patients, but not in others (58, 86). In a case report, Palermo et al. (87) described cure of AME by kidney transplantation. The main aim of therapy should be correction of hypokalemia and lowering blood pressure.

‘Essential’ hypertension

There are numerous clinical studies examining the role of 11β-HSD-type2 in essential hypertension. Recently, a new polymorphic restriction site in exon 3 in the human 11β-HSD-type2 gene was described. This was associated with end-stage renal disease in Caucasians, but not with hypertension (88). Another group used an 11β-HSD-type2 polymorphic microsatellite marker and studied this polymorphism in normotensive and hypertensive sibling pairs, but they found no connection to essential hypertension (89).

Earlier studies examining urinary steroid metabolites (indicating an 11β-HSD-type2 insufficiency) had given inconsistent results (90–92).

There are many publications on the association of decreased placental 11β-HSD-type2 activity with an increased risk of adult hypertension. The placental 11β-HSD-type2 seems to have a regulatory effect on feto-placental growth and differentiation, supported by a direct correlation between 11β-HSD activity and birth weight and an inverse relation between 11β-HSD and placenta weight (93, 94). The hypothesis derived from these findings suggests that higher GC levels during fetal life, due to an impaired activity of placental 11β-HSD-type2, could lead to programming of hypertension in adult life (95–97). This hypothesis was questioned by the finding that no correlation existed between 11β-HSD-type2 mRNA concentrations in the placenta and fetal or placental weight (98).

Another possible mechanism of hypertension is the modulation of active GC concentration by 11β-HSD in vascular smooth muscle cells (43). Topical application of GC to the skin causes a vasoconstriction of arterioles (42). This effect is enhanced by addition of 11β-HSD inhibitors, suggesting an involvement of 11β-HSD in the regulation of vascular tone by the amplification of responses to vasoconstrictors (44, 45, 99, 100).

In the brain, 11β-HSD-type2 is not co-localized with MR in all areas, which suggests a different role for MR in the brain, such as in the central regulation of blood pressure; these receptors seem to be occupied by GC. Furthermore, it has recently been suggested that MC could be synthesized de novo in the brain (101). Further research and studies are necessary to evaluate the role of 11β-HSD-type2 and MC in the brain and in hypertension.

Pre-eclampsia

Pre-eclampsia, defined as hypertension, edema and proteinuria in the third trimester of pregnancy, is associated with enhanced sodium retention. Inhibition of 11β-HSD-type2 by some unknown factor (102) and a subsequently increased intracellular cortisol concentration could be one explanation for MR downregulation (103), with decreased plasma renin substrate and serum aldosterone (104–106) in pre-eclampsia. Progesterone and its renal metabolites are inhibitors of 11β-HSD-type2 (102). An altered progesterone metabolism in the kidney could play a role in the pathogenesis of pre-eclampsia. This hypothesis seems to be supported by the finding that the urinary free cortisol/free cortisone ratio is elevated in patients with pre-eclampsia, compared with women whose pregnancy is normal (107).

Licorice consumption

In the early 1950s, Molhuysen (108) described an MC-like effect of licorice consumption. Licorice, produced from the licorice plant (Glycyrrhiza glabra), contains glycyrrhetinic acid and its glucuronide glycyrrhizin, which have a low affinity for MR (109), but a high affinity for 11β-HSD enzymes (110). 11β-HSD-type2 is inhibited by glycyrrhetinic acid. The first recognizable effects on blood pressure, serum potassium and plasma renin appear if the daily consumption of glycyrrhetinic acid ranges from a minimum of 225 mg (111) to 380 mg (112). Although the content of glycyrrhetinic acid and glycyrrhizin varies in different licorice products, 200–400 mg glycyrrhetinic acid roughly corresponds to about 100–200 g of ‘normal’ licorice. In Germany, the recommended maximum content is 200 mg/100 g, but some products contain 700 mg/100 g (113) or more (Der Spiegel 27/1998: up to 2650 mg/100 g). The clinical signs resemble those of AME: low renin and aldosterone, hypokalemia, increased sodium retention and an elevated cortisol/cortisone ratio in urine (113–115). Carbenoxolone, the hemisuccinate derivative of glycyrrhetinic acid, has been used in the therapy of gastric ulcers and shows similar side-effects to licorice if used in concentrations above 300 mg/day.

