Markers of bone turnover in patients with differentiated thyroid cancer with and following withdrawal of thyroxine suppressive therapy

Jukka Toivonen¹, Riitta Tähtela², Kalevi Laitinen³, Juha Risteli⁴ and Matti J Välimäki¹,²
¹Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland, ²United Laboratories, Helsinki, Finland, ³Clinical Research, Leiras Oy, Helsinki, Finland and ⁴Departments of Medical Biochemistry and Clinical Chemistry, University of Oulu, Finland

(Correspondence should be addressed to M Välimäki, Department of Medicine, Helsinki University Central Hospital, FIN-00290 Helsinki, Finland)

Abstract

Objective: To study whether levothyroxine (LT₄) suppressive therapy exposes patients with differentiated thyroid cancer (TC) to an increased risk of osteoporosis.

Design and Methods: Markers of bone formation (serum alkaline phosphatase (ALP), osteocalcin (OC), type I procollagen carboxyterminal (PICP) and aminoterminal (PINP) propeptide) and resorption (serum type I collagen carboxyterminal telopeptide (ICTP) and urine hydroxyproline (HOP)), as well as serum intact parathyroid hormone (PTH), 25-hydroxyvitamin D, and 1,25-dihydroxyvitamin D (1,25(OH)₂-D) were measured in 29 patients (25 women, 4 men) with a median age of 45 years, and in 38 age- and sex-matched controls. In a subgroup of 14 patients the measurements were repeated after 5 weeks’ interruption of LT₄ therapy. Since the primary treatment of TC the patients had used TSH suppressive doses of LT₄ (a mean daily dose of 215 µg) for 9 to 11 years. The bone mineral density (BMD) of patients and controls was measured by dual energy X-ray absorptiometry.

Results: When on T₄ therapy, patients had significantly higher mean levels of ALP (+21%, P < 0.05), OC (+35%, P < 0.01), PICP (+10%, P < 0.05), PINP (+46%, P < 0.001), ICTP (+21%, P < 0.05), and HOP (+37%, P < 0.001) compared with controls. After stopping treatment, OC (-42%, P < 0.001), PINP (-7%, P < 0.05), and ICTP (-54%, P < 0.001) decreased, whereas PICP (+24%, P < 0.001) and 1,25-(OH)₂D (+29%, P < 0.01) increased. BMD of the lumbar spine and the upper femur was similar in patients and controls.

Conclusions: Patients with differentiated TC have high bone turnover when on LT₄ suppressive therapy. After withdrawing treatment both bone formation and resorption decrease acutely. During development of hypothyroidism, serum PICP and PINP, which form from the same type I procollagen molecule and should change similarly, behaved differently. This may be due to different effects of hypothyroidism on their removal through separate receptors in the liver.

European Journal of Endocrinology 138 667–673

Introduction

A recent meta-analysis of the available cross-sectional studies showed that in postmenopausal women levothyroxine (LT₄), in a dose leading to reduced serum thyroid stimulating hormone (TSH), resulted in a significant excess of annual bone loss of 0.91%/year compared with control women; the same was not true for premenopausal women (1). The significance of this finding in terms of risk for fractures is uncertain (2–4). Endogenous thyrotoxicosis leads to increased bone turnover, which is reflected both in markers of bone formation (such as serum osteocalcin (OC) and bone-specific alkaline phosphatase (B-ALP)), and in those of bone resorption (e.g. urinary pyridinoline cross-link (Pyr) excretion) (5). Although in patients on thyroxine suppressive therapy no thorough analysis of these markers has been performed, scattered data available point to increased bone turnover (6–10). However, when LT₄ suppressive therapy was carefully monitored, the rate of bone metabolism appeared to be normal (11). In the present study we used a fairly comprehensive panel of markers of bone formation and resorption to establish bone turnover rate in patients who had been on thyroxine suppressive therapy since primary treatment of thyroid cancer. We also studied the behavior of these markers during iatrogenic hypothyroidism due to withdrawing LT₄ replacement therapy for five weeks.

