Thyrocyte release of asymmetric dimethylarginine does not account for human thyrocyte inhibition of endothelial cell cyclic GMP

Lesley J Millatt, Alan P Johnstone, Stephen S Nussey and Guy StJ Whitley
Department of Cellular and Molecular Sciences, St George’s Hospital Medical School, London, UK
(Correspondence should be addressed to L J Millatt, who is now at Department of Anesthesiology, University of Virginia Health System, P O Box 800710, Charlottesville, Virginia 22908–0710, USA; Email: ljm6n@Virginia.EDU)

Abstract

Background: The thyroid gland produces and responds to the signalling molecule nitric oxide (NO). The activity of NO synthase (NOS) may be regulated by endogenous NOS inhibitors such as asymmetric dimethylarginine (ADMA).

Objective: To investigate whether human thyrocytes are capable of regulating NOS activity via the production of ADMA.

Design: Human thyrocytes were incubated with human umbilical vein endothelial cells (HUVEC) in order to determine the effect on HUVEC NOS activity. HUVEC cGMP production over a 3-h period was measured as an indicator of NOS activity in the absence and presence of thyrocytes. To determine thyrocyte production of ADMA, samples of conditioned media were analysed by HPLC.

Results: The presence of primary human thyrocytes or immortalized human thyrocyte SGHTL-189 cells caused a significant inhibition of both basal (approximately 57% inhibition) and thrombin-stimulated (approximately 42% inhibition) HUVEC cGMP production. Both primary human thyrocytes and SGHTL-189 cells released ADMA (approximately 0.28 μg per 10^6 thyrocytes over a 3-day period).

However, excess L-arginine, the natural substrate for NOS, was unable to overcome thyrocyte inhibition of HUVEC cGMP production.

Conclusion: These data indicate that human thyrocytes potently reduce endothelial cell cGMP concentrations, and that thyrocytes produce the endogenous NOS inhibitor, ADMA. However, the inhibition of endothelial cGMP is not mediated via thyrocyte production of a competitive NOS inhibitor.

European Journal of Endocrinology 142 493–499

Introduction

Nitric oxide (NO), a ubiquitous free radical signalling molecule, is synthesized endogenously from L-arginine and molecular oxygen, in a reaction catalysed by the enzyme, NO synthase (NOS) (1). Three major NOS isoforms have been identified: neuronal (nNOS), inducible (iNOS), and endothelial (eNOS). Many of the actions of NO are mediated via activation of the enzyme, soluble guanylyl cyclase (sGC), leading to increased production of the intracellular messenger, cyclic guanosine 3’,5’-monophosphate (cGMP).

The thyroid gland is a highly vascularized organ, in which an extensive network of blood capillaries surrounds each thyroid follicle. Blood flow through the gland is tightly regulated, and plays an essential role in the maintenance of thyroid function. Thyroid hypertrophy is commonly associated with prominent neovascularization and increased thyroid blood flow (2, 3). In such situations, endothelial cell proliferation occurs before the proliferation of follicular cells (4), suggesting that vasculatization is necessary to sustain thyroid growth.

Nitric oxide is one of the factors that may play a part in the regulation of thyroid vascularity and blood flow. All three NOS isoforms are present within the rat thyroid gland (5), and primary human thyrocytes express the iNOS isoform after cytokine stimulation (6). Immunostaining for the eNOS isoform has been demonstrated in the thyroid follicular cells, in addition to the endothelial cells, of the human thyroid gland (7). Colin et al. (5) reported increased expression of both eNOS and nNOS in rats after goitre induction. Moreover, increased thyroid eNOS expression was reported in hyperthyroid patients, suggesting a possible role for NO in thyroid growth (7).

