Endothelin receptor subtypes in the microvillous trophoblastic membrane of early gestation and term human placentas

Françoise Mondon, Abdelmajid Anouar and Françoise Ferré

INSERM U. 361, Université René Descartes, Pavillon Baudelocque, 123 Bd de Port-Royal, 75014 Paris, France

Correspondence should be addressed to F Mondon

Abstract

The 125I-labeled endothelin-1 (125IET-1) binding sites in microvillous membranes from early gestation and term human placentas were investigated. The K_d for 125IET-1 binding to early gestation (68 ± 15 pmol/l) and term (45 ± 8 pmol/l) microvilli (n = 4) were not significantly different. The density of binding sites decreased significantly, from 243 ± 80 fmol/mg protein in early gestation microvilli to 54 ± 10 fmol/mg protein in term microvilli. The endothelin (ET) receptor (ET-R) subtype profiles were determined by competition binding studies with unlabeled ET-1, ET-3, and selective agonists and antagonists for ETA-R and ETB-R. In early gestation placental microvilli, we observed the presence of 72% ET B-R, (mainly ET B2-R subtype), and 28% ET A-R. Only ET B-R (mainly the ET B2-R subtype) was present in term placental microvilli. We suggest that the ET B-R on the placental microvillous membrane is involved in specific trophoblastic functions and may play a major role in ET clearance by modulating the amounts of ETs in the maternal intervillous blood space.

European Journal of Endocrinology 139 231–237

Introduction

Three endothelins (ETs), ET-1, ET-2 and ET-3, each 21 amino acid residues long and encoded by three separate genes, are found in the human genome (1). Although ET-1 was first described as a potent vasoactive peptide, subsequent studies have revealed that the ETs have many physiological and pathophysiological effects. ETs are pleiotropic factors controlling several aspects of cell function, such as ion fluxes, cell-to-cell communication, cell migration, neural transmission and the release of hormones and cytokines in neuroendocrine and immune systems. Like several other vasoactive substances, ETs also have growth factor properties (2). These diverse actions are partly attributed to the existence of many subtypes of ET receptors (ET-Rs) whose cellular distribution and functions are regulated. Sequence analysis of mammalian cDNA clones indicates that there are two distinct ET-R subtypes, ETA-receptors (ETA-R) and ETB-receptors (ETB-R), which belong to the superfamily of receptors with seven transmembrane domains that are coupled to heterotrimeric G proteins. ETB-R is selective for ET-1 and ET-2, whereas ETA-R binds to ET-1, ET-2 and ET-3 with equal affinity (3, 4). An additional subtype (ET C-R), which is present in non-mammalian species and selectively binds ET-3, has been cloned (5). The functional significance of the ET-R subtypes remains a topic for considerable speculation. In vascular smooth muscle, ETA-R and ETB-R generally coexist. They mediate contraction and, as in other cell types, help control proliferation (6, 7). ETB-R is probably the only receptor on the vascular endothelium, where it mediates relaxation of the neighboring muscle layer via the release of relaxing and antiproliferative factors such as nitric oxide and prostacyclin (8). ETB-R is also the predominant subtype in epithelial and neural tissues.

In human placenta, ET-Rs were initially identified in crude membrane fractions (9, 10). They appear to be most abundant in first-trimester placentas, and their concentration gradually decreases towards term (11). The human placenta is a very complex endocrine organ and the ET system in each placental cell seems to develop and change during gestation (12). Specific high affinity ET-1 binding sites have been shown on fetoplacental vessels, trophoblasts and plasma membranes purified from the syncytiotrophoblast of term placentas (13–15). Transport through the microvillous membrane is the first step in placental transfer. This trophoblastic membrane, facing the maternal intervillous blood space where high concentrations of immunoreactive ETs (ir ETs) were found (16), is likely to play a major role in exchanges between maternal and fetal circulations.

The present study was designed to determine the ET-R subtypes of microvillii prepared from early gestation and term human placentas. For this purpose, the selective ETA-R agonists sarafotoxin 6c (S6c) (17) and IRL 1620 (18), the selective ETB-R antagonists BQ 788 (19), IRL 2500 (20) and IRL 1038 (21), and the selective ETB-R
antagonist BQ 123 (22) were used as tools to define the ET-R profiles.

Materials and methods

Placentas

Term placentas were all obtained immediately after elective cesarean section from healthy mothers. The cesarean section was performed before labor under thiopental–sodium succinylcholine anesthesia in the 39th week of pregnancy because of diagnosed cephalo-pelvic disproportion. No preoperative medication except atropine was given. Early gestation placentas were obtained from healthy mothers undergoing legal abortion by vacuum curetage between 8 and 10 weeks of amenorrhea.

