Human leptin: from an adipocyte hormone to an endocrine mediator

Machteld Wauters, Robert V Considine and Luc F Van Gaal

Department of Endocrinology, Metabolism and Clinical Nutrition, University Hospital Antwerp, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium
and 1Division of Endocrinology and Metabolism, Indiana University School of Medicine, Clinical Building 459, 541 N Clinical Drive, Indianapolis, Indiana 46202–5111, USA

(Correspondence should be addressed to L Van Gaal; Email: luc.van.gaal@uza.uia.ac.be)

Abstract

Leptin is a mainly adipocyte-secreted protein that was discovered only 5 years ago. Most of the research following this discovery focused on the role of leptin in body weight regulation, aiming to illuminate the pathophysiology of human obesity. However, more and more data are emerging that leptin is not only important in the regulation of food intake and energy balance, but that it also has a function as a metabolic and neuroendocrine hormone. It is now clear that it is especially involved in glucose metabolism, as well as in normal sexual maturation and reproduction. Besides this, interactions with the hypothalamic–pituitary–adrenal, thyroid and GH axes and even with haematopoiesis and the immune system have also been described. It has been shown that leptin secretion by the adipocyte is partly regulated by other hormones, such as insulin, cortisol, and sex steroids, mainly testosterone. Also, other hormones like thyroid hormone and GH are possibly involved in leptin synthesis. Leptin itself exerts effects on different endocrine axes, mainly on the hypothalamic–pituitary–gonadal axis and on insulin metabolism, but also on the hypothalamic–pituitary–adrenal, thyroid and GH axes.

Leptin may thus be considered a new endocrine mediator, besides its obvious role in body weight regulation.

European Journal of Endocrinology 143 293–311

Introduction

Leptin is a mainly adipocyte-secreted protein that was discovered only 5 years ago. In December 1994, Friedman’s group reported the cloning of the ob (ob) gene, responsible for the typical phenotype of obesity, diabetes and insulin resistance in ob/ob mice (1). They also identified the human homologue gene, which showed a highly conserved sequence, being 84% identical with the mouse protein (1). Shortly afterwards, the protein product of this gene was identified and an assay for its detection in plasma developed (2). This ob gene product was called ‘leptin’, derived from the Greek ‘leptos’ meaning ‘lean’, which indicates the function that this ob gene product was thought to have. Most of the research following this discovery thus focused on the role of leptin in body weight regulation, aiming to illuminate the pathophysiology of human obesity.

However, more and more data are emerging that leptin is not only important in the regulation of food intake and energy balance, but that it also has a function as a metabolic and neuroendocrine hormone. It is especially involved in glucose metabolism, as well as in normal sexual maturation and reproduction, but also interacts with the hypothalamic–pituitary–adrenal, thyroid and growth hormone (GH) axes and even with haematopoiesis and the immune system. This review will focus in particular on these other functions, after highlighting the main issues concerning its role in body weight regulation.

Leptin: a neuroendocrine regulator of energy balance

The first function described after the discovery of leptin was its role in body weight regulation. Meanwhile it is clear that leptin plays an important role in this respect, especially in the regulation of body fat stores.

Leptin is synthesized mainly by fat cells, and its plasma levels in humans are strongly correlated with body mass index (BMI) and fat mass (2–5).

The first rodent data on the ob gene product fitted nicely in a lipostat model, as was proposed by Kennedy in the 1950s (6), and confirmed the hypothesis made in the 1970s by Coleman on the basis of his findings in parabiosis experiments (7). Leptin turned out to be the long-sought key molecule in these models for energy...
balance regulation. It is secreted by adipocytes into the bloodstream (4, 8), and could thus be the signalling factor in a feedback system to the brain, informing the brain about the amount of fat mass in the body (Fig. 1). This hypothesis was confirmed by experiments with leptin injections to leptin-deficient ob/ob mice, which led to weight loss by decreased food intake and increased energy expenditure (9–11). In normal mice as well, leptin administration reduced food intake and induced loss of fat mass, though less than in ob/ob mice (9–11).

Leptin receptors were cloned and identified in the choroid plexus and hypothalamus, a region known to be involved in the regulation of appetite, food intake and body weight (12, 13). More recently, the pathways through which leptin exerts its central nervous effects have also become more clear. From what is known at this moment, leptin seems to interact in the brain with almost all neuropeptides known to be involved in the regulation of energy balance and especially food intake (reviewed in ref. 14). Leptin inhibits neuropeptide Y (NPY) secretion (15) and raises corticotrophin-releasing hormone (CRH) expression in the paraventricular nucleus (PVN) (13). Other pathways involved in the leptin response are the glucagon-like peptide-1 (GLP-1) system, the pro-opiomelanocortin (POMC) system, the neurons expressing orexins or hypocretins, CART (cocaine- and amphetamine-regulated transcript), and galanin (14).

