EXPERIMENTAL STUDY

Functional characteristics of insulin receptors with a Thr→Ser\textsuperscript{1200} mutation overexpressed in Chinese hamster ovary cells

M Schüt\textsuperscript{1}, H Benecke\textsuperscript{2}, M Drenckhan\textsuperscript{1} and H H Klein\textsuperscript{1}

\textsuperscript{1}Department of Internal Medicine I, Medical University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany and \textsuperscript{2}Department of Clinical Endocrinology, Medical University of Hannover, Germany

(Correspondence should be addressed to H H Klein; Fax: +49-451-5006487)

Abstract

Objective: To investigate the functional properties of insulin receptors with a Thr→Ser\textsuperscript{1200}-mutation that is associated with severe insulin resistance in humans.

Design and methods: The effect of \textit{in situ} insulin-stimulation on insulin receptor kinase activity was studied in Chinese hamster ovary cells with overexpressed human Ser\textsuperscript{1200}-mutated, non-mutated, and ATP-binding site-mutated (Lys→Arg\textsuperscript{1030}) receptors using a microwell-based assay that only detects human (and not hamster) insulin receptors. Moreover, the fraction of anti-phosphotyrosine antibody-binding receptors following \textit{in situ} stimulation was separated, and autophosphorylation and kinase activity resulting from \textit{in situ} and/or \textit{in vitro} activation evaluated in this fraction.

Results: Although insulin-stimulated kinase activity of human-specific anti-insulin receptor antibody-binding receptors in cells with Ser\textsuperscript{1200}-mutated insulin receptors represented only 3.3\% of that reached in cells with non-mutated receptors, a clear insulin-induced increase in kinase activity was observed (3.4-fold; \(P<0.05\)). This increase was associated with a 2.3±0.6\% (\(P<0.05\)) increase in anti-phosphotyrosine-binding receptors with a kinase activity representing 43±8\% of that found in activated non-mutated receptors. \textit{In vitro} autophosphorylation and kinase activation proceeded much more slowly in Ser\textsuperscript{1200}-mutated receptors (\(t_{1/2}: 100\) min) compared with non-mutated receptors (\(t_{1/2}: 1\) min) and were inhibitable by lower alkaline phosphatase concentrations (EC\textsubscript{50}: 3 U/ml and 70 U/ml respectively). No activation of insulin receptor kinase was observed with Arg\textsuperscript{1030}-mutated receptors.

Conclusions: Overexpressed Ser\textsuperscript{1200}-mutated human insulin receptors possess insulin-stimulated kinase activity and can be activated \textit{in situ} and \textit{in vitro}. They are characterized by a markedly slower autophosphorylation reaction, which, in a phosphatase-containing environment, results in a small fraction of phosphorylated and activated receptors.

European Journal of Endocrinology 143 125–131

Introduction

The insulin receptor is a heterotetrameric, transmembrane tyrosine kinase which undergoes ligand-activated autophosphorylation of tyrosine residues on its own β-subunit. This phosphorylation of certain tyrosine residues in the tyrosine kinase domain of the receptor is necessary to allow full activation of the receptor tyrosine kinase activity towards other substrates and to allow normal signaling to downstream effectors (1). Deactivation of the insulin receptor kinase occurs via receptor dephosphorylation by cellular phosphotyrosine-phosphatases (2).

The Trp→Ser\textsuperscript{1200} insulin receptor mutation is one of several mutations found in the receptor kinase region that is associated with severe insulin resistance (3–9).
CHO cells with overexpressed Ser\textsuperscript{1200}-mutated insulin receptors. We show that the kinase of the Ser\textsuperscript{1200}-mutated insulin receptors can be insulin-dependently activated in situ and in vitro. Their autophosphorylation, however, is much slower than that of non-mutated insulin receptors and therefore only a few of the mutated receptors are tyrosine-phosphorylated and activated in the in situ environment.