Placental microvilli preparation

Placental microvilli were isolated by cold saline extraction and centrifugations using the modification of the method of Smith et al. (23) described by Alsat et al. (24). Briefly, the villous tissue was cut into small fragments and placed in 0.1 mol/l CaCl₂ to remove blood. All subsequent procedures were performed at 4 °C. The tissue was washed with isotonic Dulbecco’s PBS pH 7.4, gently stirred for 30 min in the same buffer containing 10 µg/ml aprotinin, 1 µg/ml leupeptin and 25 µg/ml pefabloc, and the suspension filtered through a single thickness of cheesecloth. The filtrate was centrifuged at 800 g for 10 min to remove blood and cell debris and the resulting supernatant was centrifuged at 2500 g for 15 min. The microvilli were sedimented from this second supernatant by centrifugation at 50 000 g for 30 min. The pellet was suspended in 50 mmol/l Tris–HCl buffer pH 7.4, frozen in liquid nitrogen and stored at −80°C.

The purity of the membrane preparations was checked by assaying marker enzyme activity and by electron microscopy using previously established procedures (25). Assay of the specific microvillous membrane enzyme, alkaline phosphatase, showed a 25-fold enrichment for early gestation microvillous preparations and a 17-fold enrichment for term microvilli. The purity of term membrane preparations was also checked by the lack of enzyme, alkaline phosphatase, showed a 25-fold enrichment for term microvillous preparations and a 17-fold enrichment for term microvilli.

Binding studies were performed as previously described (15). Briefly, aliquots of membranes (10 µg protein, in a final volume of 250 µl) were incubated for 60 min at 37 °C with 2–300 pmol/l [125I]ET-1 ([125I]ET-1) for saturation studies. Specific binding of [125I]ET-1 was defined as total binding minus binding not displaced by 1 µmol/l unlabeled ET-1. At ligand concentrations near the dissociation constant (Kᵢ), the non-specific binding was less than 10–15% of the total binding in the early gestation and term membrane preparations. Competition experiments were carried out using a fixed concentration of [125I]ET-1 (30 pmol/l) and increasing concentrations of competing agents. All binding assays were performed at protein concentrations within the linear range.

The results are expressed, for each stage of pregnancy, as the means ± S.E.M. of three to six separate experiments each on different placentas, performed singly for early gestation and in duplicate for term placentas. The n values in this paper refer to the number of independent membrane preparations from distinct human placentas. Radioligand binding data were analyzed using the Inplot Computer program (GraphPad Software, San Diego, CA, USA). The inhibition constant (Kᵢ) was calculated, for individual competition curves, by the equation of Cheng & Prusoff (26), and Kᵢ was determined by Scatchard analysis. Data were also subjected to non-linear least-square curve fitting using EBDA-LIGAND (Biosoft, Cambridge, UK) for simultaneous analysis of replicated competition curves. This enabled us to verify that the mean Kᵢ values for each competition were the same as that averaged from the calculation made on individual curves, and that when applicable a two binding site model provided a significantly better fit, according to the F test, than a one binding site model (27). The protein concentration was determined by the method of Lowry using BSA as standard. Statistical differences were determined using ANOVA and Student’s t-test for multiple comparisons. Significance was set at P < 0.05.

Chemicals

[125I]ET-1 (specific activity 2000 Ci/mmol) was purchased from Amersham International (Bucks, UK). ET-1, ET-3, S6c, BQ 123 [cyclo (o-Trp-o-Asp-o-Val-Leu)], BQ 788 [N-cis-2, 6-dimethyl-piperidinocarbo- nyl-L-γ-methylleucyl-o-1 methoxycarbonyl-tryptophanyl-o-norleucine], IRL 2500 [N-(3,5-dimethyl benzoyl)-N-(methyl)-(o)-(4-phenylphenyl)-alanyl-o-try- tophan], IRL 1620 [succinyl-(Glu¹¹,Ala¹³⁻¹⁵) endothelin-1 (8–21)] and IRL 1038 [(cys¹¹-cys¹⁵) endothelin- 1(11–21)] were all obtained from Neosystem (Strasbourg, France). Other drugs and chemicals used were of the highest quality available from Sigma Chemicals (St Louis, MO, USA).