After the cloning of the ob gene, and when it was shown that a mutation in the gene was responsible for the ob/ob phenotype in mice, the question was raised whether human obesity could be caused by mutations in this gene. Molecular screenings showed that in most obese subjects the gene encoding for leptin is normal (16–20). At this moment, only two (both highly consanguineous) families with a mutation in the leptin gene are identified, with in total six homozygous subjects known with congenital leptin deficiency leptin (21–23). In all cases, severe early onset obesity was reported, with very low leptin levels despite the high fat mass, a marked hyperphagia due to impaired satiety, and hyperinsulinaemia. Treatment with recombinant methionyl human leptin resulted in sustained weight reduction and improvement of all these metabolic abnormalities (24). Family members who were heterozygous for the mutation were not morbidly obese, and their leptin levels were comparable to normal controls.
These mutations however occur very rarely and, in general, human obesity cannot be explained by a defect in the leptin gene or deficient leptin secretion. On the contrary, in humans, leptin mRNA expression and serum leptin levels are much higher in obese individuals compared with lean subjects and correlate strongly with body fat (2–5). From these data, the hypothesis of some kind of leptin insensitivity or leptin resistance in human obesity emerged, comparable to insulin resistance in type 2 diabetes (4, 25). Such a resistance could theoretically occur at several levels in the leptin signalling pathway (25). A first possible cause of leptin resistance could be a receptor defect, leading to failure to bind or activate the leptin receptor, as is seen in the diabetes (db/db) mouse model and the fatty (fa/fa) and Koletsky rat. In humans however, such a defect seems to be very rare (26, 27). At this moment, only one mutation in the human leptin receptor gene resulting in a truncated leptin receptor lacking the transmembrane and intracellular domain was reported (28). The production of a non-functional receptor induces a phenotype with early onset, morbid obesity, developing within the first months of life, hyperphagia, no pubertal development and an impaired secretion of GH and thyrotrophin. Leptin levels were extremely high: between 500 and 700 ng/ml in the homozygotes and between 145 and 362 ng/ml in heterozygous family members (28). But as is the case with the mutation in the ob gene, this defect seems to be very exceptional and can certainly not account for the current high prevalences of overweight and obesity. Several polymorphisms in the leptin receptor (LEPR) gene have been identified (26, 27, 29–33), which could possibly evolve in changes in binding or signalling activity of the receptors. However, until now, none of the studies on these LEPR polymorphisms were able to show a major effect on body weight or fat mass (26, 27, 31–38).

A second possible mechanism of leptin resistance could be an imbalance in the blood between leptin and its binding protein. If the proportion of leptin bound in the blood is too high, this can decrease the biological activity of the hormone. It was shown that in humans the ratio of bound to free leptin in the blood is different in lean and obese subjects, the proportion of free leptin being positively correlated with BMI (39).

Also an impaired transport of leptin into the central nervous system through the blood–brain barrier can lead to leptin resistance. This transport is known to be a specific and saturable mechanism (40–42), possibly mediated through a short form of the leptin receptor, present in high density in the choroid plexus (12, 41). A rodent model for such a form of leptin resistance, due to a decreased transport into the cerebrospinal fluid (CSF), is the New Zealand Obese (NZO) mouse, which does not respond to peripheral leptin, but is normally responsive to leptin when it is administered i.c.v. (43). In humans it was shown that the ratio of leptin in cerebrospinal fluid to serum leptin is decreased in obesity (41, 42). So differences in the access of leptin to the CSF could be important in the pathogenesis of some forms of obesity, if part of the serum leptin is not able to reach its site of action, thereby not raising central leptin concentrations as high as peripheral.

Finally, leptin resistance could be caused by a post-receptor defect leading to a failure to activate the above-mentioned neuroendocrine mediators. At this moment, these pathways are not yet fully understood, but there is much ongoing research on these particular pathways and their interactions (reviewed in ref. 44). Elucidation of these post-receptor pathways in the brain will contribute to explaining the central working mechanisms of leptin.

Leptin during sexual development and reproduction

Gender differences in leptin levels

From the first reports of leptin measurements in humans, it was already evident that a clear gender difference in leptin levels existed: leptin levels were found to be two- to threefold higher in women than in men for the same BMI (2, 5). These differences reflect the difference in body composition between men and women, women in general having a higher percentage of body fat and a higher ratio of subcutaneous to visceral fat. Serum leptin is strongly related to fat mass, and even stronger to subcutaneous fat (45–47), which has been shown to secrete more leptin (48–50). Thus, the higher fat mass in women, and in particular the presence of more subcutaneous fat, could reasonably explain the higher leptin levels. However, even after correcting or matching for BMI (41, 51, 52), fat mass (47, 53–55), or for the amount of subcutaneous fat (47), the difference in leptin levels remains significant. This difference has already been observed in children, with leptin levels in girls always being higher than in boys, even at birth, when measured in cord blood (56–58), but especially from puberty onwards (59–64).

In vitro data show that leptin secretion by adipose tissue from men and women is different, with a significantly higher spontaneous secretion by adipocytes from women than from men (65) and a higher ratio of subcutaneous-to-omental leptin mRNA expression in women (49). Furthermore it was shown that women have also higher cerebrospinal leptin levels, even for a given plasma level, probably due to increased leptin transport into the CSF (41).

These observations suggest that other factors besides adiposity, such as sex steroids, might play a role in this gender difference. This is confirmed by in vitro experiments and by human data.

Oestrogens were shown to stimulate leptin secretion by adipocytes in vitro (66, 67), an effect which is observed only in adipocytes from women and not in samples from men (64). Leptin levels are decreased in ovariectomized
and reversed to normal by oestradiol supplementation (67, 68). In humans, exogenous follicle-stimulating hormone (FSH) administration during an IVF program increased leptin levels, together with oestrogen (69, 70). In children, oestrogen could explain up to 5% of the variance in leptin concentrations (62).

Androgens, on the other hand, have an inhibitory effect on leptin secretion. Testosterone suppresses leptin mRNA expression and secretion by human adipose cells (63). Testosterone administration to rats decreased expression of leptin mRNA, but did not change circulating leptin levels (71). Anabolic androgenic steroid use by male bodybuilders reduced leptin levels significantly (72), whereas suppression of testosterone production by gonadotrophin releasing hormone (GnRH) agonist administration in these bodybuilders or in boys with precocious puberty increased leptin levels (72, 73). Hypogonadal men show elevated leptin levels (74), which are reduced by testosterone substitution (75).

Cross-sex hormones in male-to-female and female-to-male transsexuals induced a reversal of the sexual dimorphism in serum leptin levels over 4 months, independent of the amount of body fat (76). Leptin and testosterone levels are inversely correlated in men and boys (59, 63, 74, 77, 78). Testosterone could account for about 10% of the variation of leptin in a multiple regression model in young boys (60, 62, 63). Thus, the suppressive effect of androgens can partly explain the gender differences in leptin levels, in addition to the differences in body composition and fat distribution.