Materials and methods

Materials

Porcine monocomponent insulin was purchased from Novo Biolabs (Bagvaerd, Denmark), insulin-like growth factor-I (IGF-I) was from Bissendorf (Hannover, Germany). [γ\textsuperscript{32}P]ATP (5000 Ci/mmol) was from DuPont-NEN (Drzeich, Germany) and [\textsuperscript{125}I-Tyr-A\textsubscript{14}]moniodoinsulin and [3,\textsuperscript{125}I]iodotyrosyl-IGF-I were from Amersham (Braunschweig, Germany). BSA was from Boehringer Mannheim (Mannheim, Germany) and materials for SDS-PAGE were from Bio-Rad (Hamburg, Germany). Mouse anti-mouse IgG was from Dianova (Hamburg, Germany), mouse hybridoma cells producing a monoclonal antibody directed against the α-subunit of the human insulin receptor (αIr) were from the American Type Culture Collection (Rockville, MD, USA) and a monoclonal antibody against phosphotyrosine (αPY) was from Upstate Biotechnology (New York, NY, USA). A synthetic polymer with a 4:1 ratio of glutamic acid residues to tyrosine residues (Glu4:Tyr1) and other reagents were from Sigma (München, Germany).

Cell lines

Transfected CHO cells that overexpressed non-mutated human insulin receptors (non-mutated huIRs), human insulin receptors with a Lys→Arg\textsuperscript{1030} mutation at the ATP-binding site (Arg\textsuperscript{1030}-huIRs) or a Thr→Ser\textsuperscript{1200} mutation (Ser\textsuperscript{1200}-huIR) were kindly provided by Moller et al. (10). In addition, CHO cells that expressed only the hamster insulin receptors (huIRs) were studied. Cells were grown in Ham’s F-12 medium supplemented with 10% fetal bovine serum, 100 U/ml penicillin, 100 µg/ml streptomycin and 800 µg/ml geneticin at 37°C under an atmosphere of 95% air and 5% CO\textsubscript{2} in 140-mm dishes.

Incubation and solubilization of cells

Confluent cells were first preincubated with incubation buffer (20 mmol/l N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid (HEPES), 130 mmol/l NaCl, 4.8 mmol/l KCl, 1.3 mmol/l KH\textsubscript{2}PO\textsubscript{4}, 1 g/l d-glucose, 1.3 mmol/l MgSO\textsubscript{4}, 1.2 mmol/l CaCl\textsubscript{2}, 2% BSA, pH 7.4) for 30 min (37°C). This buffer was then replaced by fresh incubation buffer, with or without 87 nmol/l insulin, and the cells incubated for 30 min. The buffer was then quickly removed and the dishes containing the cells were frozen in liquid nitrogen. The thin ice layer that contained the cells was scraped off the dishes at −20°C and homogenized with a motor-driven homogenizer Potter S (Braun, Melsungen, Germany) in a solution that contained 2% Triton X-100, 5 mmol/l phenylmethylsulfonylfluoride, 800 U/ml aprotinin (trypsin inhibitor), 8 mmol/l EDTA, 30 mmol/l benzamidine, 2.5 µg/ml pepstatin, 2.5 µg/ml leupeptin, 100 mmol/l NaF, 10 mmol/l sodium pyrophosphate, 0.2 mmol/l sodium vanadate, 2 mmol/l dichloroacetic acid, and 20 mmol/l HEPES, pH 7.4 (final concentrations). Samples were then centrifuged at 10\textsuperscript{3} g and 4°C to remove insoluble material and stored at −80°C.

Immobilization of receptors and measurement of receptor kinase and binding activities

This was performed essentially as described previously (11). Briefly, 30 µl aliquots of solubilized cell samples were pipetted into microwells coated with αIRs. After 16 h at 4°C, the wells were washed and phosphorylation reactions were initiated in the wells by the addition of a mixture that contained [γ\textsuperscript{32}P]ATP (100–200 Ci/mmol) and Glu4:Tyr1 (2 mg/ml). The radioactivity incorporated into Glu4:Tyr1 was then measured (11). Binding of insulin and/or IGF-I to immobilized receptors was measured in the wells, also as described elsewhere (11). Briefly, [\textsuperscript{125}I-Tyr-A\textsubscript{12}]moniodoinsulin or [3,\textsuperscript{125}I]iodotyrosyl-IGF-I (0.2 mmol/l in each case) was added to the wells in the absence or presence of unlabeled insulin or IGF-I. After 16 h at 4°C, the wells were washed and the amount of bound radioactive ligands determined (11).

