SHORT COMMUNICATION

Missense variants in the human peroxisome proliferator-activated receptor-γ2 gene in lean and obese subjects

A Hamann, H Münzberg, P Buttron, B Büsing, A Hinney1, H Mayer2, W Siegfried1, J Hebebrand1 and H Greten

Medizinische Kernklinik und Poliklinik, Universitäts-Krankenhaus Eppendorf, Hamburg, Germany, 1Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters, Philipps-Universität Marburg, Marburg, Germany, 2Klinik Hochried, Murnau, Germany and 3Adipositas-Rehabilitationszentrum Insula, Berchtesgaden, Germany

(Correspondence should be addressed to A Hamann, Medizinische Kernklinik und Poliklinik, Universitäts-Krankenhaus Eppendorf, Martinistraße 52, 20246 Hamburg, Germany)

Abstract

The peroxisome proliferator-activated receptor-γ2 (PPARγ2) is almost uniquely expressed in adipose tissue and is of major importance for fat cell differentiation and lipid metabolism. This study was undertaken to assess whether two missense variants in the PPARγ2 gene are associated with early-onset obesity. A previously described polymorphism encoding for an amino acid exchange in codon 12 (Pro12Ala) was detected with allele frequencies of 0.13 in 296 markedly obese children and adolescents and 0.14 in 130 lean individuals. A Pro115Gln variant, which had been linked to obesity in Germans in a previous association study, was not detected in any of our obese or lean subjects, who are also of German origin. We conclude from our data that these two variants in the PPARγ2 gene are unlikely to contribute to the high prevalence of early-onset obesity.

European Journal of Endocrinology 141 90–92

Introduction

Overweight and obesity affect almost half of the population in many industrialized countries. The association with type 2 diabetes, dyslipidemia and hypertension creates increased morbidity and mortality risks for obese individuals. Obesity is viewed as a multifactorial disorder, with genetic factors playing an important pathogenic role.

Products of relevant genes may be involved in the regulation of food intake, energy expenditure or nutrient partitioning. The sum of presumably several genetic effects and their interaction with environmental and behavioral conditions, such as increased caloric and fat intake or decreased physical activity, can result in energy imbalance and increased fat mass.

In recent years, the discovery of leptin and other molecules secreted by fat cells has markedly changed our view of adipose tissue being a rather passive triglyceride store (1). Furthermore, the peroxisome proliferator-activated receptor-γ2 (PPARγ2) was cloned and identified as a central regulator of fat cell differentiation (2, reviewed in 3, 4). PPARγ is a transcription factor that belongs to the family of nuclear receptors. Two isoforms, PPARγ1 and PPARγ2, are formed by alternative promoters and splicing. In contrast to the widespread expression of PPARγ1, PPARγ2 is almost selectively expressed in adipose tissue. Overexpression of PPARγ2 in fibroblast cell lines causes lipid accumulation and differentiation into mature adipocytes (5). PPARγ2 mRNA is regulated by several nutritional and hormonal factors in both rodents and humans (6, 7). Endogenous ligands for PPARγ include fatty acids and some prostaglandins, while even more attention has been attracted by the identification of the thiazolidinedione family of insulin sensitizers as acting via PPARγ.

Because it is an attractive candidate gene for the dysregulation of energy balance, single strand conformational polymorphism-based screening was applied and two missense variants in the PPARγ2 coding sequence were identified (8–10). In the unique first exon, a CG base exchange results in a proline to alanine amino acid substitution in codon 12 (Pro12Ala) was detected with allele frequencies of 0.13 in 296 markedly obese children and adolescents and 0.14 in 130 lean individuals. A Pro115Gln variant, which had been linked to obesity in Germans in a previous association study, was not detected in any of our obese or lean subjects, who are also of German origin. We conclude from our data that these two variants in the PPARγ2 gene are unlikely to contribute to the high prevalence of early-onset obesity.

European Journal of Endocrinology 141 90–92

© 1999 Society of the European Journal of Endocrinology

Downloaded from Bioscientifica.com at 08/23/2019 04:37:12PM via free access
recently been found in 4 of 121 severely obese individuals (10). Interestingly, the altered protein causes accelerated adipocyte differentiation and may be directly involved in increased triglyceride accumulation.

Given the above data and the importance of PPARγ2 for the regulation of energy storage, this study was undertaken to determine whether missense variants in the PPARγ2 gene are associated with early-onset human obesity in a German population.