Role of leptin in pubertal development

Puberty results from maturation of the hypothalamic–pituitary–gonadal axis and the onset of it is closely related to an increase in GnRH activity, inducing release of gonadotrophins and secretion of sex steroid hormones (79). This activation of the hypothalamic–pituitary–gonadal axis could be triggered by leptin. It has been known for more than 20 years that in girls a minimum cut-off weight or ‘critical fat mass’ is necessary to attain menarche and to avoid or restore secondary amenorrhoea (80). Since leptin levels reflect the amount of body fat, being elevated in obese humans and low in anorectic subjects (81, 82) and in lean amenorrhoeic female athletes (83), leptin seems an excellent candidate to act as a signal to the hypothalamus whether adipose mass is adequate or insufficient for reproduction. This hypothesis is supported by a growing body of evidence, ranging from experiments in ob/ob mice, to longitudinal observations in normal children during puberty.

Leptin acts centrally on the hypothalamic–pituitary–gonadal axis, stimulating the release of FSH and luteinizing hormone (LH) from the pituitary gland in rats (84, 85). A recent study also showed co-localization of leptin with LH and FSH in human anterior pituitary cells, as well as altered FSH secretion by gonadotroph adenomas after incubation with leptin (86).

Leptin receptor isoforms, including the long signalling form of the receptor, are present in gonadal tissue, suggesting that leptin could exert a direct endocrine action on the gonads (87–89). In contrast to the central stimulating effect, the local effect of leptin seems to be inhibitory for steroid synthesis. In vitro studies showed that leptin can suppress ovarian production of oestradiol (89–91) and progesterone (92, 93), induced by LH and FSH, and by insulin or FSH and dexamethasone respectively. Leptin also increased slightly the insulin-induced proliferation of thecal cells.

Thus, leptin exerts a central stimulatory effect on steroid secretion, through central stimulation of GnRH release, whereas the local effect seems inhibitory (Fig. 2). These data, resulting from different kinds of studies (in rodents in vivo vs in vitro studies), seem to be contradictory, and it is not clear which effect is predominant in vivo in humans.

Chehab and colleagues were the first to show that the sterility defect seen in female leptin deficient ob/ob mice, which is caused by an insufficiency of regulatory hormones at the hypothalamic–pituitary level, can be completely corrected by leptin treatment, resulting in ovulation, pregnancy and parturition (94). Also in male ob/ob mice, reproductive ability could be restored by leptin treatment (95). Leptin injections elevated levels of LH in female and of FSH in male ob/ob mice, and stimulated gonadal development in both (96), while chronic administration of antileptin antibody has been shown to inhibit LH release in rats (97). In normal female mice, leptin peaks during the second post-natal week, independent of fat mass or food intake, preceding a rise in oestradiol to adult levels (98). Leptin injection accelerates the onset of puberty (99, 100), probably by triggering the pulsatile release of GnRH. In normal mice who were partially starved, leptin treatment normalized levels of circulating gonadotrophins (LH) and sex steroids, thereby limiting the delay in pubertal maturation compared with pair-fed mice without leptin treatment (101, 102). These different rodent studies do not only show that leptin plays a role in the physiology of puberty and reproduction, but also that these effects are not secondary to the effects on energy balance or fat accumulation.

Leptin deficiency in humans offers an interesting model providing information about what happens in the absence of leptin. Two adult patients homozygous for the leptin mutation are known at the moment: a female patient showed primary amenorrhoea at age 34, while a man aged 22 was still pre-pubertal, with clinical traits typical for hypogonadism and androgen deficit (22). The younger subjects with leptin receptor deficiency showed no pubertal development at the age of 13 and 19 (28). This shows that a normal leptin function is essential for the onset of puberty in humans, as was already shown in rodents.

The mechanism is not clear yet, but is probably of hypothalamic origin, since administration of GnRH to

www.eje.org
the leptin-deficient man induced a normal increase of LH and FSH, and administration of gonadotrophin increased testosterone levels (22). Leptin could act directly by stimulating the secretion of GnRH by hypothalamic neurons, or the secretion of gonadotrophins by the pituitary gland (84), or indirectly by sensitizing the hypothalamus through increased leptin pulsatility (103).

During normal puberty, girls increase the amount of percentage of body fat, a mechanism regulated by sex hormones and GH. Leptin concentrations could also be involved in this process: leptin levels reflect total adipose tissue, and are highly correlated with subcutaneous fat. In young girls accumulation of (subcutaneous) body fat seems to be related in an almost parallel way to increasing levels of leptin during puberty (59–61, 64), followed by an increase in FSH and later in LH and oestradiol. At the same time, pulses in leptin secretion are higher in girls than in boys (104). This diurnal variation could be an important factor in the hypothalamic regulation of menstruation, since it was also shown that this normal variation is absent in amenorrhoeic long-distance runners (83) and patients with anorexia nervosa (105).

In young boys it was shown in a longitudinal study that the rise in testosterone levels at the onset of puberty is preceded by a peak in leptin levels (106), whereas after initiation of puberty, these dropped to pre-pubertal levels. This study confirmed cross-sectional data that showed an increase in leptin levels in boys only up to Tanner stage 2, and a decrease later in puberty (59–61). A similar evolution is seen for leptin binding activity, with high leptin binding activity in pre-pubertal years and a reduction of the binding leptin receptor through puberty, and this in boys and girls (107).

The differential evolution of leptin levels between boys and girls could partly be explained by the different evolution of body composition during puberty: whereas girls accumulate more fat mass, the increase in BMI in boys is mainly caused by an increase in muscle mass, especially during late puberty. Since leptin is mainly determined by fat mass, in particular by the amount of subcutaneous fat, this difference could explain part of the difference between boys and girls, though not all of it. The question remains open whether sex steroids play a role in this process.

