Islet amyloid polypeptide/amylin messenger RNA and protein expression in human insulinomas in relation to amyloid formation

K L van Hulst1,2, C Oosterwijk1,3, W Born4, Th M Vroom3, M G Nieuwenhuis1, M A Blankenstein2, C J M Lips1, J A Fischer4 and J W M Höppener1,3

Departments of 1Internal Medicine, 2Endocrinology and 3Pathology, University Hospital Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands and 4Research Laboratory for Calcium Metabolism, Departments of Orthopedic Surgery and Medicine, University of Zürich, Forchstrasse 340, CH-8008, Zürich, Switzerland

(Correspondence should be addressed to J W M Höppener, University Hospital Utrecht, H 04.313, Department of Pathology, PO Box 85500, 3508 GA Utrecht, The Netherlands)

Abstract

Objective: Islet amyloid polypeptide (IAPP), also named amylin, is the predominant protein component of amyloid deposits in human islet β cell tumours of the pancreas (insulinomas). IAPP is co-produced with insulin by islet β cells. We investigated IAPP expression in relation to insulin expression and to amyloid formation in eleven insulinomas.

Design and methods: RNA and protein extracts were prepared from the same pieces of tumour tissue, and from specimens of two normal human pancreata. IAPP and insulin mRNA and peptide content were quantified using Northern blot analysis and radioimmunoassay (RIA) respectively. Molecular forms of IAPP immunoreactivity were analysed by reversed-phase high-performance liquid chromatography (HPLC). The presence of islet hormones and of amyloid was assessed by (immuno)histochemical staining of paraffin sections. Plasma levels of IAPP and insulin prior to tumour resection were determined by RIA.

Results: IAPP and insulin mRNA and peptide content varied widely between the tumour specimens, and there was considerable intratumour heterogeneity of peptide content. HPLC analysis indicated correct proteolytic processing of the IAPP precursor protein. Amyloid deposits were detected only in the three tumours with the highest IAPP content. In contrast to insulin, plasma levels of IAPP were not elevated in the insulinoma patients.

Conclusions: The spectrum of hormone production by insulinomas cannot be inferred from only a few tissue sections due to intratumour heterogeneity. Expression of the IAPP and insulin genes is not coupled in insulinomas, which produce properly processed mature IAPP. In addition to IAPP overproduction, additional factors such as intracellular accumulation of IAPP are involved in amyloidogenesis in insulinomas.

European Journal of Endocrinology 140 69–78

Introduction

Insulinoma is the most common pancreatic endocrine tumour, with an estimated annual incidence of four cases per million (1). In over 50% of insulinomas investigated, amyloid deposits have been demonstrated (2–4). The major protein component of these deposits was identified as islet amyloid polypeptide (IAPP) (5, 6). A peptide with the same amino acid (aa) sequence was purified from pancreatic islet amyloid in patients with type 2 (non-insulin-dependent) diabetes mellitus (7) and was named amylin (8).

Islet amyloid polypeptide is a 37 aa polypeptide, which has 43% and 46% aa sequence identity with calcitonin gene-related peptide-I and -II respectively (9). IAPP is produced in islet β cells and co-secreted with insulin in response to glucose and other β cell secretagogues (10, 11). Human IAPP is synthesized as part of an 89 aa precursor protein (preproIAPP) which includes a 22 aa amino-terminal signal peptide for transport through the endoplasmic reticulum (12, 13). Proteolytic cleavage of the 67 aa propeptide (pIAPP) at pairs of basic aa residues yields mature IAPP(1–37), as well as amino- and carboxy-terminal flanking peptides (N-pIAPP of 9 aa and C-pIAPP of 16 aa respectively) (Fig. 1).

Several potential physiological functions of IAPP have been reported which include inhibition of insulin secretion from β cells and inhibition of actions of insulin on glucose metabolism (14).
The purpose of the present study was to examine relationships between IAPP and insulin expression and their relations with the presence of amyloid deposits in endocrine pancreatic tumours clinically diagnosed as insulinomas. Expression was studied at the immunohistochemical, mRNA and peptide level and molecular form(s) of IAPP were characterized using reversed-phase high-performance liquid chromatography (HPLC).