Results

Equilibrium studies

[125I]ET-1 bound to microvillous membranes from early gestation and term placentas in a specific, saturable fashion and with high affinity (Fig. 1). Scatchard plots of
the specific binding from saturation binding experiments were linear, indicating a single class of high affinity binding sites. The apparent K_d values for early gestation (68 ± 15 pmol/l) and term microvillous membranes (45 ± 8 pmol/l) ($n = 4$) were not significantly different. The density of ET-R (B_{max}) in term microvillous preparations was 54 ± 10 fmol/mg protein. The values of B_{max} for early gestation microvilli varied with the microvillous preparation. The mean value of B_{max} for early gestation was 243 ± 80 fmol/mg protein, which was five times greater than that for term microvilli.

Competition binding experiments

The profiles of ET-R subtypes in microvillous preparations were determined by measuring the binding of $[^{125}I]$ET-1 in the presence of ET-R agonists and antagonists. In early gestation microvilli, ET-1, ET-3, S6c and IRL 1620 were all potent competitive inhibitors of $[^{125}I]$ET-1 binding (Fig. 2A). ET-1 and ET-3 totally inhibited binding. A monophasic curve was obtained for ET-1 with a K_i value of 35 ± 5 pmol/l. Two K_i values were determined for ET-3: one for high affinity sites ($K_i = 28 ± 3$ pmol/l) and one for low affinity sites ($K_i = 4.6 ± 1.4$ nmol/l). The high affinity sites, which represented 72% of the total receptor population, had a K_i similar to that of ET-1 and were characteristic of the ‘non-selective’ or ET$_B$-R subtype (4). The other sites, which represented 28% of total receptors, had a much lower affinity for ET-3 than for ET-1, typical of the ET$_A$-R subtype (3). These data were in agreement with the finding that the selective ET$_B$-R agonists S6c and IRL 1620 displaced only 80% of $[^{125}I]$ET-1, even up to 1μmol/l (Fig. 2A). However, while the IRL 1620 displacement curve was monophasic (Hill coefficient close to unity) with a K_i value of 290 ± 50 pmol/l, S6c displaced the binding with two affinities: a high affinity K_i value of 26 ± 9 pmol/l (63% of total receptors) and a low affinity K_i value of 47 ± 20 nmol/l (37% of total receptors), suggesting the presence of different ET$_B$-R subtypes. Competitive experiments with antagonists confirmed these results (Fig. 2B): the selective ET$_B$-R antagonists BQ 788 and IRL 2500 almost totally displaced $[^{125}I]$ET-1 with K_i values of 17 ± 7 and 22 ± 6 nmol/l respectively, whereas the selective ET$_A$-R antagonist IRL 1038 only partially displaced it. The ET$_A$-R which is IRL 1038-insensitive has been shown to be of the ET$_B$-2-R subtype (28), indicating that in term microvilli, ET$_A$-Rs were mainly of the ET$_B$-2-R subtype. The selective ET$_A$-R antagonist BQ 123 inhibited only 30% of $[^{125}I]$ET-1 binding, even at concentrations of

![Figure 1](https://example.com/f1.png)
Figure 1 Scatchard analysis of $[^{125}I]$ET-1 binding to term (○) and early gestation (□) microvilli. Membranes were incubated with the indicated concentrations of $[^{125}I]$ET-1 (2–300 pmol/l) in the presence (non-specific binding) or absence (total binding) of 1μmol/l unlabeled ET-1. The data shown represent typical experiments performed in duplicate ($n = 4$).

![Figure 2](https://example.com/f2.png)
Figure 2 Displacement of $[^{125}I]$ET-1 from early gestation microvilli by (A) unlabeled agonists ET-1 (○), ET-3 (■), S6c (▲) and IRL 1620 (△), and (B) by unlabeled antagonists BQ 788 (□), IRL 1038 (■) and BQ 123 (▲). Membranes were incubated with $[^{125}I]$ET-1 (30 pmol/l) and increasing concentrations of unlabeled ligands. Results are expressed as percentages of control (specific binding in the absence of unlabeled ligand). Non-specific binding, determined in the presence of 1μmol/l ET-1, was subtracted from the total binding. Each point is the mean ± S.E.M. of three to six experiments from different placentas.
We confirmed these observations by investigating the effect of simultaneously blocking ETA-R with BQ 123 and ET B-R with BQ 788. Micromolar concentrations of BQ 123 displaced 30% of [125I]ET-1 (Fig. 3A), while the remaining 70% were resistant. Concomitant treatment with BQ 123 (1 μmol/l) + BQ 788 (10 pmol/l to 1 μmol/l) completely inhibited the BQ 123-resistant component of [125I]ET-1 binding. Similar results were obtained when the converse experiment was performed, e.g. total displacement of bound [125I]ET-1 by BQ 788 only in the presence of BQ 123 (Fig. 3B). These results indicate that ET B-R accounts for 72% of the total binding sites on early gestation microvilli, while 28% are of the ETA-R subtype.