Leptin levels during the menstrual cycle

Longitudinal studies have found a physiological fluctuation of leptin levels during the menstrual cycle, with lower circulating leptin levels in the early follicular phase, an increase in leptin in the luteal phase of the cycle, and a pre-ovulatory peak in leptin (68, 69, 108–111).
changes in leptin are associated with changes in sex hormones, namely with progesterone (108, 110, 111), oestrogens (68, 69, 111) and LH (112, 113). It is important to be aware of this variation when studying leptin levels in women, in order to measure leptin at the same moment of the cycle. In women taking oral contraceptives, leptin levels remain unchanged throughout the cycle (111) but levels are not different from normally cycling females (114).

Pregnancy
Pregnancy is a period of dramatic changes in the body, with short-term weight gain, increased fat stores, new tissue synthesis and major hormonal and metabolic changes. During pregnancy, plasma leptin levels are elevated (115–118), rising especially during the second trimester (66, 108, 119, 120), and dropping sharply after delivery. This increase is correlated with gestational weight gain, and absolute leptin levels are correlated with BMI (57, 117–119). This hyperleptinaemia during pregnancy occurs with the appearance of a circulating form of the leptin receptor, functioning as a binding protein (121). It was shown in mice that the hyperleptinaemia of late pregnancy is attributable to binding of leptin by this placenta-secreted soluble form of the leptin receptor (122). Another factor contributing to the rise in leptin levels is the production of leptin by placenta and foetus, partly secreted into the maternal circulation (57, 123–124). In addition to this, changes occur in the levels of other hormones that may influence leptin. Insulin levels are increased during pregnancy, and also gestational hormones like human chorionic gonadotrophin and oestrogen can stimulate leptin production by adipocytes, at least in vitro (66). It is not clear whether leptin synthesized by placenta acts as a growth factor for the foetus or as a signal of energy status between mother and foetus. The leptin receptor is also expressed by the placenta, the long signalling form as well as short transporting form, suggesting a possible role for leptin in foetal development (124). However, no correlation between maternal leptin levels and birth weight was found (116, 119, 120), in contrast to cord serum leptin concentrations and leptin levels in infants at birth, which are correlated with birth weight (57, 58, 116, 120).

The drop in leptin levels seen after delivery could play a role in the reduced fertility during the period of lactation.

Polycystic ovary syndrome
Women with the polycystic ovary syndrome (PCOS) are hyperandrogenic, with increased plasma androstenedione and testosterone levels, are often characterized by visceral obesity, hyperinsulinaemia and insulin resistance, and are frequently subfertile or even infertile. Leptin status in these women is not clear. Several studies found leptin levels in women with PCOS to be higher than expected for their BMI (125–128), but other studies found leptin levels comparable with age- and weight-matched control women (129–132). A possible explanation for these different findings could be that the phenotype of PCOS can vary considerably, and that not all women with PCOS are to the same degree (abdominally) obese. The variability in leptin levels can possibly be explained in part by differences in body composition. But even with similar leptin levels, the activity could differ in women with PCOS, for example by a different proportion of bound leptin circulating in the blood, differences in leptin pulsatility, or a reduced sensitivity of the hypothalamic–pituitary–ovary axis in women with PCOS (133).

Menopause
It has been proposed that a decrease in leptin levels found at menopause was due to the fall in oestrogen levels (53, 68). However, most other studies found no differences in leptin levels between pre- and post-menopausal women, when matched for BMI (52, 54, 114, 134, 135). Hormone replacement therapy (with oestrogens and progesterone) does not seem to affect leptin levels in post-menopausal women either (52, 114, 134, 136, 137). From these data it seems unlikely that the presence of oestrogens is responsible for the higher leptin levels seen in women. Since post-menopausal women still have higher leptin levels compared with men, the suppressive effect of circulating androgens may also play a role.

These experimental in vitro and in vivo data altogether indicate that an interaction between leptin and sex steroids exists, but the physiological importance and working mechanisms are not yet clear. Yet, although the exact mechanisms are still unknown at this moment, it is clear that leptin is important in the regulation of reproductive function, and this in men as well as in mice.

The gender difference in leptin levels seems to be explained by differential effects of sex hormones, in particular an inhibition by testosterone, in addition to the differences in body composition, with women having more subcutaneous fat, secreting more leptin.

Leptin and insulin metabolism
A possible interaction between leptin and insulin was first suggested by the strong correlations between fasting serum leptin and insulin levels observed in human studies, independent of body fatness (54, 55, 138–140). The question arose whether there is a causal relationship or not, and in which direction. In other words, is leptin secretion regulated by insulin, or can leptin have an influence on insulin secretion and action?
Effect of insulin on leptin secretion

More and more convincing evidence emerges that insulin can regulate leptin expression. This is most evident from studies with isolated adipocytes, which all showed that in vitro insulin clearly stimulates the mRNA expression and secretion of leptin in cultured rat and human adipocytes (141–145). In isolated adipocytes, glucose metabolism seems to be an important determinant of the regulation of leptin expression and secretion.

Also, rodent studies showed that insulin induced an increase in ob mRNA in adipose tissue (141, 146, 147) and increased plasma leptin levels (148–150). Rats made insulin deficient by streptozotocin (STZ) treatment show significantly reduced leptin levels; when these STZ-treated animals receive an insulin injection, leptin secretion increases rapidly again (146, 149, 150). Similarly, in diabetic rats the reduced plasma leptin levels found under conditions of insulin deficiency are also raised by insulin treatment (150).

In human experiments, hyperinsulinaemia induced by clamp techniques leads to a rise in leptin concentrations, but only in the longer term (143, 151–153), not acutely (51, 138, 143, 154, 155). Serum leptin levels are raised by insulin treatment, in type 2 as well as type 1 diabetic patients (140, 156). One report on a patient with insulinoma reported markedly elevated leptin levels during chronically high insulinemia, which both dropped after surgical removal (157), also indicating that chronic hyperinsulinaemia increases leptin expression.

Effect of leptin on insulin secretion

More and more data provide evidence for the assumption that leptin can modulate insulin secretion and action, exerting insulin- and glucose-lowering effects.