Selection of insulin receptors that bound to αPY

This was done essentially as described previously (2). Briefly, cell extracts or receptors that had been partially purified by wheat-germ agglutinin–agarose chromatography were pipetted into αPY-coated microwells. After 16 h at 4°C, the wells were washed and receptors that had bound to αPY were detached by the addition of 30 µl buffer containing 100 mmol/l phenylphosphate for 8 h at 4°C (2). Detached receptors were then transferred to αIR-coated microwells for measurement of kinase activity and/or binding activities.

In vitro autophosphorylation and kinase activity of insulin receptors

To study in vitro autophosphorylation and kinase activity of immobilized receptors, wells were incubated with 0.5 mmol/l \textsuperscript{32}P labeled or unlabeled ATP, respectively, for 24 h in buffer (0.5% Triton X-100, 100 mmol/l NaCl, 2.5 mmol/l KCl, 1 mmol/l CaCl\textsubscript{2}, 4.8 mmol/l KCl, 1.3 mmol/l KH\textsubscript{2}PO\textsubscript{4}, 1 g/l d-glucose, 1.3 mmol/l MgSO\textsubscript{4}, 1.2 mmol/l CaCl\textsubscript{2}, 2% BSA, pH 7.4) for 30 min (37°C). This buffer was then replaced by fresh incubation buffer, with or without 87 nmol/l insulin, and the cells incubated for 30 min. The buffer was then quickly removed and the dishes containing the cells were frozen in liquid nitrogen. The thin ice layer that contained the cells was scraped off the dishes at −20°C and homogenized with a motor-driven homogenizer Potter S (Braun, Melsungen, Germany) in a solution that contained 2% Triton X-100, 5 mmol/l phenylmethylsulfonylfluoride, 800 U/ml aprotinin (trypsin inhibitor), 8 mmol/l EDTA, 30 mmol/l benzamidine, 2.5 µg/ml pepstatin, 2.5 µg/ml leupeptin, 100 mmol/l NaF, 10 mmol/l sodium pyrophosphate, 0.2 mmol/l sodium vanadate, 2 mmol/l dichloroacetic acid, and 20 mmol/l HEPES, pH 7.4 (final concentrations). Samples were then centrifuged at 10\textsuperscript{3} g and 4°C to remove insoluble material and stored at −80°C.

www.eje.org
20 mmol/l HEPES, 10% glycerol, and 0.5% BSA, pH 7.4). For the detection of insulin receptor autophosphorylation receptors that had bound to αIR-coated microwells were detached by twice adding a solution of 2% SDS for 30 min. Then $^{32}$P incorporation into the insulin receptor β-subunit was measured by autoradiography. Insulin receptor kinase activity was measured as described above.

**Results**

**Insulin activation of insulin receptor kinase**

Insulin stimulation of cells with overexpressed non-mutated huIRs resulted in an 8.5-fold increase in kinase activity of the subsequently immuno-immobilized receptors (Fig. 1A). An insulin-stimulated increase in kinase activity was also observed in cells with overexpressed Ser$^{1200}$-huIRs (Fig. 1B); this effect, however, was much smaller than in cells with overexpressed non-mutated huIRs (0.01 ± 0.001 compared with 0.3 ± 0.04 fmol P/fmol binding activity/min respectively). To exclude the possibility that this effect on insulin receptor kinase activity could be simply explained by the binding of parental haIRs to αIRs, αIR-coated microwells were also incubated with extracts of insulin-stimulated or non-insulin-stimulated CHO cells without overexpressed huIRs or with Arg$^{1030}$-huIRs. In these wells, no insulin-binding activity was detectable (data not shown), indicating that no haIRs bound to the antibody. Moreover, in wells incubated with extracts from Arg$^{1030}$-huIR cells, a binding activity was measured which was similar to that found in wells that had been incubated with Ser$^{1200}$-huIR cells (data not shown) but, in contrast to the Ser$^{1200}$-huIR cells, there was no kinase activation (Fig. 1B). Taken together, these data indicate that the increase in kinase activity observed with the immobilized receptors from Ser$^{1200}$-huIR cells was in fact due to activation of Ser$^{1200}$-mutated holoreceptors or possibly hybrids formed with the halIR-Ser$^{1200}$-huIR halIR) and the haIGF-I receptor (Ser$^{1200}$-huIR/haIGF-I).