Subjects and methods

A group of 296 extremely obese children and adolescents was recruited at the Children’s Hospital Hochfried and the Obesity Treatment Centre Insula, which both specialize in the inpatient treatment of extremely obese young individuals. Ninety-seven percent of the obese subjects had a BMI above the 95th percentile, 61% exceeded the 100th BMI percentile. The second study group of 130 underweight students was selected at the University of Marburg. They were characterized by a BMI below the 13th percentile, absence of somatic disorders and consumption of less than ten cigarettes per day. Probands with anorexia nervosa were excluded from the present sample of underweight individuals that represents an extension of a study group described previously (13), and both groups have been characterized in detail before (14).

Genetic studies were approved by the ethics committees of the Universities of Marburg and Hamburg. Written informed consent was obtained from all participants or, in case of minors, their parents.

EDTA anticoagulated venous blood samples were collected from the aforementioned individuals and leukocyte DNA was isolated as described (13). For restriction fragment length polymorphism (RFLP)-based genotyping, a 306 bp fragment including exon 1 of the human PPARγ2 gene and containing the Pro12Ala variant was amplified by PCR using oligonucleotides 5′-GCCAATTCAAGCCCAGTC-3′ and 5′-CGTCCCCAAC-3′. A 118 bp fragment containing the Pro115Gln variant was amplified using primers 5′-GCCAATTCAAGCCCAGTC-3′ and 5′-CGTCCCCACA-3′. Seventy-five nanograms genomic DNA were added to 20 μl of reaction mixture (14) and amplification over 35 cycles was carried out in an automated thermal cycler at 94°C for 1 min, 55°C (Pro12Ala) or 50°C (Pro115Gln) for 1 min and 72°C for 2 min. Ten microliters PCR product were digested with Hgal (Pro12Ala) or HincII (Pro115Gln) and subjected to 3% agarose electrophoresis or 10% PAGE with ethidium bromide.

Results

The base exchange predicting the Pro12Ala variant introduces an Hgal site in the amplified sequence, resulting in fragments of 220 and 86 bp for the mutated allele (Fig. 1).

RFLP analysis revealed an allele frequency of 0.13 for the Pro12Ala variant in 296 obese children and adolescents. Two hundred and twenty (74.3%) were homozygous for the wildtype allele, while seventy three (24.7%) were heterozygous and three (1.0%) were homozygous for the mutated allele.

In the lean group, 95 of 130 individuals (73.1%) were homozygous for the wildtype allele, while 35 (26.9%) were heterozygous for the variant with no homozygotes. Therefore, the frequency of the mutated allele in the lean group (0.14) was not different from the obese (P = 0.98 by χ²-test). The Pro115Gln variant that should have created an additional HincII site with fragments of 22 and 96 bp, in contrast to the 118 bp wildtype band, was found neither in 296 obese nor in 130 lean individuals.

A DNA fragment including the mutant variant provided by Dr M Ristow (Joslin Diabetes Centre, Boston, MA, USA) was used as a positive control to ensure the correct cut by the restriction enzyme HincII.

Discussion

The importance of PPARγ2 in lipid, glucose and energy metabolism is well established. Since PPARγ2 promotes adipocyte differentiation, it is an attractive candidate gene for states of altered triglyceride storage, such as obesity or conditions associated with underweight. Variants in the PPARγ2 gene could possibly lead to both a decreased or accelerated adipocyte differentiation and lipid accumulation. In a recent study, a variant in codon 115 was demonstrated to be an example of the latter (10). When a mutated PPARγ2 allele previously found in 4 of 121 obese German individuals was overexpressed in murine fibroblasts, it led to a markedly more pronounced adipocyte differentiation than wildtype
PPARγ2. This is presumably due to the fact that the mutation is next to a serine phosphorylation site in codon 114, which has been shown to be of major importance for the negative regulation of PPARγ2 gene expression (15).

It appeared tempting to speculate that this variant could be associated with early-onset human obesity. However, our RFLP analysis revealed that not a single individual within a large group of morbidly obese children and adolescents or lean individuals carried an allele with the mutation in codon 115. Because both of our study groups are of German origin, it appears that the reported variant (10) is rare in the German population. Thus, it seems unlikely that the Pro115Gln variant explains a relevant proportion of obesity in this population. Furthermore, a previously identified variant in codon 12 was associated neither with obesity nor with leanness.

Although we cannot fully exclude the possibility that an association may be found in other populations, our data make it rather unlikely that variants in the PPARγ2 gene contribute to the high prevalence of human obesity.

Acknowledgements

We thank Dr M Ristow (Joslin Diabetes Centre, Boston, MA, USA) for a positive control sample of the Pro115Gln variant and thank all participants for their cooperation. This work was supported by the Deutsche Forschungsgemeinschaft (DFG Ha 2093/2–2, Graduiertenkolleg 336 and Klinische Forschergruppe Re 471/11–1).

References