In the ob/ob mice, characterized by hyperglycaemia, hyperinsulinaemia and insulin resistance, leptin treatment can correct all these metabolic abnormalities, even before weight loss occurs (9, 15, 158). In normal fed mice a decrease in plasma insulin and associated rise in glucose were observed after leptin administration (159, 160), while infusion of leptin to fasted rats reduced both glucose and insulin (161). This seems to be due to effects on insulin action as well as on insulin release. No direct effect of leptin i.v. or i.c.v. on insulin secretion is found in intact animals, but an acute inhibition of insulin release by leptin was seen in vagotomized rats, which could in turn be blocked by sympathectomy (162). This suggests that a reduction in insulin secretion could be induced by leptin in intact animals, mediated through sympathetic activation under very specific conditions (163).

Functional leptin receptors were shown to be present on insulin-secreting pancreatic β-cells (164). The insulin-lowering effect of leptin administration could thus be mediated through these receptors. A direct inhibition of leptin on basal and glucose-stimulated insulin secretion was shown in pancreatic islets, at least with high concentrations or prolonged exposure (159, 165–172). Though some other studies found conflicting results, the effect of leptin on insulin release seems to be specific, since no response is seen in tissue from leptin receptor-deficient db/db mice or fa/− fat rats (159).

The proposed mechanism seems to affect the phospholipase C (PLC)/protein kinase C (PKC)-mediated pathway regulating insulin secretion. Modulation by leptin of several steps in this pathway were described: lowering of intracellular Ca²⁺ concentration and activation of ATP-sensitive K⁺ channels (166, 169, 173); a specific inhibition of PLC-mediated insulin secretion, which is enhanced in ob/ob mice (167, 174); and reduction of PKC, a Ca²⁺-dependent mediator in the second phase of the PLC signal pathway (167, 170). The insulin-suppressive effect of leptin could also partly be mediated by activation of phosphodiesterase 3B (171, 175), leading to suppression of cAMP levels and inhibition of GLP-1-stimulated insulin secretion. Recently, a direct effect of leptin on insulin gene transcription in pancreatic β-cells was shown, with a reduction of preproinsulin mRNA by 50% (168, 176). Leptin probably acts at different intracellular levels, from transcription to membrane permeability, to inhibit insulin synthesis as well as secretion.

Effects of leptin on insulin action

The fact that the leptin receptor is expressed in liver, skeletal muscle and adipocytes suggests that leptin might influence the function of these three classical insulin target tissues, and could possibly affect the response to insulin in these tissues.

In vivo studies show that leptin has an effect on glucose utilization. Central or i.v. infusion of leptin to rats enhances hepatic and peripheral insulin sensitivity and increases whole-body glucose utilization (161, 177–180). When ob/ob mice are treated with leptin, a normalization of blood glucose is seen (9). The question is whether this is the result of the weight loss induced by leptin, or whether leptin has a direct action lowering blood glucose, e.g. through enhancing (peripheral) insulin sensitivity. When ob/ob mice treated with leptin were compared with pair-fed mice, both showed, besides a decrease in body weight, lowered glucose and insulin levels, but the decrease in insulin in pair-fed, non-leptin-treated mice was only 60% of that observed in leptin-treated mice (181).

A recent study compared the effect of decreased visceral adiposity induced by leptin, a β3-adrenoceptor agonist, or food restriction, on insulin action in rats (180). They found that hepatic insulin action increased similarly in the three treatment groups, but peripheral insulin action was only significantly increased by leptin treatment (180). So, leptin seems to exert a hypoglycaemic action which is partly independent of its weight- or fat-reducing effects.
addition, this action of leptin on glucose metabolism seems to be partly independent of its effect on insulin, as was shown in a study on STZ-induced diabetic rats, where leptin treatment could normalize blood glucose and improve insulin sensitivity without the use of insulin (179).

Leptin receptors are present on human hepatocytes, and leptin was shown to modulate several insulin-induced activities in these cells (182). Leptin antagonizes insulin signalling, by decreasing insulin-induced tyrosine phosphorylation of IRS-1 (182); it increases PEP-carboxykinase (183, 184) and decreases glucokinase expression (183), leading to increased gluconeogenesis and decreased glycogenolysis (183, 184). The hepatic effects of high leptin levels may thus contribute to hepatic insulin resistance.

Studies on other peripheral tissues show no consistent results. Some studies indicate that leptin is able to modulate insulin action (on glucose uptake and/or lipid synthesis) in adipocytes (160, 177, 185–187) and muscle cells (177, 188–191), but other studies found no effect on peripheral glucose uptake (183, 184, 192–196).

Leptin and diabetes

The question was raised some years ago as to whether leptin was important in the development of type 2 diabetes (197, 198). As discussed previously, leptin can impair insulin production, and some data indicate that leptin could also play a role in the development of peripheral insulin resistance. Thus, a hypothesis for the interference of leptin in the development of insulin resistance and type 2 diabetes in obese subjects could be that high leptin levels as observed in obesity lead to hyperglycaemia through suppression of the glucose-induced insulin secretion by the pancreas. Peripheral insulin resistance, possibly also induced by hyperleptinaemia, may then add to a further glucose intolerance, overruling this leptin-induced suppression of insulin secretion and eventually induce hyperinsulinemia. Another hypothesis is that the high serum leptin levels in obesity result in desensitization of the receptor and thus defective leptin receptor signalling in β-cells, which leads to chronic hyperinsulinemia and may thus contribute to the pathogenesis of diabetes (172).

On the other hand, leptin could have a protective antidiabetic effect, by enhancing peripheral insulin sensitivity and by decreasing triglyceride accumulation in several tissues (199, 200).

At this moment, there is no evidence for involvement of mutations in the leptin or leptin receptor gene in the development of type 2 diabetes or impaired glucose tolerance. No mutations were found in screenings of the human ob gene and its promoter in type 2 diabetic subjects (18, 20), and leptin levels are comparable in type 2 diabetic patients and nondiabetics when BMI or fat mass is taken into account (139, 201–203).