**Number and kinase activity of in situ-activated receptors**

To explore whether the small, but significant, kinase activation of receptors from Ser$^{1200}$-huIR cells that bound to microwells coated with αIRs was the result of a small number of receptors being activated or a low kinase activity reached by the individual receptors, tyrosine-phosphorylated receptors from insulin-stimulated cells were selected by immobilization to αPY. Only ~2–3% of the overexpressed insulin receptors from Ser$^{1200}$-huIR cells (compared with ~50% of the receptors from non-mutated-huIR cells) bound to αPY (Fig. 2A), but the kinase activity per binding activity of those receptors that bound to αPY represented almost 50% of the kinase activity per receptor of similarly treated non-mutated huIRs (Fig. 2B). This demonstrates that the increase in insulin-stimulated kinase activity that was measured in Ser$^{1200}$-huIR cells was derived from a small fraction of tyrosine-phosphorylated receptors with almost half of the insulin-stimulated kinase activity of non-mutated huIRs.

**In vitro autophosphorylation and kinase activity of Ser$^{1200}$-huIRs**

To test whether the human receptors from Ser$^{1200}$-huIR cells were able to autophosphorylate, receptors from non-stimulated Ser$^{1200}$-huIR cells were immobilized to αIR-coated microwells and exposed to insulin and ATP. This resulted in an autophosphorylation of the receptors (Fig. 3A) and was associated with increased kinase activity.

---

**Figure 1** Insulin-stimulation of insulin-receptor kinase activity in intact CHO cells. Cells that overexpressed non-mutated- (A), Ser$^{1200}$, or Arg$^{1030}$-huIRs (B) were incubated without (☐) or with (■) 87 nmol/l insulin for 30 min at 37 °C and solubilized. Insulin receptors were immobilized to αIR-coated microwells and insulin receptor kinase and binding activities were measured as described in the methods section. Kinase activities were normalized for insulin binding activities in the respective wells and therefore reflect kinase activities per receptor. Microwells coated with αIRs were also incubated with extracts from insulin-stimulated or non-insulin-stimulated CHO cells that only expressed haIRs. In these wells, no insulin-binding activity was detectable (data not shown). Values are means ± S.E.M.; n = 6. *P<0.005 compared with cells without insulin-stimulation (paired t-test).
activity towards insulin receptor substrate-1 (IRS-1) (Fig. 3B). Investigations were then directed towards establishing how many of the Ser1200-mutated-huIRs could be activated in vitro and what the time course of this activation was. With non-mutated huIRs, a rapid increase in the number of αPY-binding receptors was observed with half-maximal and maximal effects at 1 and 5 min respectively (Fig. 3C). An increase in the number of αPY-binding receptors was also observed in wheat-germ eluates from Ser1200-huIR cells, and since the αPY-binding receptors were detected after they bound to αIRs they represented receptors with at least one Ser1200-mutated insulin receptor half. The increase in the number of αPY-binding receptors from Ser1200-huIR cells was, however, markedly slower than that observed with receptors from non-mutated huIR cells and reached at least 12% of all αIR-binding over-expressed insulin receptors after 48 h (half-maximal effect at ≈ 100 min, Fig. 3C).