Ectopic ACTH syndrome

More often than in other forms of Cushing’s syndrome (10% of patients), the ectopic ACTH syndrome leads to hypokalemic alkalosis (95–100% of patients), and reveals higher plasma cortisol and ACTH concentrations (116, 117). Several investigations showed that ACTH infusions, but not cortisol infusions, elevated the cortisol/cortisone urine (118) and plasma ratio in healthy volunteers (119). It was shown that ACTH had no direct effect on 11β-HSD-type2, but that the enzyme is overloaded by ACTH-dependent 11β-HSD substrates such as cortisol, corticosterone and 18-hydroxy corticosterone (120, 121). Therefore, in severe hypercortisolism
(like ectopic ACTH syndrome), cortisol is the MC causing hypokalemia and hypertension.

Synthetic steroids and their metabolism by 11β-HSD-type2

11β-HSD regulate the access of active steroids to MR, but also to GR. During GC therapy they may play an important role in the local regulation of the GC. To achieve an optimal local renal immunosuppression in renal transplant recipients, it would be necessary to use a GC that is not oxidized (= inactivated) by renal 11β-HSD-type2. 9α-Fluorinated steroids, such as 9α-fluorocortisol and dexamethasone, are much less oxidized to 11-oxo-steroids than cortisol in the human kidney (51, 55, 56). Furthermore, 9-fluorination shifts the reaction
equilibrium of 11β-HSD-type2 towards reduction. The consequence is a conversion of an inactive 9-fluorinated 11-dehydroxysteroid (e.g. 11-dehydrosedamethasone (11-DH-D)) to an active 11-hydroxysteroid (dexamethasone) in the kidney (51, 56, 122). These observations explain the greatly enhanced MC effect of 9α-fluorocortisol and the strong GC effect of dexamethasone. In the placenta, 11β-HSD-type2 metabolizes dexamethasone to 11-DH-D, but also converts 11-DH-D back to dexamethasone (56, 57), which explains why 9α-fluorinated synthetic steroids cross the placenta as active steroids (Fig. 2).

Conclusions

The tissue-specific metabolism of GC by 11β-HSD is important for MR and GR activity. 11β-HSD-type2 inactivates cortisol to cortisone in MC target cells, thus allowing almost selective binding of aldosterone to MR. Impaired 11β-HSD-type2 leads to clinical symptoms of MC excess (hypokalemic hypertension), in which cortisol is acting as an MC.
11β-HSD-type1 reduces cortisone to cortisol, producing active GC and regulating both intracellular GC concentration and GR occupancy. This tissue-specific regulation seems to be physiologically important, especially during the nadir of diurnal rhythmic alteration of plasma cortisol concentrations. In the liver, 11β-HSD-type1 is involved in glucose homeostasis. The modulation of GC homeostasis by 11β-HSD-type1 seems to play an important role in several disease processes, such as diabetes mellitus and obesity. Hopefully, further investigations will contribute to the understanding of these regulatory mechanisms.

References
18 Hench PS, Scolumb CH, Polley HF & Kendall EC. Effect of cortisone and pituitary adrenocorticotropic hormone (ACTH) in rheumatic diseases. Journal of the American Medical Association 1950 144 1127–1135.

96 M Quinkler and others

60 Chapman KE, Kotel’ytsev YV, Jamieson PM, Williams LJS, Mullins J & Seckl JR. Tissue-specific modulation of glucocorti-
coid action by the \(11\beta\)-hydroxysteroid dehydrogenases. Bio-

61 Walker BR, Connacher AA, Lindsay RM, Webb DJ & Edwards CRW. Carbenoxolone increases hepatic insulin sensitiv-
ity in man: a novel role for 11-oxosteroid reductase in enhancing
11\(\beta\)-hydroxysteroid receptor activation. Journal of Clinical
Endocrinology and Metabolism 1999 84 3155–3159.