Materials and methods

Tissues

Two normal human pancreas specimens were obtained at autopsy, and served as a reference for protein levels in non-tumour pancreas tissue, as well as a positive control for the immunohistochemical detection of islet hormones and endocrine markers. Pancreatic neoplasms were from eleven patients operated on between 1986 and 1994. One patient (patient a) suffered from multiple endocrine neoplasia type 1 (MEN 1), and one patient (patient k) had a malignant islet cell tumour with liver metastases.

Samples of each tumour were snap frozen in liquid nitrogen immediately after surgical resection and stored at −80°C until use. Parallel samples were fixed in buffered formalin for 24 to 48 h and embedded in paraffin.

Histopathology and immunohistochemistry

Besides haematoxylin and eosin staining, Congo red (CR) staining of tumour sections was performed for the detection of amyloid deposits (15). These CR-stained sections were examined by polarized light microscopy, which reveals an apple-green birefringence of amyloid deposits, and by UV light microscopy, visualizing auto-fluorescent CR-stained material.

Immunohistochemical staining on paraffin sections was performed as described (16). The presence of chromogranin, glucagon, gastrin, Ki 67 antigen, insulin and IAPP was determined with the antibodies listed in Table 1, and semiquantitatively scored from 0 to 70.

Table 1 Antibodies used in immunohistochemistry.

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Specificity</th>
<th>Clone or code no.</th>
<th>Dilution</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monoclonal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti Ki 67</td>
<td>345 and 395 kDa nuclear antigen of proliferating cells (G1, S, G2, M phases)</td>
<td>MIB-1</td>
<td>2 μg/ml</td>
<td>Immunotech, Marseille, France</td>
</tr>
<tr>
<td>Polyclonal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabbit anti-chromogranin A</td>
<td>C-terminal region of chromogranin A</td>
<td>A430</td>
<td>1:500</td>
<td>DAKO, Glostrup, Denmark</td>
</tr>
<tr>
<td>Rabbit anti-glucagon</td>
<td>Porcine/human glucagon</td>
<td>A565</td>
<td>1:1000</td>
<td>DAKO, Glostrup, Denmark</td>
</tr>
<tr>
<td>Rabbit anti-gastrin</td>
<td>Non-sulphated I and sulphated II forms of gastrin-17 and -34</td>
<td>A568</td>
<td>1:2000</td>
<td>DAKO, Glostrup, Denmark</td>
</tr>
<tr>
<td>Guinea pig anti-insulin</td>
<td>Porcine/human insulin</td>
<td>A 564</td>
<td>1:1000</td>
<td>DAKO, Glostrup, Denmark</td>
</tr>
<tr>
<td>Rabbit anti-IAPP</td>
<td>As described</td>
<td>K1338</td>
<td>1:800</td>
<td>van Hulst et al. (22)</td>
</tr>
</tbody>
</table>
Tissue and plasma extraction

Tissue was powdered in liquid nitrogen and two portions were separated for extraction of total cellular RNA (17) and polypeptides respectively. The latter were extracted overnight in acidified ethanol, lyophilized and prepared for radioimmunoassay (RIA) (18). The DNA content in tissue pellets was measured (19) as a reference for peptide quantification in the tissue extracts. For the determination of IAPP levels in the circulation, EDTA-plasma of insulinoma patients was extracted with acid-acetone (11).

Northern blot analysis

Samples of 20 µg total cellular RNA were analysed by Northern blotting as described (13). A 588 base pairs human IAPP probe and a 751 base pairs human insulin probe were described previously (20). An 18S ribosomal RNA (rRNA) probe was provided by GWM Swart (Department of Biochemistry, University of Nijmegen, The Netherlands). The probes were labelled with [α-32P]dCTP (Amersham, Little Chalfont, Bucks, UK) using a Prime-a-Gene labelling system (Promega Corporation, Madison, WI, USA). Hybridization conditions were described previously (21). For quantitation of mRNA, IAPP and insulin probes were dot-blotted in increasing amounts of 1, 5, 10, 50, 100, 500, 1000 and 5000 pg and hybridized together with the Northern blots. Quantitation of hybridization signals was performed by phosphor-imaging and Image-Quant version 3.3 software (Molecular Dynamics, Inc. GmbH, Krefeld, Germany). To correct for different amounts of RNA loaded on the gel, hybridization signals were normalized to the 18S rRNA hybridization signal.