The activities of the three NOS isoforms can be competitively inhibited by L-arginine analogues such as L-NMMA and asymmetric dimethylarginine, as well as by ADMA.
ADMA, both of which are found in human plasma (8, 9). ADMA and its enantiomer, N\(^{\text{G}}\)-dimethyl-L-arginine (symmetric dimethylarginine, SDMA), are present in equimolar concentrations in human plasma (9), but SDMA does not inhibit NOS activity. Concentrations of both ADMA and SDMA increase in the plasma of patients with renal failure, and ADMA can reach concentrations sufficient to inhibit NOS activity (9). Increased plasma concentrations of ADMA have also been reported in pre-eclampsia (10), congestive heart failure (11), and hypercholesterolaemia (12), and may contribute to the hypertension and endothelial dysfunction seen in these diseases.

As NO may play an important part in thyroid vascular size and growth, we investigated whether thyrocytes are themselves capable of regulating NOS activity. We show by co-culture experiments with human thyrocytes and endothelial cells that thyrocytes profoundly inhibit endothelial cell production of cGMP. Moreover, we demonstrate that human thyrocytes produce the NOS inhibitor, ADMA. However, ADMA does not appear to be responsible for the inhibitory effect of thyrocytes on endothelial cell cGMP production.

Materials and methods

Cell culture

Approval for the use of human thyroid tissue and human umbilical cords was obtained from the local Ethics Committee. Primary cultures of human thyrocytes were prepared by dispase type II digestion of surgical specimens from patients with multinodular goitre or Graves' disease, as previously described (13). Primary thyrocytes were maintained in monolayer culture in Ham's F10 medium containing 5% (v/v) newborn calf serum, 10 μg/ml insulin, 10 ng/ml somatostatin, 10 ng/ml glycine-histidine-lysine acetate, 3.6 ng/ml hydrocortisone, and 5 μg/ml transferrin (5H medium) (14). For co-culture studies, primary thyrocytes were grown to confluence in 9 cm dishes, then detached using trypsin–EDTA (0.5 g/l trypsin, 0.2 g/l EDTA) and used at passage 1. Each co-culture experiment was performed with a fresh isolate of primary thyrocytes from a different partial thyroidectomy. The immortalized thyrocyte cell line, SGHTL-189, was produced by electroporation-mediated transfection of primary human thyrocytes with the plasmid, pSV3neo, as previously described (15, 16). SGHTL-189 cells were maintained in monolayer culture in 5H medium, and were passaged 1:4 once a week.

Human umbilical vein endothelial cells (HUVECs) were prepared from fresh umbilical cords by the method of Jaffe et al. (17), and cultured as previously described (18). Upon reaching confluence, HUVEC were passaged and seeded into 24-well tissue culture plates at a plating density of 5 × 10⁴ cells/well. They were grown to confluence, then used for co-culture experiments at passage 1.

Chinese Hamster Ovary (CHO) cells (European Tissue Culture Collection, Porton Down, Wilts, UK) were maintained in monolayer culture in Medium 199 containing 5% (v/v) foetal calf serum, and were passaged 1:5 twice weekly.

Co-culture experiments

Co-culture procedure To potentiate the extracellular release of cGMP, all experiments were carried out in a hypotonic buffer consisting of 20 mmol/l HEPES, 25 mmol/l NaCl, 5 mmol/l KCl, 1.3 mmol/l CaCl₂, 0.44 mmol/l KH₂PO₄, 0.4 mmol/l MgSO₄, 0.34 mmol/l Na₂HPO₄, pH 7.4, with the addition of 0.1% (w/v) glucose, 0.1% (w/v) bovine serum albumin, and 0.3 mmol/l isobutylmethylxanthine (IBMX) (19).

Before co-culture experiments, confluent HUVEC were washed with phosphate-buffered saline (PBS), then pre-incubated for 15 min at 37°C in HEPES buffer containing 45 U/ml superoxide dismutase (SOD) and, where appropriate, 5 mmol/l L-arginine. SOD was included in all incubations to minimize the breakdown of NO by its reaction with superoxide free radicals (20).