In term microvilli, [125I] ET-1 binding was inhibited by ET-1, ET-3, and the ET B-R agonists S6c and IRL 1620 in a monophasic manner (Hill coefficient close to unity), with Ki values of 30 ± 4, 37 ± 6, 48 ± 8 and 85 ± 7 pmol/l respectively (Fig. 4A). ET-1, ET-3 and S6c had superimposable competition curves, demonstrating that the main ET-R subtype in term microvillus membranes was ET B-R. We confirmed this by competition binding experiments using subtype-selective antagonists (Fig. 4B). BQ 788 and IRL 2500, two selective ET B-R antagonists, displaced all the [125I]ET-1 in a monophasic fashion with Ki values of 4.1 ± 0.7 and 1.6 ± 0.1 nmol/l. In contrast, the selective ET A-R

Figure 3 (A) Effects of BQ 123 (0.1 nmol/l to 1 μmol/l) (○) and 1 μmol/l BQ 123 plus BQ 788 (10 pmol/l to 1 μmol/l) (●), and (B) effects of BQ 788 (10 pmol/l to 1 μmol/l) (△), and 1 μmol/l BQ 788 plus BQ 123 (1 nmol/l to 1 μmol/l) (▲) on specific [125I]ET-1 binding to early gestation microvillus membranes. Each point is the mean ± S.E.M. of three experiments from three different placentas.

Figure 4 Displacement of [125I]ET-1 from term microvilli by (A) unlabeled agonists ET-1 (○), ET-3 (●), S6c (▲) and IRL 1620 (■), and (B) by unlabeled antagonists BQ 788 (△), IRL 2500 (half-filled squares), IRL 1038 (■) and BQ 123 (○). Membranes were incubated with [125I]ET-1 (30 pmol/l) and increasing concentrations of unlabeled ligands. Results are expressed as percentages of control (specific binding in the absence of unlabeled ligand). Non-specific binding, determined in the presence of 1 μmol/l ET-1, was subtracted from the total binding. Each point is the mean ± S.E.M. of three to six experiments from different placentas performed in duplicate.
antagonist IRL 1038 reduced binding by only 24 ± 9%. Consequently, the ET_{B2}-R subtype which was IRL 1038-insensitive seemed to be mainly of the ET_{P}-R subtype in term gestation microvilli. The specific ET_{A}-R antagonist BQ 123 had very little effect at concentrations up to 1 µmol/l.

We examined the possibility that G protein coupling may modulate the binding of \([^{125}\text{I}]\text{ET-1}\) to the two microvillar membrane preparations in binding experiments with and without guanine nucleotides. Incubation of the ligand with 1 mmol/l GTP\(_S\) had no apparent effect on \([^{125}\text{I}]\text{ET-1}\) binding to either early gestation or term microvilli (data not shown).

Discussion

The present study demonstrates that specific and high affinity binding sites for \([^{125}\text{I}]\text{ET-1}\) are expressed on microvillar membranes isolated from early gestation and term human placenta. Scatchard analysis of \([^{125}\text{I}]\text{ET-1}\) binding indicated that binding affinities for early gestation and term membrane preparations are not significantly different, and that the concentration of ET-Rs on early microvilli is five times greater than that on term microvilli.

In early gestation placenta, competitive experiments demonstrated the presence of a majority of ET_{P}-R (72% of total receptors), with a predominance of the ET_{B2}-R subtype. ET_{A}-R represented 28% of total receptors. In term placenta, we observed that only ET_{P}-R, with a majority being of the ET_{B2}-R subtype, is present on microvillar membranes.

All seven transmembrane cell surface receptors were coupled to G proteins, and guanine nucleotides generally inhibited agonist binding. But we found that a non-hydrolyzable GTP analog (GTP\(_S\)) has no effect on the binding of \([^{125}\text{I}]\text{ET-1}\) to placental microvillar membranes. This is in accordance with studies demonstrating that GTP\(_S\) does not inhibit \([^{125}\text{I}]\text{ET-1}\) binding to crude membrane fractions of human placenta (10, 11). In contrast to other G protein coupled receptors, the binding affinity of ET-Rs is not necessarily reduced by guanine nucleotides.