Reversed-phase high-performance liquid chromatography

Tissue extracts were subjected to reversed-phase HPLC on a Nucleosil 100–7C18 column (Machery-Nagel, Düren, Germany) as described previously (18). Mean recoveries of synthetic human IAPP and C-pIAPP were 87.5 ± 9.1% (n = 4) and 91.2 ± 2.9% (n = 2) respectively.

Radioimmunoassays

Immunoreactive IAPP and insulin were measured by RIA as described (11). For the IAPP RIA, IAPP antiserum K1338 to human IAPP was used (22). In normal subjects, plasma levels of IAPP ranged from non-detectable (<1.1 pmol/l) to 14 pmol/l (11).

Immunoreactive C-pIAPP was determined by RIA using antiserum K1352 (20, 22). This antiserum was obtained by subcutaneous injection of a New Zealand white rabbit with 35 µg synthetic C-pIAPP (preproIAPP (74–89); Peninsula Laboratories, Belmont, CA, USA) conjugated to bovine thyroglobulin (Sigma, St Louis, MO, USA) using 1% glutaraldehyde. Booster injections were administered every three weeks. The antiserum collected after the 11th injection was used at a final dilution of 1:250 000. Antibody-bound and free radioligands were separated using donkey anti-rabbit coated cellulose (IDS, Boldon, UK) as antibody-immunoprecipitating reagent. The detection limit of the RIA (B0-2 SD) was 0.30 ± 0.14 fmol/tube (n = 6).

Statistical analysis

Results were calculated as means ± sd. Relationships between IAPP and insulin mRNAs and their corresponding peptides were analysed using Pearson’s correlation coefficient, and P values <0.05 were considered statistically significant.

Results

Patients, histopathology and immunohistochemistry

Clinical characteristics and preoperative plasma levels of immunoreactive IAPP and insulin are depicted in Table 2. In most patients plasma levels of insulin were elevated, but those of IAPP did not differ from healthy subjects.

All tumours analysed had features of islet cell tumours. Ten tumours were benign (islet cell adenoma), whereas the tumour of patient k appeared to be malignant (islet cell carcinoma) because of the occurrence of liver metastases. The diameter of the tumours ranged from 1 to 9 cm (Table 3).

Immunohistochemical analysis of the majority of tumour specimens was performed in detail (Table 3, Fig. 2). Insulin was detected in a low percentage of tumour cells in eight of the ten specimens investigated. Eight of the eleven tumours stained for IAPP and the percentage of positive cells ranged from 5 to 100%. IAPP producing tumour cells were found as foci in the tumour of patient i and only in the peripheral area of the tumour in patient j. In the tumour sections of all the other patients IAPP producing cells were evenly distributed. In some tumours, IAPP was also demonstrated in connective tissue stroma. These IAPP immunoreactive structures were identified as amyloid deposits (Figs 2 and 3). All of the ten specimens investigated stained for chromogranin. Two of the ten tumours stained for glucagon, albeit in a low
percentage of cells, and six of the ten tumours investigated stained for gastrin. In general the number of cell divisions, as determined with Ki 67 antigen antibody, was small, except for the islet cell carcinoma from patient k.

Tumours from patients a, b and c showed hyalinization of connective tissue with Congo red-positive fibrillar material deposits. Congo red autofluorescence revealed fine needle-like structures located within or between tumour cells and apparently confluent into the amyloid deposits (Fig. 3).

Analysis of insulinoma extracts

Northern blot analysis of insulinoma RNAs revealed a large variation of IAPP and, to a lesser extent, of insulin gene expression (Fig. 4). The ratio between IAPP and insulin mRNA content ranged from 0.01 to 5.29 (Table 4).