Meanwhile, primary human thyrocytes or SGHTL-189 cells were removed from confluent 9 cm dishes, and resuspended in HEPES buffer, in which they were pre-incubated for 15 min. During pre-incubation, the thyrocytes were counted using a haemocytometer, and thyrocyte suspensions were diluted to the cell density appropriate for the experiment (4 × 10⁵–2 × 10⁶ cells/ml). After pre-incubation, additions of 45 U/ml SOD in the absence or presence of 5 mmol/l L-arginine, 5 U/ml thrombin, or both, were made to aliquots of the thyrocyte cell suspension, as appropriate. After removal of the HEPES buffer used for pre-incubation of the HUVEC, aliquots of thyrocytes (250 μl/well) were added to the wells containing HUVEC. In addition, HUVEC in other wells were incubated in the absence of thyrocytes, with HEPES buffer plus additions (SOD in the absence or presence of L-arginine, thrombin, or both) only.

The co-culture period was 3 h at 37°C, after which the incubation buffer was removed from each well and centrifuged at 1700 g for 15 min. Supernatants were then stored at −20°C until the determination of cGMP content. Similar experiments were performed using CHO cells in place of thyrocytes.

Cyclic GMP radioimmunoassay Measurement of extracellular cGMP in samples from co-culture experiments was performed by radioimmunoassay, using a rabbit polyclonal cGMP antiserum (a kind gift from Dr B C Williams, Western General Hospital, Edinburgh, UK). The sensitivity limit of the assay was approximately 20 fmol/assay tube, equivalent to 100 fmol/well. The inter- and intra-assay coefficients of variation were less than 10% over the linear range of the assay.
Cross-reactivity studies with the cGMP antiserum indicated 0.013% cross-reactivity with cyclic adenosine 3’,5’-monophosphate (cAMP) (personal communication, Dr B C Williams).

Determination of dimethylarginine production

The concentration of ADMA and SDMA in conditioned media from primary thyrocytes and SGHTL-189 cells was determined by high performance liquid chromatography (HPLC) (18, 21).

Collection of conditioned medium Sub-confluent monolayer cultures of primary human thyrocytes and SGHTL-189 cells in 9 cm dishes were washed with PBS, and the medium was replaced with 10 ml fresh 5H medium per plate. The cells were then incubated at 37 °C for up to 7 days, during which time the medium remained unchanged. At the appropriate time-points, conditioned medium was collected from the plates, centrifuged at 1700 g for 10 min, and the supernatant stored at −20 °C. Samples (10 ml) of unconditioned 5H medium were also collected. After removal of the conditioned medium, thyrocytes were washed with PBS, detached from the plate using trypsin/EDTA, and counted using a haemocytometer. Samples of 3-h conditioned HEPES buffer were collected in the same manner from confluent 9 cm dishes of thyrocytes.

Partial purification of methylarginines Amino acids were extracted from conditioned media samples by passage through BondElut SCX columns (Anachem, Luton, Beds, UK) and elution with ammonia/methanol, as previously described (9). Before extraction, l-homocitrulline (0.5 µg) was added to each sample to determine the extraction efficiency of the SCX columns.

HPLC analysis Separation of amino acids was performed as previously described (18, 21). Samples of standard solutions of l-homoarginine, ADMA, and SDMA were included amongst each set of samples.

Analysis of HPLC results The area under each HPLC peak was calculated by computerized integration after calibration with the authentic standards. From the peak area of the l-homoarginine added to the experimental samples, the extraction efficiency of each SCX column was determined and used to calculate the ADMA or SDMA content of each sample. Results were expressed either as µg ADMA or SDMA per ml conditioned medium, or were corrected for cell number and expressed as µg ADMA or SDMA produced per 10^6 thyrocytes.

Statistical analysis All co-culture studies were performed in triplicate, and all experimental samples were assayed in duplicate. Data are reported as mean ± S.E.M. Statistical significance was assessed using the Student’s unpaired two-tailed t-test, or the Mann–Whitney test for data that were not normally distributed. Differences were considered significant where P < 0.05.