62 Taylor NF, Bartlett WA & Dawson DJ. Cortisone reductase
deficiency: evidence for a new inborn error in metabolism of

63 Savage MW, Barton RN, Dornan TL, Robins AJ & Taylor NF.
Increased metabolic clearance of cortisol in corticosteroid 11-
reductase deficiency. Journal of Endocrinology 1991 129 (Suppl)
219.

64 Phillipou G & Higgins BA. A new defect in the peripheral
conversion of cortisone to cortisol. Journal of Steroid Biochem-
istry and Molecular Biology 1985 22 435–436.

65 Phillipov G, Palermo M & Shackleton CHL. Apparent cortisone
reductase deficiency: a unique form of hypercortisolism. Journal of
Clinical Endocrinology and Metabolism 1996 81 3855–3860.

66 Jamieson A, Wallace AM, Andrew R, Nunez BS, Walker BR,
Fraser R et al. Apparent cortisone reductase deficiency: a
functional defect in 11\(\beta\)-hydroxysteroid dehydrogenase type 1.
Journal of Clinical Endocrinology and Metabolism 1999 84
3570–3574.

67 Nordenström A, Marcus C, Axelsson M, Wedell A & Ritzén EM.
Failure of cortisone acetate treatment in congenital adrenal
hyperplasia because of defective 11\(\beta\)-hydroxysteroid dehydro-
genase reductase activity. Journal of Clinical Endocrinology and
Metabolism 1998 83 1210–1213.

68 Rodin A, Thakkar H, Taylor N & Clayton R. Hyperandrogenism
in polycystic ovary syndrome. Evidence of dysregulation of
11\(\beta\)-hydroxysteroid dehydrogenase. New England Journal of

69 Jamieson PM, Nyirenda MJ, Walker BR, Chapman KE &
Seckl JR. Interactions between oestriol and glucocorticoid
regulatory effects on liver-specific glucocorticoid-inducible
genes: possible evidence for a role of hepatic 11\(\beta\)-hydroxy-
steroid dehydrogenase type 1. Journal of Endocrinology 1999
160 103–109.

70 Dullaart RPF, Uebels FL, Hoogenberg K, Smit AJ, Pratt JH,
Muntinga JH et al. Alterations in cortisol metabolism in
insulin-dependent diabetes mellitus: relationship with meta-
abolic control and estimated blood volume and effect of angiotensin-converting enzyme inhibition. Journal of

71 Moore JS, Monop P, Kaltas G, Potignano P, Wood PJ,
Sheppard MC et al. Modulation of 11\(\beta\)-hydroxysteroid dehy-
drogenase isoenzymes by growth hormone and insulin-like

72 Deboer H, Blok GJ & Vandeveen EA. Clinical aspects of growth
home hormone deficiency in adults. Endocrine Reviews 1995 16
63–86.

73 Weaver JU, Taylor NF, Monop P, Wood PJ & Kelly WF. Sexual
dimorphism in 11\(\beta\)-hydroxysteroid dehydrogenase activity and
its relation to fat distribution and insulin sensitivity: a study in

74 Andrew R, Phillips DIW & Walker BR. Obesity and gender
difference cortisol secretion and metabolism in man. Journal of

75 Stewart PM, Boulton A, Kumar S, Clark PMS & Shackleton CHL.
Cortisol metabolism in human obesity: impaired cortisone to
cortisol conversion in subjects with central adiposity. Journal of
Clinical Endocrinology and Metabolism 1999 84 1022–1027.

76 New MI, Levine LS, Biglieri EG, Parreira J & Ulick S. Evidence for
an unidentified steroid in a child with apparent mineralocorti-
coid hypertension. Journal of Clinical Endocrinology and Meta-
bolism 1977 44 924–933.

77 Werder E, Zachmann M, Vollmin JA, Veyrat R & Prader A.
Unusual steroid excretion in a child with low renin hyper-

78 Ulick S, Levine LS, Gunczler P, Zanconato G, Ramirez LC,
Rauh W et al. A syndrome of apparent mineralocorticoid excess
associated with defects in the peripheral metabolism of cortisol.
Journal of Clinical Endocrinology and Metabolism 1979 49
757–764.