Concentrations of immunoreactive IAPP and insulin in extracts of specimens of two normal human pancreata were 22.2 and 26.4 fmoleq IAPP/µg DNA and 0.7 and 4.7 pmoleq insulin/µg DNA respectively. In the insulinoma tissue extracts both immunoreactive IAPP and insulin varied substantially, their ratio ranging from 0.004% to 78.8% (Table 4). A statistically significant correlation was detected between mRNA and peptide levels of IAPP ($r = 0.70$, $P < 0.02$), whereas no correlation was found between mRNA and peptide levels of insulin. Ratios between IAPP and insulin mRNA only revealed a statistically significant correlation with the corresponding peptide ratios when insulinoma patient c (see below) was omitted from the calculation ($r = 0.72$, $P < 0.02$). In five tumours immunoreactive C-pIAPP was detected next to IAPP. In these tumours, levels of C-pIAPP revealed a statistically significant correlation with those of IAPP ($r = 0.91$, $P < 0.04$). An exceptional case was the insulinoma of patient c, in which no immunoreactive C-pIAPP was detected, despite a high IAPP content. In this tumour, the low IAPP mRNA level was also not in agreement with the high IAPP peptide level. Insulinoma extracts from patients a to f, as well as a normal human pancreas extract, were analysed by reversed-phase HPLC to examine the molecular form(s) of immunoreactive IAPP and C-pIAPP in these tissues. In all extracts, the majority of immunoreactive IAPP (ranging from 50.1 to 84.5%)
and of immunoreactive C-pIAPP (ranging from 87.4 to 100%) had the retention time of synthetic amidated IAPP(1–37) and C-pIAPP respectively (Fig. 5). Two smaller peaks of immunoreactive IAPP (around fractions 30 and 36 respectively) were observed both in the normal human pancreas and in 5 of the 6 insulinomas. The smaller peak of immunoreactive IAPP around fraction 30 co-eluted with immunoreactive C-pIAPP. In the insulinoma extract of patient a, small peaks of immunoreactive IAPP and C-pIAPP were detected around fraction 70. Another peak of immunoreactive IAPP (around fraction 47) was only detected in insulinoma tissue extracts of patients a, c, e and f.

Discussion

Immunohistochemistry

Immunohistochemical analysis confirmed that all tumours investigated originated from the endocrine
pancreas. Several islet hormones were demonstrated, with a considerable inter- and intra-tumour variation in the number and distribution of cells producing these hormones. Focal localization of IAPP and insulin producing cells in the tumours of patients a and g, or insufficient sensitivity of IAPP and insulin immunohistochemistry, may explain the absence of IAPP and insulin staining cells in selected tissue sections, in the face of detectable amounts of both peptides in extracts of tissue specimens of the same tumours. Alternatively, or in addition, secreted peptides present in blood vessels may contribute to the levels of immunoreactive peptides measured in extracts, whereas immunohistochemistry detects the cellular peptides.

Analysis of insulinoma extracts

Messenger RNA and peptide levels of IAPP and insulin, as well as ratios between IAPP and insulin, both at the mRNA and peptide level, showed enormous variation between the tumour specimens. This supports the notion that the expression of the two genes is not necessarily coupled (23–25). Levels of immunoreactive IAPP and insulin were elevated in about 50% of insulinoma specimens, as compared with the normal human pancreas. A correlation was found between mRNA and peptide levels of IAPP, but not of insulin. Uncontrolled insulin release, also through a constitutive pathway, and/or decreased storage capacity for insulin in tumour cells may account for this difference (26). O’Brien et al. (24) postulated distinct populations of islet β cells that contain different relative amounts of IAPP and insulin, and Pipeleers (27) reported functionally heterogeneous β cell populations in the human pancreas. Large differences in ratios between IAPP and insulin in the insulinoma specimens investigated in this study indicate that these tumours may have originated from different types of β cells.

Table 2 Sex, age and fasting plasma levels of IAPP and insulin (determined prior to surgery) of insulinoma patients.