Associations of leptin with body composition, gender differences as well as correlations with insulin are also similar in diabetic patients as in non-diabetics (140, 156, 203).

In short, leptin has been shown to inhibit insulin secretion at the level of the pancreas, while concomitantly enhancing insulin action and glucose utilization. On the other hand, leptin production by the adipocyte seems to be critically dependent on insulin. In humans, insulin and leptin levels are associated, but whether insulin can acutely regulate leptin levels in humans remains controversial. A change in leptin levels is observed in response to insulin, but only with a certain delay. Presumably this stimulatory effect of insulin on leptin secretion is, at least partly, due to the trophic effect of insulin on adipocytes.

Leptin and the corticotrophic (HPA) axis

Obesity is often associated with an increased cortisol turnover rate (increased production and accelerated degradation) or with hyper-responsiveness of the hypothalamic–pituitary–adrenal (HPA) axis. Glucocorticoids have been shown to modulate food intake and body weight. They have a central effect on the central nervous system, stimulating anabolic effector pathways like NPY, and inhibiting catabolic pathways like CRH and α-melanocyte-stimulating hormone (α-MSH). The question was raised whether this effect could partly be mediated through leptin.

Leptin and cortisol levels are inversely related in humans (103, 157, 204). It is suggested that leptin can regulate the HPA axis both centrally, at the level of hypophysoptrophic CRH, and peripherally, at the level of the adrenal gland.

Centrally, leptin suppresses the HPA axis. In fasted rodents with reduced leptin levels, increased plasma corticosterone and adrenocorticotropic hormone (ACTH) are seen, which can be blunted by leptin administration (98, 101). Leptin deficient ob/ob mice are hypercortisolaemic, also reversible by leptin treatment (15, 98). Increased corticosterone levels are also seen in db/db mice (98) and fa/.fa rats (205), rodent models of obesity both characterized by leptin resistance. The mechanism of this suppression of the HPA axis by leptin is presumably hypothalamic, as leptin has been shown in vitro to blunt the release of CRH induced by hypoglycaemia in isolated hypothalamic neurons, but not altering the secretion of ACTH from isolated pituitary cells (206). In addition, the presence of leptin in pituitary ACTH cells was also shown recently (86). Moreover, leptin could also suppress the HPA axis by inhibition of NPY, which normally activates the HPA axis.

Leptin receptors are present in adrenal tissue, cortex as well as medulla (207, 208). In vitro, it was clearly shown that leptin can directly stimulate adrenal corticosteroid secretion: incubation of adrenocortical...
cells with leptin inhibits basal cortisol secretion and ACTH-induced cortisol, aldosterone, and dehydroepiandrosterone release (207, 209–211).

In human leptin deficiency, normal plasma cortisol levels were reported, with slightly elevated ACTH, and reduction of plasma cortisol and free urinary cortisol by administration of 1 mg of dexamethasone (21–23). In leptin receptor deficiency, normal ACTH and cortisol levels were reported, a normal dexamethasone test and slightly elevated free urinary cortisol levels, normal for the degree of obesity of these subjects (28).

Glucocorticoids are potent regulators of leptin expression. Cortisol has been shown to stimulate leptin production in vitro and in vivo. In vitro studies on isolated adipocytes showed a clear stimulatory effect of glucocorticoids on leptin synthesis and secretion (144, 145, 212, 213).

Peripheral infusion of glucocorticoids to rats induced ob gene expression in adipose tissue and hyperleptinaemia, followed by a decrease in food consumption and a subsequent body weight gain compared to controls (214, 215). Thus, the catabolic actions of high doses of corticosteroids, resulting in an inhibition of food intake and a decrease of body weight in rodents might be mediated by an increase of adipocyte leptin mRNA expression. Yet, when glucocorticoids were infused centrally, markedly increased in food intake and body weight were seen, with increased levels of NPY and decreased CRH, besides hyperleptinaemia, hyperinsulinaemia and hypertriglyceridaemia (215). This observation provides evidence for the thesis that the known stimulatory effect of corticosteroids on food intake and body weight is a central action, which could partly be counter-regulated through the peripheral induction of leptin. However, the increase in leptin secretion could also be due to the elevated insulin levels induced by corticosteroid administration (142, 215).

In humans, administration of glucocorticoids increases leptin secretion (216–222), though acute stimulation of the corticotropic axis did not always significantly alter leptin levels (45, 204, 222). It was suggested that chronic hyperscretion of cortisol could be involved in inducing not only hyperleptinaemia but also leptin resistance in some groups of obese humans (223).

Patients with Cushing’s syndrome, a state of glucocorticoid excess marked by central fat accumulation, have markedly elevated serum leptin levels independent of adiposity which could be a result of the increased glucocorticoid levels, but could also partly be attributed to the associated hyperinsulinaemia (224–226). Tumour resection of adrenal or pituitary adenoma causes a marked reduction in leptin levels concomitant with the decline in cortisol levels (225, 226).

On the other hand, glucocorticoids seem to have an inhibitory effect on leptin action. This was illustrated in adrenalectomized rats, where leptin administration had potent effects on food intake and body weight, which were inhibited by glucocorticoid supplementation (227).

These overall findings, the direct inhibitory effect of leptin on cortisol secretion by the adrenal gland on one hand, and the potent stimulatory effects of glucocorticoids on leptin expression on the other hand, suggest the existence of a negative feedback loop between leptin and glucocorticoids. In addition, it has been suggested that glucocorticoids may also have an inhibitory effect on the central action of leptin (227).

Leptin and the thyroid axis

Thyroid function is linked to energy expenditure, and its hormone increases metabolic rate, thus being a major regulator of energy homeostasis. Alterations in thyroid status often result in changes in body weight and energy metabolism, with hyperthyroidism increasing thermogenesis and hypothyroidism decreasing basal metabolic rate and body temperature. Since leptin and thyroid hormones have similar effects on thermogenesis and energy metabolism, the possibility has been raised that they could both exert their effects through the same pathways, i.e. regulation of sympathetic nervous system activity, mainly adrenergic upregulation.