Results

Effect of thyrocyte–endothelial cell co-culture on HUVEC cGMP production

Co-culture experiments were performed in which increasing numbers of primary thyrocytes were incubated with confluent HUVECs for 3 h. The amount of cGMP produced by thyrocytes alone was very low (24.8 ± 3.1 fmol/well, n = 6 experiments); in contrast, HUVEC extracellular cGMP production was 399 ± 65 fmol/well (n = 3 experiments). In the presence of thyrocytes, HUVEC cGMP production was markedly reduced (Fig. 1); the percentage inhibition increased with the number of thyrocytes, and reached statistical significance at a primary thyrocyte density of 5 × 10^5 cells/well. From haemocytometer counts of wells containing confluent HUVECs alone, this cell density was calculated to represent a ratio of two HUVECs per thyrocyte. The degree of thyrocyte inhibition of endothelial cell cGMP production reached a plateau of approximately 60% at a thyrocyte density of 5 × 10^5 cells/well; this thyrocyte density was used for all subsequent studies.

Further experiments were performed in which confluent HUVECs were incubated with primary human...
thyrocytes or SGHTL-189 cells for 3 h, in either the absence or presence of thrombin (5 U/ml), as indicated. HUVECs were incubated alone (open bars) or in the presence of 5 x 10^5 primary human thyrocytes (hatched bars) or SGHTL-189 cells (solid bars). Extracellular cGMP production was measured by radioimmunoassay. Results are expressed relative to basal HUVEC cGMP production, and are means ± S.E.M. from at least three experiments. *P < 0.001 compared with HUVECs only; †P < 0.005 compared with HUVECs+thrombin (t-test).

Similar experiments were performed in which HUVECs were incubated with CHO cells for 3 h in the absence or presence of thrombin (5 U/ml). The presence of CHO cells did not significantly affect either basal or thrombin-stimulated HUVEC cGMP production (Fig. 3).

Table 1 Release of ADMA and SDMA by primary human thyrocytes and SGHTL-189 cells over a 3-day period in monolayer culture. Dimethylarginine concentrations are expressed both as absolute values in the media (µg/ml) and corrected for cell number (µg/10^6 cells). Values are mean ± S.E.M.; n = 3 for each data point.

<table>
<thead>
<tr>
<th></th>
<th>ADMA content (µg/ml)</th>
<th>ADMA content (µg/10^6 cells)</th>
<th>SDMA content (µg/ml)</th>
<th>SDMA content (µg/10^6 cells)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconditioned 5H medium</td>
<td>0.021 ± 0.006</td>
<td>–</td>
<td>0.017 ± 0.003</td>
<td>–</td>
</tr>
<tr>
<td>3-Day conditioned medium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary thyrocytes</td>
<td>0.172 ± 0.065*</td>
<td>0.266 ± 0.0004</td>
<td>0.032 ± 0.008</td>
<td>0.034 ± 0.005</td>
</tr>
<tr>
<td>SGHTL 189 cells</td>
<td>0.134 ± 0.02*</td>
<td>0.283 ± 0.101</td>
<td>0.020 ± 0.002</td>
<td>0.027 ± 0.005</td>
</tr>
</tbody>
</table>

*P < 0.05 compared with unconditioned 5H medium (Mann–Whitney test).
Further HPLC analysis was performed to determine whether ADMA was released by thyrocytes into the HEPES buffer during the 3-h co-culture period. Unconditioned HEPES buffer contained no detectable dimethylarginines ($n=2$). HEPES buffer that had been incubated with SGHTL-189 cells for 3 h also contained no detectable dimethylarginines ($n=2$). A 3-h incubation of HEPES buffer with primary thyrocytes resulted in the production of very small amounts of ADMA ($0.003\pm0.002\ \mu g/ml; 0.003\pm0.002\ \mu g/10^6\ cells; n=3$).

Co-culture of HUVECs and thyrocytes in the presence of l-arginine

To determine whether thyrocyte inhibition of endothelial cell cGMP production could be overcome by excess l-arginine, SGHTL-189 cells were incubated for 3 h with unstimulated and thrombin-stimulated HUVECs, both in the absence and in the presence of l-arginine (5 mmol/l). The presence of l-arginine had no significant effect on the degree of thyrocyte inhibition of HUVEC cGMP production in either the absence or the presence of thrombin (Fig. 5).