<table>
<thead>
<tr>
<th>Insulinoma patient</th>
<th>Sex (M/F)</th>
<th>Age (years)</th>
<th>IAPP (pmoleq/l)</th>
<th>Insulin (pmoleq/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>M</td>
<td>17</td>
<td>10.6</td>
<td>ND</td>
</tr>
<tr>
<td>b</td>
<td>F</td>
<td>42</td>
<td>9.3</td>
<td>154</td>
</tr>
<tr>
<td>c</td>
<td>F</td>
<td>66</td>
<td>5.5</td>
<td>88</td>
</tr>
<tr>
<td>d</td>
<td>F</td>
<td>80</td>
<td>10.5</td>
<td>176</td>
</tr>
<tr>
<td>e</td>
<td>F</td>
<td>26</td>
<td>9.6</td>
<td>213</td>
</tr>
<tr>
<td>f</td>
<td>M</td>
<td>46</td>
<td>10</td>
<td>176</td>
</tr>
<tr>
<td>g</td>
<td>M</td>
<td>21</td>
<td>8.4</td>
<td>51</td>
</tr>
<tr>
<td>h</td>
<td>M</td>
<td>43</td>
<td>2</td>
<td>418</td>
</tr>
<tr>
<td>i</td>
<td>F</td>
<td>67</td>
<td>6.7</td>
<td>1356</td>
</tr>
<tr>
<td>j</td>
<td>M</td>
<td>33</td>
<td>1.7</td>
<td>139</td>
</tr>
<tr>
<td>k</td>
<td>M</td>
<td>51</td>
<td>8.6</td>
<td>572</td>
</tr>
</tbody>
</table>

Upper limit of plasma levels in normal subjects: 14 110

* Patient with MEN 1; ND = not done.

Table 3 Histopathology and immunohistochemistry of the insulinomas investigated.

<table>
<thead>
<tr>
<th>Insulinoma patient</th>
<th>Diameter of tumour(s) (cm)</th>
<th>Insulin</th>
<th>IAPP</th>
<th>Chromogranin</th>
<th>Glucagon</th>
<th>Gastrin</th>
<th>KI 67a antigen</th>
<th>Hyalinization (+/−)</th>
<th>Congo red (+/−)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
<td>6−10</td>
<td>51−75</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>1−5</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>6−10</td>
<td>11−25</td>
<td>76−100</td>
<td>0</td>
<td>6−10</td>
<td>1−5</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>d</td>
<td>1.1</td>
<td>6−10</td>
<td>76−100</td>
<td>76−100</td>
<td>0</td>
<td>0</td>
<td>1−5</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>e</td>
<td>2</td>
<td>1−5</td>
<td>6−10</td>
<td>76−100</td>
<td>1−5</td>
<td>11−25</td>
<td>6−10</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>f</td>
<td>1.3</td>
<td>6−10</td>
<td>76−100</td>
<td>51−75</td>
<td>0</td>
<td>1−5</td>
<td>1−5</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>g</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>76−100</td>
<td>0</td>
<td>0</td>
<td>1−5</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>h</td>
<td>1.5</td>
<td>6−10</td>
<td>6−10</td>
<td>76−100</td>
<td>0</td>
<td>0</td>
<td>1−5</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>i</td>
<td>9</td>
<td>6−10</td>
<td>6−10</td>
<td>76−100</td>
<td>6−10</td>
<td>6−10</td>
<td>1−5</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>j</td>
<td>3</td>
<td>1−5</td>
<td>76−100</td>
<td>76−100</td>
<td>0</td>
<td>0</td>
<td>1−5</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>k</td>
<td>ND</td>
<td>6−10</td>
<td>0</td>
<td>76−100</td>
<td>0</td>
<td>6−10</td>
<td>11−25</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

* Percentage of stained cells; b Percentage of immunoreactive cells not determined; ND = not done.
Reversed-phase HPLC revealed that the predominant immunoreactive IAPP and C-pIAPP components in insulinoma tissue extracts had the retention times of the corresponding synthetic peptides, indicating proper processing of preproIAPP in β cell tumours. Minor components, some of which may contain both IAPP and C-pIAPP immunoreactivity, were detected in some tumour extracts and may correspond to aberrant or partial proteolytic processing products of preproIAPP. The presence of mature IAPP(1–37) as the major immunoreactive IAPP component in insulinomas was also reported by Bretherton-Watt et al. (28), using gel permeation chromatography.