In vitro autophosphorylation of non-mutated and Ser1200-huIRs in the presence of alkaline phosphatase

In cells, phosphotyrosine-phosphatases that dephosphorylate phosphorylated insulin receptors are present. It is therefore likely that slow insulin-stimulated receptor autophosphorylation shifts the equilibrium to the dephosphorylated state and thereby leads to the presence of only a few activated receptors. To test this hypothesis in an in vitro model, autophosphorylation of non-mutated- and Ser1200-huIRs was performed in the presence of alkaline phosphatase (Fig. 4). At 20U/ml alkaline phosphatase, the Ser1200-huIR reached only ≈ 20% of the kinase activity attained in the absence of alkaline phosphatase, whereas the non-mutated-huIR reached ≈ 80%. This indicates that the slow autophosphorylation of the Ser1200-huIRs severely impairs their activation in a phosphotyrosine-phosphatase-containing environment.

IGF-I/insulin receptor hybrids

It is likely that only one huIR half is sufficient for the binding to αIRs. It was therefore possible that receptors from insulin-incubated Ser1200-huIR cells that bound to αPY were Ser1200-huIR/haIGF-I hybrids. In order to differentiate between receptors that contained either two Ser1200-mutated- or one Ser1200-mutated huIR and one haIGF-I receptor half, binding of insulin and IGF-I to αIR-coated microwells that had been incubated with the αPY-precipitable fraction of extracts from insulin-stimulated Ser1200-huIR cells was measured. The data show that those receptors that were phosphorylated in Ser1200-huIR cells and bound to αIRs had typical binding curves for insulin receptors (Fig. 5). This indicates that the fraction of insulin receptors that were tyrosine-phosphorylated following in situ insulin stimulation did not contain a substantial number of Ser1200-huIR/haIGF-I hybrids.

Discussion

Our data show that insulin stimulation of Ser1200-huIR cells led to a small, but significant, kinase activation of receptors that bound to αIRs. No increase in insulin-stimulated receptor kinase activity was observed in Arg1030-huIR cells or in huIR cells. This demonstrates that receptors with the Ser1200-mutation were insulin-dependently activated in the cells. The insulin-stimulated
increase in kinase activity of the Ser\textsubscript{1200}-huIR cells might well explain the increased insulin effect on 2-deoxyglucose uptake and glucose incorporation into glycogen in these cells compared with cells without overexpression of human insulin receptors or expression of the Arg\textsubscript{1030}-mutated insulin receptor (10). In fat cells, the half-maximal stimulation of glucose uptake occurred at an insulin concentration at which only 4% of the maximal kinase activity was reached (12), and in cells with overexpressed insulin receptors an even smaller percentage of the maximal insulin-stimulated kinase activity might be sufficient to produce biological effects. Taken together, our data demonstrate that the Ser\textsubscript{1200}-huIRs that were overexpressed in CHO cells had insulin-stimulated kinase activity and do not support the hypothesis that the receptor kinase might not be required for the stimulation of biological insulin effects (10).

The slight increase in the overall human insulin receptor kinase activity measured in insulin-stimulated Ser\textsubscript{1200}-huIR cells was not the result of a slight increase in the kinase activity of all or most cellular insulin receptors, but rather resulted from the activation of only approximately 2–3% of the cellular receptors that exhibited <50% of the kinase per binding activity of that reached in insulin-stimulated non-mutated huIRs. These results led us to further explore the functional properties of \(\alpha\)IR-binding receptors from Ser\textsubscript{1200}-cells that were tyrosine-phosphorylated by insulin incubation of the cells. It was possible that these receptors were unable to autophosphorylate and that their kinase activation resulted from intermolecular aspects. Functional characteristics of Ser\textsubscript{1200}-mutated insulin receptors