Discussion

The abundant blood supply of the thyroid gland is essential for the maintenance of thyroid function. In animal models of thyroid hypertrophy, the mitotic activity of the thyroid endothelial cells increases before thyrocyte proliferation (4). Moreover, during involution of experimentally induced goitre, the thyroid vasculature regresses much earlier than the thyroid epithelium (22). These observations suggest the existence of a close relationship between thyroid follicular and endothelial cells, whereby each cell type may influence the proliferation, and perhaps the function, of the other cell type. In support of such a relationship are reports of endothelial cell growth factors released by thyroid cells (23, 24), and evidence suggesting that endothelial cells can stimulate the proliferation of thyroid epithelial cells (25).

The present report provides further evidence for the existence of a functional relationship between thyrocytes and endothelial cells. We found that human thyrocytes, but not CHO cells, potently inhibit endothelial cell production of cGMP, the downstream effector for many of the actions of endothelial-derived NO. Thyrocytes inhibited approximately 50% of endothelial cell cGMP production over a 3-h period, affecting both basal and thrombin-stimulated cGMP. As endothelial cell cGMP production was markedly increased in the presence of thrombin, a well-known activator of eNOS (26), it is highly likely that the cGMP measured reflects stimulation of sGC by NO, rather than stimulation of the particulate guanylyl cyclase by other mediators.

Increasing evidence suggests that the thyroid gland both produces and responds to NO. The rat thyroid gland expresses all three NOS isoforms (5), and eNOS expression has been demonstrated in human thyrocytes (7). We have previously shown that NO donors stimulate the production of eNOS in both primary human thyrocytes and SGHTL-189 cells, indicating that the NO-cGMP signalling pathway may play a role in thyroid function (16). Indeed, NO was shown to act...
via cGMP to inhibit iodide uptake in primary cultures of
calf thyrocytes (27). cGMP-independent effects of NO on
iodine organification (6) and thyrocyte growth (28)
have also been reported, and we have recently demon-
strated that NO donors enhance thyroid peroxidase
activity in primary human thyrocytes (29). Thus NO
appears to act via multiple pathways to influence
several aspects of thyroid function and growth.

A potential mechanism whereby thyroid NO produc-
tion may be controlled is the synthesis of an endogenous
NOS inhibitor such as ADMA. In the present study, both
primary human thyrocytes and immortalized human
thyrocyte SGHTL-189 cells were found to produce
ADMA. The amount of ADMA produced by SGHTL-
189 cells over a 7-day period was approximately 10.4
μg/10⁷ thyrocytes, equivalent to 0.05 μmol/10⁷
thyrocytes. The minimum concentration of ADMA
reported to inhibit NOS activity in vitro is 2 μM (9, 18).
It is not possible to predict the actual molar
concentration of ADMA produced by thyrocytes within
the thyroid gland. However, local or intracellular
concentrations of ADMA, produced by thyrocytes in
vivo may reach levels sufficiently high to affect the NOS
activity of thyrocytes and thyroid endothelial cells.
In this way, thyrocyte-derived ADMA, perhaps in conjunc-
tion with endothelial-cell-derived ADMA (18), may play
a role in the regulation of thyroid function.