Plasma IAPP and insulin levels

In insulinoma patients the plasma levels of IAPP, in contrast to those of insulin, were within the normal range. Stridsberg et al. (29) detected an elevated plasma level of IAPP in only 1 of 11 insulinoma patients, with the ratio of IAPP to insulin in insulinoma tissue extracts being consistently greater than the ratio in normal pancreas. The data in Table 4 show the ratio between concentrations of IAPP and insulin mRNAs, concentrations of insulin, IAPP, and its C-terminal flanking peptide (C-pIAPP), and the ratio between IAPP and insulin in insulinoma tissue extracts.

Table 4 Ratio between concentrations of IAPP and insulin mRNAs, concentrations of insulin, IAPP, and its C-terminal flanking peptide (C-pIAPP), and the ratio between IAPP and insulin in insulinoma tissue extracts.

<table>
<thead>
<tr>
<th>Insulinoma patient</th>
<th>IAPP/insulin mRNA ratio</th>
<th>IAPP (fmoleq/μg DNA)</th>
<th>Insulin (pmoleq/μg DNA)</th>
<th>IAPP/insulin peptide ratio (×10⁻²)</th>
<th>C-pIAPP (fmoleq/μg DNA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>5.29</td>
<td>523.3</td>
<td>9.4</td>
<td>5.6</td>
<td>128.8</td>
</tr>
<tr>
<td>b</td>
<td>1.60</td>
<td>438.8</td>
<td>49.5</td>
<td>0.9</td>
<td>51.1</td>
</tr>
<tr>
<td>c</td>
<td>0.43</td>
<td>551.4</td>
<td>0.7</td>
<td>78.8</td>
<td><2.7</td>
</tr>
<tr>
<td>d</td>
<td>0.20</td>
<td>80.7</td>
<td>7.8</td>
<td>1.0</td>
<td>3.5</td>
</tr>
<tr>
<td>e</td>
<td>1.21</td>
<td>54.2</td>
<td>2.0</td>
<td>2.7</td>
<td>14.7</td>
</tr>
<tr>
<td>f</td>
<td>0.11</td>
<td>52.2</td>
<td>26.4</td>
<td>0.2</td>
<td>4.4</td>
</tr>
<tr>
<td>g</td>
<td>0.03</td>
<td>2.4</td>
<td>53.8</td>
<td>0.004</td>
<td><1.4</td>
</tr>
<tr>
<td>h</td>
<td>0.17</td>
<td>13.3</td>
<td>2.1</td>
<td>0.6</td>
<td><1.3</td>
</tr>
<tr>
<td>i</td>
<td>0.39</td>
<td><2.1</td>
<td>0.6</td>
<td><0.4</td>
<td><1.4</td>
</tr>
<tr>
<td>j</td>
<td>0.01</td>
<td><3.0</td>
<td>12.9</td>
<td><0.02</td>
<td><2.0</td>
</tr>
<tr>
<td>k</td>
<td>0.10</td>
<td><4.6</td>
<td>0.1</td>
<td><4.6</td>
<td><2.3</td>
</tr>
<tr>
<td>Normal pancreas (n = 2)</td>
<td>22.2, 26.4</td>
<td>0.7, 4.7</td>
<td>3.17, 0.56</td>
<td>1.0, <1.0</td>
<td></td>
</tr>
</tbody>
</table>
patients investigated. The concentrations of these peptides in plasma may not reflect those in insulinoma extracts, because of cellular heterogeneity and different sizes of the tumours. Nevertheless, normal plasma levels of IAPP in the presence of increased tumour IAPP content, suggests retention of IAPP by the tumour tissue.

IAPP expression in relation to amyloidogenesis

The highest concentrations of immunoreactive IAPP were revealed in insulinoma specimens of patients a, b and c. The high IAPP mRNA content in the insulinomas of patients a and b indicate overproduction of IAPP. In insulinoma tissue of patient c, however, high IAPP concentrations were associated with low IAPP mRNA content and with undetectable immunoreactive C-pIAPP. Remarkably, amyloid deposits were only detected in tumours of patients a, b and c, suggesting that amyloid deposition is associated with high local concentrations of IAPP. This agrees with a report by Tasaka et al. (30), demonstrating that also in patients with type-2 diabetes mellitus, amyloid deposition in