Regulation of thyroid hormone (thyroxine (T4) and tri-iodothyronine (T3)) secretion originates in the hypothalamic paraventricular nucleus (PVN), where thyrotrophin-releasing hormone (TRH) is produced, which regulates thyroid-stimulating hormone (TSH) secretion by the anterior pituitary gland. Leptin seems to influence the feedback regulation of the hypothalamic TRH-secreting neurons by thyroid hormone. This central effect may be mediated through NPY and/or CRF, as neurons expressing these peptides were shown to interact with TRH-synthesizing neurons in the hypothalamus (228, 229). At the level of the pituitary gland, leptin was recently shown to be expressed by TSH cells too (86).

Prolonged fasting is associated with a fall in leptin levels and in thyroid hormones. Leptin administration to fasted mice decreased the fall in T4/TSH induced by fasting (101), restored the reduced plasma levels of total and free T3 and T4 to normal levels, as well as the suppressed proTRH mRNA in PVN neurons (230). The same group also showed that peak levels of leptin precede peak T4 levels in food-restricted mice (101). They suggested that leptin has a selective, central action modulating the hypothalamic–pituitary–thyroid axis by regulating proTRH gene expression in the PVN without peripheral effects in thyroid-binding proteins. Thus, adaptation to starvation can take place because the fall in circulating leptin levels during fasting resets the set point for feedback inhibition by thyroid hormones on the biosynthesis of hypophysiotrophic proTRH, thereby restoring reduced thyroid hormone levels towards normal and reversing the central hypothyroid state.

In human mutations of the leptin gene and of the leptin receptor gene, some abnormalities of the thyroid axis have been reported, without it being clear if these
are really caused by the defective leptin function. In human leptin deficiency, elevated TSH levels were reported in children with the genetic defect (21, 23), whereas these were normal in the adult patients (22, 23).

In the human leptin receptor mutation, a hypothalamic hypothyroidism was seen, with reduced secretion of thyrotrophin, low levels of free thyroxin, normal basal TSH levels but a sustained TSH response to a TRH stimulation test (28).

The question is raised as to whether thyroid hormones modulate leptin expression or secretion. Theoretically, one would expect an inhibitory effect of thyroid hormones on leptin secretion, since thyroid hormones have a permissive role on the effects of catecholamines on beta-adrenergic receptors, and since stimulation of these receptors suppresses leptin expression (231). This seems consistent with the inverse relation which is seen between leptin and thyroid hormone levels.

This theory is confirmed by rodent data, where thyroid hormones seem to exert a negative influence on serum leptin levels. Leptin was elevated in thyroidectomized rats compared with controls, and infusion of T₃ or T₄ to these rats decreased leptin levels (232). Administration of T₃ to hypothyroid rats also decreased leptin mRNA expression in adipose tissue and circulating leptin levels (231).

In **vitro**, however, an upregulation of leptin by thyroid hormone in differentiated adipocytes was shown. T₃, but not T₄, stimulated ob mRNA expression and leptin secretion by adipocytes **in vitro** (233).

Human studies show no conclusive evidence on this relation between thyroid hormone and leptin levels. In normal healthy men, administration of T₃ for 1 week had no effect on circulating leptin levels (234). Possible effects of low versus high thyroid hormone levels on leptin levels were studied in hypothyroid and hyperthyroid patients, with conflicting results. In hyperthyroid patients, one study found increased leptin levels (235), one found decreased leptin levels (236), while other studies found no significant differences with controls (237–240). In hypothyroid patients, some studies found decreased leptin levels (237, 238), while others found levels comparable with controls (235, 241, 242), or even higher (236, 239), which seems consistent with the relatively higher body fat in these patients. Treatment of hypothyroid patients with T₄ resulted in two studies in normalization of the decreased (237) and increased (236) leptin levels in some studies, but in other studies no significant change in leptin levels was seen after normalization of thyroid function (235, 243). So, altogether, thyroid dysfunction seems not to have a significant effect on leptin levels in man.

Leptin and the GH axis

Growth hormone is not only involved in growth and development, but also has an important impact on body composition and fat distribution, through its influence on energy metabolism, its lipolytic and nitrogen sparing effects. Furthermore, obesity is associated with disturbances in the GH–insulin-like growth factor-I (IGF-I) axis. Serum levels of GH and IGF-binding proteins are often decreased in obese subjects (244), resulting in high free IGF-I levels. Starvation on the other hand leads to increased GH secretion in humans (245). Administration of GH stimulates energy expenditure (246) and decreases the amount of body fat.

Furthermore, leptin is structurally related to GH, since both belong to the family of helical cytokines (247), and the possibility of binding of leptin to GH binding proteins may therefore not be excluded.

The effect of leptin on GH secretion has not as yet been very extensively investigated. Leptin, as it is increased in obesity, may act as a signal reducing GH secretion. This action could take place through leptin receptors which are present in those hypothalamic nuclei known to be involved in GH regulation (248). Leptin inhibits somatostatin gene expression and secretion in hypothalamic neurons (249). The leptin receptor is also expressed at the level of the pituitary gland, where leptin has been shown to specifically stimulate basal GH release (250, 251). Moreover, the long form of the leptin receptor seems to be upregulated by growth hormone-releasing hormone (GHRH), as was shown in the pituitary gland of hGHRH transgenic mice (252). Leptin is also expressed by pituitary GH adenomas, and local-co-localization of leptin with GH in anterior pituitary cells has been shown (86).

Rodent experiments on the contrary point to a stimulatory action of leptin on GH secretion. Central infusion of leptin to rats stimulates basal GH secretion (248, 251, 253, 254). Administration of leptin antisem to normal fed rats led to a decrease in spontaneous GH secretion (255). Administration of leptin to fasted rats was followed by a reversal of the fasting-induced suppression of GH secretion, suggesting a role for leptin in the regulation of GH secretion (253, 256).