In spite of the demonstration of the production of
ADMA by thyrocytes, ADMA does not appear to
mediate the thyrocyte inhibition of endothelial cell
cGMP production observed in the present study. The
natural substrate for NOS, L-arginine (5 mmol/l), was
unable to overcome the inhibitory effect, despite the fact
that this concentration of L-arginine is more than 1000-
fold greater than the published Kₘ for L-arginine of
cNOS, 2.9 μmol/l (30). In addition, the amount of
ADMA produced by thyrocytes over the 3-h period of the
co-culture experiments was extremely small, and
unlikely to be sufficient to cause the significant degree
of inhibition of cGMP production observed. As a
competitive NOS inhibitor does not appear to be
involved, it seems most likely that thyrocytes produce
a factor or factors that directly affect(s) the amount of
cGMP produced by HUVECs in response to unchallenged
levels of NO production. Such a factor could act by
inhibiting the activity of sGC, or by increasing the
activity of cGMP phosphodiesterase (PDE), which breaks
cGMP down to GMP. Although IBMX was included in all
experiments, to eliminate PDE activity, it is possible that
cGMP was degraded by thyrocyte production or
activation of one of the IBMX-insensitive cyclic nucleo-
tide PDEs (31). The gene expression of sGC has been
shown to be downregulated in vascular smooth muscle
cells by cAMP (32), the intracellular messenger
produced by thyrocytes in response to thyroid-stimulat-
ing hormone (TSH). However, basal levels of cAMP
production by both primary human thyrocytes and
SGHTL-189 cells are very low (16). In addition, it seems
unlikely that the inhibition of endothelial cell cGMP
production observed in the present study was due to a
change in gene expression, as the effect occurred rapidly
over a 3-h period.

Human thyrocyte inhibition of endothelial cell cGMP
production may have important implications for the
control of thyroid vascularization. For example, studies
have suggested a role for TSH-induced vascular
endothelial growth factor (VEGF) in the abnormal
proliferation of thyroid endothelial cells that occurs in
goitre formation (24, 33). Importantly, the mitogenic
effect of VEGF on cultured endothelial cells has been
shown to be mediated via NO–cGMP activation of
cGMP-dependent protein kinase (34). Therefore, by
inhibiting endothelial cell production of cGMP
response to NO, thyrocytes may reduce VEGF-induced
proliferation, and thus provide a feedback loop to limit thyroid
vascularization.

In summary, we have shown that human thyrocytes
have a potent inhibitory effect on endothelial cell
production of cGMP. Although we demonstrated that
human thyrocytes produce the endogenous NOS
inhibitor, ADMA, the effect on cGMP production does
not appear to be mediated by a competitive NOS
inhibitor. However, the study provides evidence of a
functional relationship between thyrocytes and
endothelial cells, and this may have a role in regulating
thyroid growth.

Acknowledgements
The authors wish to thank Dr B C Williams for the
cGMP antiserum, and R Jackson for technical assist-
ance. L J M was supported by the Medical Research
Council and the Special Trustees of St George’s Hospital
Medical School.

References
1 Moncada S, Palmer RM & Higgs EA. Nitric oxide: physiology,
pathophysiology, and pharmacology. Pharmacological Reviews
2 Wollman SH, Herveg JP, Zeligs JD & Ericson LE. Blood capillary
enlargement during the development of thyroid hyperplasia in the
3 Arottenius AR, Smit Lj, Schipper J, van der Heide & Meinders AE.
Inverse relation between iodine intake and thyroid blood flow:
color Doppler flow imaging in euthyroid humans. Journal of
4 Many MC, Denef JF & Haumont S. Precocity of the endothelial
proliferation during a course of rapid goitrogenesis. Acta
5 Colin JM, Nava E, Toussaint D, Maiter DM, vanDenhove ME,
Luscher TF et al. Expression of nitric oxide synthase isoforms in the
thyroid gland: evidence for a role of nitric oxide in vascular control
6 Kasai K, Hattori Y, Nakashish N, Manaka K, Banba N, Motohashi
S et al. Regulation of inducible nitric oxide production by
cytokines in human thyrocytes in culture. Endocrinology 1995
136 4261–4270.
7 Colin JM, Kopp P, Zbaren J, Haberli A, Grizzle WE & Jameson JL.
Expression of nitric oxide synthase III in human thyroid follicular

www.eje.org
18 Fickling SA, Leone A, Nussey SS, Vallance P & Whitley GS. Synthesis of N1-,N3-dimethylarginine by human endothelial cells. Endothelium 1993 1 137–140.

Received 21 September 1999
Accepted 13 December 1999

www.eje.org