Figure 5 Reversed-phase HPLC profiles of extracts from a normal human pancreas (NP) and six insulinomas (a to f). Individual fractions were analysed for immunoreactive IAPP (△) and C-pIAPP (○). The acetonitrile gradient (AG) is represented by the dotted line and arrows indicate the retention times of synthetic human C-pIAPP (I) and IAPP(1–37) (III), as well as of 125I-human calcitonin gene-related peptide I (II) and 125I-salmon calcitonin (IV).
pancreatic islets was associated with a high pancreatic IAPP content. The discrepancy between IAPP mRNA and peptide contents in the insulinoma extract of patient c may be due to excessive intracellular accumulation of the peptide, inducing amyloid formation despite a low production. Thus, besides IAPP overproduction additional factors, such as increased cellular retention of IAPP, may be essential for amyloidogenesis in pancreatic tissue.

Novials et al. (25) demonstrated that exposure of isolated human islets to high glucose concentrations resulted in enhanced IAPP synthesis but impaired IAPP secretion. In transgenic mice overexpressing human IAPP mRNA as compared with endogenous mouse IAPP mRNA (20), elevated plasma levels of IAPP (up to 15-fold) were revealed when compared with non-transgenic animals. Islet amyloid was not demonstrated in these animals by histochemical staining or electron microscopy (20, 31). When pancreatic islets of these human IAPP transgenic mice were cultured in high glucose medium, intra- and extracellular amyloid fibrils were formed (32), probably as a result of enhanced intracellular accumulation of IAPP. Also in other human IAPP transgenic mouse models, islet amyloid formation has been associated with hyperglycaemia, suggesting the involvement of increased intracellular IAPP concentrations (33–35). Congo red staining or birefringence are inadequate for the detection of small deposits of amyloid fibrils. The autofluorescent properties of Congo red, however, served to detect small needle-like structures by using UV-light microscopy, suggesting an intracellular origin of amyloid deposits (4).

Conclusions
The present study demonstrates independent and heterogeneous expression of IAPP and insulin in human insulinomas. Therefore, immunohistochemical analysis of a few tissue sections does not necessarily reflect the concentrations of these peptides in different pieces of the same tumour.

HPLC analysis of tissue extracts revealed correct proteolytic processing of the IAPP precursor in insulinomas. In these islet β cell tumours the secretion of IAPP, however, seems impaired. Hyperglycaemia has been shown to promote intracellular accumulation of IAPP in human islet β cells (25), suggesting a defect in IAPP secretion also in patients with type-2 diabetes.

Amyloid was detected only in the three tumours with the highest IAPP content. Both in islet β cell tumours and in type-2 diabetes patients, impaired IAPP secretion is probably involved in amyloidogenesis, associated with β cell destruction (36, 37).

Acknowledgements
The authors wish to thank A Versluis and H A G Boere from the Animal House of the Medical Faculty (Utrecht University) for biotechnological assistance, D Niermans from the Department of Endocrinology (Utrecht University Hospital Utrecht) for technical assistance, J G N Geertzema from the Department of Pathology (University Hospital Utrecht) for histopathological and immunohistochemical assistance, and M Verdaasdonk from the Department of Pathology (University Hospital Utrecht) for the preparation of Fig. 3 using confocal laser scan microscopy.

This work was supported by grant 92.133 from the Diabetes Fund The Netherlands to CO, and grant 31–43094.95 from the Swiss National Science Foundation to J A F and W B.

References
8 Cooper GJS, Leighton B, Dimitriades GD, Parry-Billings M, Kowalchuk JM, Howland K et al. Amylin found in amyloid deposits in human type 2 diabetes mellitus may be a hormone that regulates glycogen metabolism in skeletal muscle. Proceedings of the National Academy of Sciences of the USA 1988 85 7763–7766.
K. L. van Hulst and others

17 Chirgwin JM, Przybyla AE, MacDonald RJ & Rutter WJ. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 1979 18 5294–5299.
23 Oosterwijk C, Cooper GJS & Young AA. Amylin secretion from the perfused pancreas: dissociation from insulin and abnormal elevation in insulin-resistant diabetic rats. Biochemical and Biophysical Research Communications 1991 180 782–789.

Received 22 July 1998
Accepted 28 September 1998