---

**Figure 3** In vitro autophosphorylation and kinase activation of receptors that bound to \(\alpha\)IR. Insulin receptors from cells that overexpressed the respective insulin receptors were immobilized to microwells coated with \(\alpha\)IRs and subsequently incubated with 0.5 mmol/l \(\alpha\)P labeled (A) or unlabeled (B) ATP, respectively, for 24 h, as described in the methods section. For the detection of insulin-receptor autophosphorylation (A), \(\alpha\)P was collected by twice adding a solution of 2% SDS for 30 min. For the measurement of insulin-receptor kinase activity (B), \(\alpha\)P was collected from the supernatant of in vitro-incubated wells after the addition of a mixture that contained [\(\alpha\)32P]ATP and recombinant insulin-receptor substrate-1 (IRS-1). Proteins were then separated by SDS–PAGE and \(\alpha\)P-incorporation into the receptor \(\beta\)-subunit (A, 95 kDa) or IRS-1 (B, 170 kDa) was measured by autoradiography. Counts per minute (c.p.m.), as obtained from Fig. 3A and B respectively were as follows: (1) haIR, 10 c.p.m. at 95 kDa, 17 c.p.m. at 170 kDa; (2) Arg\textsubscript{1030}-huIR, 71 c.p.m. at 95 kDa, 32 c.p.m. at 170 kDa; (3) Ser\textsubscript{1200}-huIR, 2330 c.p.m. at 95 kDa, 390 c.p.m. at 170 kDa; (4) non-mutated huIR, 15531 c.p.m. at 95 kDa, 3730 c.p.m. at 170 kDa. To determine the time course of in vitro receptor autophosphorylation, solubilized non-mutated- (C), Ser\textsubscript{1200}- (D), or Arg\textsubscript{1030}-huIRs (E) were partially purified by wheat-germ agglutinin–agarose chromatography, incubated with 0.5 mmol/l ATP for the indicated times and the reaction stopped by the addition of kinase- and phosphatase-inhibitors (C). The receptors were then either directly immobilized to \(\alpha\)IR-coated wells or the \(\alpha\)PY-binding fraction was first selected as described in the methods section. The amount of tyrosine-phosphorylated insulin receptors that bound to \(\alpha\)PY and \(\alpha\)IRs is shown as a percentage of the total amount of receptors that bound directly to \(\alpha\)IRs. Values are means of three experiments.

---

**Figure 4** In vitro autophosphorylation of Ser\textsubscript{1200}- and non-mutated huIRs in the presence of alkaline phosphatase. Receptors from cells that overexpressed non-mutated (F) or Ser\textsubscript{1200}-huIRs (G) were immobilized to microwells coated with \(\alpha\)IRs. Immuno-immobilized receptors were then incubated for 24 h with 0.5 mmol/l ATP in the presence of the indicated concentrations of alkaline phosphatase. Wells were washed and insulin receptor kinase activity measured as described. Receptor kinase activation is shown in percent receptor kinase activity after in vitro incubation of the wells in the absence of alkaline phosphatase. Values are means of two experiments.
phosphorylation by other cellular receptors, as previously described with cells expressing both wild-type and He1153-mutated human insulin receptors (13). The Ser1200-receptors were, however, insulin-dependently phosphorylated in vitro following their immunolocalization to microwells coated with αRs and this also resulted in their activation for the phosphorylation of IRS-1. These results demonstrate that these receptors were able to autophosphorylate and indicate that their activation in the cells was at least not dependent on phosphorylation by other receptors.

The rate of in vitro autophosphorylation of the Ser1200-huIR was much slower compared with the non-mutated huIR. After 24 h of in vitro incubation with insulin and ATP, ≈ 12% bound to αPY indicating that at least this percentage of the αIR-binding receptors from Ser1200-huIR cells were able to autophosphorylate. Conversely, only ≈ 2–3% of the αIR-binding insulin receptors were activated by maximal insulin stimulation of the Ser1200-huIR cells. This may be explained by the slow autophosphorylation of the mutated receptors in the presence of phosphotyrosine-phosphatases in the cellular environment. Phosphotyrosine-phosphatases strongly counterbalance insulin receptor activation (2) and thus a slow autophosphorylation results in a shift of the equilibrium between receptor autophosphorylation and dephosphorylation. Accordingly, we have demonstrated in vitro that in the presence of 20 U/ml alkaline phosphatase Ser1200-huIR reaches only ≈ 20% of the kinase activity attained in the absence of alkaline phosphatase, whereas non-mutated huIR reaches ≈ 80%.