The human placenta has a non-uniform population of ET binding sites, with regional differences in the relative proportions of ET_{A}-R and ET_{P}-R subtypes. In term placenta, ET_{A}-R predominates in the proximal regions of vessels in the chorionic plate and stem villi, whereas ET_{B2}-R is concentrated on intermediate and terminal villi and on the decidua (14, 29). The syncytiotrophoblast, which lines the intervillus space containing maternal blood, can be compared with a fetal endothelial layer. As for other endothelial cells which express only ET_{P}-R, the term microvillar membrane also bears only ET_{P}-R. Both the placenta and the trophoblast contain mainly the ET_{P}-R subtype during the first trimester (30). ET_{P}-R subtype is also present at higher density on extravillous trophoblast, suggesting that ET_{P}-R is involved in regulating the invasion of the extravillous trophoblast (31).

We found that there are five times more ET-Rs on early gestation microvillar placental membranes than on membranes from term placenta. This is compatible with the results obtained in whole placental membranes showing a decrease in the ET-R concentration from the first to the third trimester of pregnancy (13, 14). The term placenta appears to be an important source of ETs. The preproET-1 and ET-3 genes are expressed in the placental villi (32, 33), in syncytiotrophoblasts in culture (34), and, for the preproET-1, in cytotrophoblasts (35). The preterm placenta expressed little preproET-1, but the term placenta had significantly more, suggesting that the concentration of preproET-1 mRNA in human placenta changes during development (36). IrETs have been detected in the syncytiotrophoblast layer of term human placental villi and in the endothelium of feto–placental vessels, in the extra-villous cytotrophoblast of the basal and chorionic plates and in trophoblasts in culture (37–39). ET-1 secreted by trophoblasts could reach other nearby placental structures. Because the trophoblast and fetal vessels lie close together, ET-1 may influence regulation of the feto–placental circulation. ETs could also directly enter the maternal intervillous blood space and contribute, along with the ET produced by decidual cells (40), to the large amount of ir ETs found at term in this circulation, which is specific to the human feto–maternal interface (16). Consequently, these circulating ETs could act in a paracrine way to regulate myometrial contractility, especially at parturition. The high affinity ET-1 binding sites on the microvillar membrane may indicate an autocrine feedback pathway, whereby ET-1 regulates its own synthesis or release and may help specific trophoblast functions. ET-1 and ET-3 both increase the release of progesterone by syncytiotrophoblasts in culture (41), suggesting an autocrine role of ETs in the control of placental steroidogenesis. The fact that ET-3 is more effective than ET-1 in stimulating progesterone production is in agreement with the presence of predominantly ET_{P}-R subtypes on the microvillar membrane. The mitogenic properties of ETs might also indicate that these peptides are involved in placental growth, as ET-1 stimulates mitogenesis in first-trimester human placental fibroblasts (36) and the proliferation and invasion of first-trimester cytotrophoblastic cells in vitro (42). The in vitro ET-1 effect on proliferation is mediated by both ET_{A}-R and ET_{P}-R subtypes, while the effect of ET-1 on the invasion of trophoblastic cells is mediated by the ET_{P}-R subtype only (43). We found that the number of ET_{A}-R on early gestation microvillar membrane accounts for 28% of total receptors. The physiological function of these ET_{A}-R in placental development remains to be clarified.

The fate of the ETs released from the placenta at the feto–maternal interface is not well understood. Functional ET_{P}-Rs are clearance receptors in the rat lung and...
human astrocytoma U373 MG cells (44, 45). The presence of mainly ET_B-R on the placental microvillous membrane suggested that this membrane may be an important site of ET clearance. ET_B-R could play a major protective role by modulating the concentration of ETs in the maternal intervillous blood space. These receptors could thus be important in disorders of gestation such as pre-eclampsia and premature labor. The etiology of pre-eclampsia is unknown, but the placenta appears to play a major role, since the trophoblasts do not invade the maternal uterine tissues correctly, leading to placental ischemia and altered endothelial cell function, which in turn increases ET production (42, 46, 47). Thus, altered ET_B-R production and/or function in the placental microvillous membrane may contribute to pathogenesis by reducing ET clearance, leading to higher concentrations of circulating ET at the feto–maternal interface.

Acknowledgements

We are grateful to Dr M Breuiller-Fouché and Dr G Germain for useful discussions and critical reading of the manuscript and to Ms M Verger for her excellent secretarial aid.

References

26 Cheng Y & Prusoff WH. Relationship between the inhibition constant (I₅₀) and the concentration of inhibitor which causes 50 percent inhibition (I_{C50}) of an enzymatic reaction. Biochemical Pharmacology 1973 22 3099–3108.

33 McMahon LP, Redman CWG & Firth JD. Expression of the three endothelin genes and plasma levels of endothelin in pre-eclamptic and normal gestations. Clinical Science 1993 85 417–424.

34 Roberts JM & Redman CWG. Pre-eclampsia: more than pregnancy-induced hypertension. Lancet 1993 341 1447–1451.