79 Edwards CR, Walker BR, Benediktssson R & Seckl JR. Congenital
and acquired syndromes of apparent mineralocorticoid excess.
Journal of Steroid Biochemistry and Molecular Biology 1993 45
1–5.

80 Mune T, Rogerson FM, Nikkilä H, Agarwal AK & White PC.
Human hypertension caused by mutations in the kidney
isozyme of 11\(\beta\)-hydroxysteroid dehydrogenase. Nature Genetics

81 Kitanaka S, Katsumata N, Tanase A, Hibi I, Takeyama KI, Fuse H
et al. A new compound heterozygous mutation in the
11\(\beta\)-hydroxysteroid dehydrogenase type 2 gene in a case of apparent
mineralocorticoid excess. Journal of Clinical Endocrinology and
Metabolism 1997 82 4054–4058.

82 Ferrari P, Lotti E & Frey FJ. The role of the 11\(\beta\)-hydroxysteroid
dehydrogenase type 2 in human hypertension. Journal of

83 White PC, Mune T & Agarwal AK. 11\(\beta\)-Hydroxysteroid
dehydrogenase and the syndrome of apparent mineralocorti-

84 Shimkets RA, Warnock DG, Bositis CM, Nelson-Williams C,
Hansson JH, Schambelan M et al. Liddle’s syndrome: heritable
human hypertension caused by mutations in the subunit of the

A chimeric 11\(\beta\)-hydroxylase/aldosterone synthase gene causes
glucocorticoid-remediable aldosteronism and human

86 Stewart PM & Krozowski Z. 11\(\beta\)-Hydroxysteroid dehydrogen-
ase. Vitamins and Hormones 1999 57 249–324.

87 Palermo M, Cossu M & Shackleton CHL. Cure of apparent
mineralocorticoid excess by kidney transplantation. New

88 Smolenicka Z, Bach E, Schäfer A, Liechti-Gallati S, Frey BM,
Frey FJ et al. A new polymorphic restriction site in the human
11\(\beta\)-hydroxysteroid dehydrogenase type 2 gene. Journal of

89 Brand E, Kato N, Chatelain N, Krozowski ZS, Jeunemaitre X,
Corvol P et al. Structural analysis and evaluation of the 11\(\beta\)-
hydroxysteroid dehydrogenase type 2 (11\(\beta\)-HSD2) gene in
human essential hypertension. Journal of Hypertension 1998 16
1627–1633.

90 Soro A, Ingram MC, Tonolo G, Glorioso N & Fraser R. Evidence
of coexisting changes in 11\(\beta\)-hydroxysteroid dehydrogenase
and 5\(\beta\)-reductase activity in subjects with untreated

91 Ingram MC, Wallace AM, Collier A, Fraser R & Connell JM.
Sodium status, corticosteroid metabolism and blood pressure in
normal human subjects and in a patient with abnormal salt
appetite. Clinical and Experimental Pharmacology and Physiology

92 Iki K, Miyamori I, Hatakeyama H, Yoneda T, Takeda Y, Takeda R
et al. The activities of 5\(\beta\)-reductase and 11\(\beta\)-hydroxysteroid
dehydrogenase in essential hypertension. Steroids 1994 59
565–600.

93 Seckl JR, Benediktssson R, Lindsay RS & Brown RW. Placental
11\(\beta\)-hydroxysteroid dehydrogenase and the programming of
hypertension. Journal of Steroid Biochemistry and Molecular

94 Mccalla CO, Nacharaju VL, Muneyyirci-Delale O, Glasgow S &
Feldman JC. Placental 11\(\beta\)-hydroxysteroid dehydrogenase
activity in normotensive and pre-eclamptic pregnancies.
Steroids 1998 63 511–515.

Lindsay RS, Lindsay RM, Edwards CRW & Seckl JR. Inhibition of 11β-hydroxysteroid dehydrogenase in pregnant rats and the programming of blood pressure in the offspring. *Journal of Biological Chemistry* 1996 271 1200–1204.

Received 25 February 2000

Accepted 4 October 2000

www.eje.org