Receptor halves from human insulin receptors that are expressed in rodent cells can dimerize with endogenous receptor halves (14–16). It is therefore possible that in situ-activated receptors that bound to αRs were not Ser1200-mutated holoreceptors but represented a subfraction of the αIR-binding receptors, e.g. hybrids that contained one human insulin and one hamster insulin or IGF-I receptor half. Since CHO cells without overexpression of human insulin receptors contained approximately 5000 IGF-I receptors per cell (10), ≈ 10,000 huIR/IGF-I hybrids per Ser1200-huIR cell could be expected. Our insulin- and IGF-I-binding data suggest, however, that the activated receptors from Ser1200-huIR cells that bound to αRs did not represent hybrids between human insulin receptors and rodents IGF-I receptors. Potentially, no huIR/IGF-I hybrids existed, they existed but were not able to autophosphorylate, or they did not bind to αRs. Our data indicate that of the activated receptors from Ser1200-huIR, huIR cells that bound to αRs few (if any) were Ser1200-huIR/haIGF-I hybrids, and thus the Ser1200-huIRs that were activated by insulin stimulation of the cells were Ser1200-mutated holoreceptors or hybrids of human and hamster insulin receptor halves or both. Unfortunately, we were unable to resolve the latter question, since no hamster-specific insulin receptor antibody was available. The CHO cells without insulin receptor overexpression express ≈ 2,000 endogenous insulin receptors per cell (10). If the same amount of endogenous insulin receptors were expressed in the Ser1200-huIR cells, up to 4,000 Ser1200-huIR/haIR hybrids might be present, which would amount to approximately 8% of the overexpressed receptors (10). We found that at least 12% of the overexpressed receptors from Ser1200-huIR cells were able to autophosphorylate, and therefore, with these estimates, the possibility remains that the receptors from insulin-stimulated Ser1200-huIR cells that able to autophosphorylate were Ser1200-huIR/haIR hybrids. In any case, even if they represented such hybrids, the Ser1200-huIR/haIR receptors would presumably be functionally similar to the Ser1200-huIR/non-mutated huIR receptor that probably represents the most abundant insulin receptor structure in the heterozygous patient with this mutation (10).

Most of the naturally occurring point mutations in the regulatory domain of the insulin receptor kinase (1002–1257) were reported to result in a complete loss of the insulin-stimulated receptor activity (3, 7, 17). There are also reports, consistent with our results, that describe mutated receptors that only partially impair the in vitro (18) or in situ (19) autophosphorylation. The functional characteristics of these mutations, however, have not been evaluated to the same extent as in the present study. In particular, a mutation with a ≈ 100-fold slower autophosphorylation, but only 50% decreased kinase activity if autophosphorylated, to our knowledge has not been described. It is, however, possible that other insulin receptor mutations with

![Figure 5](https://via.placeholder.com/150)

**Figure 5** Insulin- and IGF-I binding to tyrosine-phosphorylated receptors from Ser1200-huIR cells. Receptors from insulin- and haIR cells were first immobilized to αPY-coated wells, detached and then transferred to αIR-coated wells as described in the methods section. Subsequently, insulin receptors were incubated for 24 h with 0.2 nmol/l [125I]insulin and unlabeled insulin (−), 0.2 nmol/l [125I]IGF-I and unlabeled IGF-I (−) or 0.2 nmol/l [125I]IGF-I and unlabeled IGF-I (−). Binding activities were measured as described. Values are means ± S.E.M., n = 3.
only partially reduced kinase function have similar functional characteristics.

In summary, our data show that CHO cells with overexpressed Ser<sup>1200</sup>-huIRs contain receptors that display insulin-stimulated kinase activity and bind to an antibody that only detects human insulin receptors. This result may explain why overexpression of Ser<sup>1200</sup>-huIRs increases the insulin effect of distinct biological activities. Furthermore, we have shown that activated receptors from Ser<sup>1200</sup>-huIR cells that bind to antihuIRs are characterized by a slow, insulin-dependent autophosphorylation and a relatively high kinase activity if activated.

References


Received 1 December 1999
Accepted 28 March 2000

www.eje.org