No human studies are available, and since regulation of the GH axis in humans is different from rodents, no conclusions can be drawn from these experiments. Only indirect data are available indicating that leptin is involved in regulation of GH secretion. Some (257–259), though not all (260), studies find an inverse correlation between leptin and GH in humans. A study in prepubertal children identified leptin as a negative determinant of the GH response to stimulation tests (258). In patients with human leptin or leptin receptor deficiency, impaired GH secretion in response to stimulation tests was reported (23, 28).

Whether leptin secretion is also influenced by GH is not yet clear. Most studies point towards an inhibitory effect of the GH axis on leptin secretion. It is, however, not clear if this is a direct effect or rather indirect through stimulation of lipolysis in adipocytes.

www.eje.org
The GH receptors, as expressed on adipocytes, could mediate a direct effect of GH on leptin synthesis by the adipocyte. In vitro chronic incubation of isolated adipocytes with either GH or IGF-I however had no effect on leptin expression and secretion (145).

A recent study showed a suppressive effect on leptin and insulin of recombinant human (rh) IGF-I infusion in normal rats, but no effect of rhGH infusion (261). This suppressive effect could be due to the reduced circulating insulin, leading to enhanced fat mobilization and oxidation. Administration of IGF-I to renal impaired patients decreased leptin levels (262), suggesting that in humans too, IGF-I may have an inhibitory effect on leptin secretion.

Acute GH administration to healthy humans has no effect on leptin levels (263, 264). In men with abdominal obesity (and low IGF-I levels), long term GH treatment decreased serum leptin levels after 6 weeks, but after 9 months no changes in serum leptin levels and leptin mRNA expression were found despite a loss of fat mass (265). Infusion with somatostatin, insulin and GH for 2 h significantly reduced plasma leptin in normal weight subjects (266).

In hypopituitary patients with GH deficiency, who are characterized by increased fat mass and especially abdominal (visceral) fat accumulation (246), leptin levels were shown to be higher than in controls, matched for age and BMI (257, 267–270). The normal circadian rhythm of leptin is preserved in these patients (270, 271). Treatment with GH replacement therapy leads to a change in body composition, with an increase in lean body mass and a decrease in fat mass (272). Since leptin levels are strongly associated with fat mass, it can be expected that changes in plasma leptin levels will occur during treatment with GH. Most reports on GH treatment in these patients show a decrease in leptin levels, concomitant with the decreases in percentage body fat (264, 269, 273, 274), but not independent of changes in body composition (264).

In conclusion, leptin could possibly be a metabolic signal inhibiting GH secretion, while GH/IGF-I could be involved in the regulation of leptin secretion, but it is not clear whether this is a direct effect or only an indirect effect through changes in body composition and insulin.

In summary: an overview of leptin physiology

Leptin is produced and secreted mainly by adipose tissue, but also by placenta and stomach, bone marrow and muscle (possibly by adipose cells in these last two tissues), and even pituitary cells. Leptin expression is regulated in humans by fasting and feeding, by insulin, glucocorticoids and possibly also other hormones, and by β-adrenergic action on adipocytes.

The hypothalamus is the principal site of action for leptin. Receptors were first identified in the brain, at different sites (choroid plexus, arcuate nucleus, the ventromedial, dorsomedial and paraventricular nuclei) but also in a variety of peripheral tissues such as lung and kidney (where clearance takes place), and at lower levels in liver, pancreatic β-cells, adrenal tissue, adipose tissue, skeletal muscle, gonads, T-lymphocytes and epithelial cells, providing evidence for its role not only in energy balance, but also in carbohydrate metabolism, reproduction and several other functions.

These different actions play on a different time scale: the effect of leptin on food intake is an acute effect; metabolic effects on glucose metabolism take place within hours; in days leptin can change gene expression in the CNS; the effects on weight and body composition need several days or weeks; support of puberty is an even longer-term effect.

In conclusion, leptin can no longer be called a mere adipocyte-secreted hormone with a weight regulatory function, but is more and more emerging as a hormone with an important (neuro-)endocrine and metabolic role, acting through the hypothalamus as well as peripherally on pathways varying from glucose metabolism regulation to sexual maturation and reproduction.

References

48 Hube F, Lieta U, Igel M, Jensen PB, Tornqvist H, Joost H-G et al. Difference in leptin mRNA levels between omental and

136 Kohrt WM, Landt M & Birge SJ. Serum leptin levels are reduced in response to exercise training, but not hormone replacement therapy, in older women. *Journal of Clinical Endocrinology and Metabolism* 1996 81 3980–3985.

148 Hardie LJ, Rayner DV, Holmes S & Trayhurn P. Circulating leptin levels are modulated by fasting, cold exposure and insulin administration in lean but not Zucker (fa/ f a) rats as measured by ELISA. *Biochemical and Biophysical Research Communications* 1996 223 660–665.

administration in normal or obese subjects, but are negatively correlated with pituitary–adrenal activity. Clinical Endocrinology 1997 46 751–757.

168 Pallott AL, Morton NM, Cordover MA & Emilsson V. Leptin inhibits insulin secretion and reduces insulin mRNA levels in rat isolated pancreatic islets. Biochemical and Biophysical Research Communications 1997 238 267–270.

www.eoe.org
Endocrinological aspects of lepton

210 Kruse M, Bornstein S, Uhlmann K, Paeth G & Scherbaum W. Induction of obesity and hyperleptinemia by recombinant human lepton in the white and brown adipose tissues of C57BL/6 mice. Laboratory Investigation 1997 77 243–256.

247 Madej T, Boguski MS & Bryant SH. Threading analysis suggest that the obese gene product may be a helical cytokine. *FEBS Letters* 1995 373 13–18.

Received 8 March 2000
Accepted 22 May 2000