Subjects and methods

Patients

The study group consisted of 25 women and 4 men. They were compared with 38 healthy age- and sex-matched...
controls who were not using any drugs; female controls were also matched for menopausal status and years since menopause. Of the women, 10 were postmenopausal and 15 premenopausal; none of the postmenopausal women was using estrogen replacement therapy. The patients had had thyroid cancer 9 to 11 years before the study. It had been treated with near total thyroidectomy followed by radioiodine ablation in most patients. Since the primary treatment, the patients had used thyroxine in doses sufficient to render their serum TSH level undetectable as assessed with the second generation test (detection limit 0.05 mU/l). Except for thyroxine, the patients were not using any drugs and they did not have any other diseases known to affect bone and calcium metabolism.

Design

The study was approved by the Ethical Committee of the Third Department of Medicine, Helsinki University Central Hospital, and informed consent was obtained from the subjects. Each patient underwent a detailed physical examination. Bone mineral density (BMD) was measured at the lumbar spine and at three proximal femoral sites. After a 12-h overnight fast, blood was sampled for the determination of serum free thyroxine (FT$_4$), free tri-iodothyronine (FT$_3$), TSH, sex hormone-binding globulin (SHBG), total calcium, magnesium, phosphate, albumin, creatinine, alkaline phosphatase and its isoenzymes, intact parathyroid hormone (iPTH), OC, type I procollagen carboxyterminal (PICP) and aminoterminal (PINP) propeptide, type I collagen carboxyterminal telopeptide (ICTP), 25-hydroxyvitamin D (25-OH-D), and 1,25-dihydroxyvitamin D (1,25(OH)$_2$-D). Twenty-four-hour urine was collected during the second day of a diet without gelatin for the determination of markers of calcium and bone metabolism. Serum was extracted with acetonitrile, and the metabolites were purified chromatographically using SepPak C$_{18}$ cartridges; acetonitrile was used for the determination of vitamin D metabolites, serum was extracted with acetonitrile, and the metabolites were purified chromatographically using SepPak C$_{18}$ cartridges; acetonitrile was used for elution. The metabolites were separated using SepPak silica cartridges and hexane/isopropanol for elution. Both 25-OH-D and 1,25(OH)$_2$-D were determined by saturation analysis using kits from Amersham International plc, Amersham, Bucks, UK. Intact PTH in serum was measured by IRMA using kits from Nichols Institute, San Juan Capistrano, CA, USA. The same manufacturer’s RIA kit with an antiserum to human osteocalcin raised in rabbits was employed to measure serum osteocalcin. PICP, PINP (13) and ICTP (14) were determined by RIA kits from Orion Diagnostica, Espoo, Finland. The intra-assay and interassay coefficients of variation for all the above-mentioned assays ranged from 3 to 9%. ALP isoenzymes were determined using a kit from Boehringer Mannheim GmbH, Mannheim, Germany, in which bone-specific isoenzyme is precipitated by lectin, and bone ALP activity is calculated from total and residual ALP activity (15). The intra-assay and interassay coefficients of variation for the assay were 4% and 5% respectively. The results were checked by semiquantitative estimation using separation of the isoenzymes by polyacrylamide gel electrophoresis. Urinary HOP was determined by the method of Prockop and Udenfriend (16).

Bone mineral density measurements

BMD of the lumbar spine (lumbar vertebrae L1–L4) and of the proximal femur sites (the femoral neck, Ward’s triangle and the trochanter area) was measured by dual energy X-ray absorptiometry using a Hologic QDR-1000 densitometer (Hologic Inc., Waltham, MA, USA). At these four measurement sites, the precision of the method (coefficient of variation) was 0.9, 1.2, 2.7 and 2.4% respectively.

Statistics

The data with normal distributions are expressed as means ± s.d., otherwise as medians with ranges. For consistency, in Figs 1 and 2 the variables are presented using medians and interquartile ranges. Student’s two-sided two-group t-test (comparison of patients with controls) or paired t-test (effect of stopping T$_4$ replacement therapy) was used to analyse normally distributed data; if the assumptions for these analyses failed, Mann–Whitney rank sum test and Wilcoxon signed rank test were used as appropriate. Two-way analysis of variance was used to study the possible effects of sex (apart from group) on BMD. Spearman rank order correlations were calculated between serum free thyroid hormones and bone markers. SigmaStat for Windows software (version 1.0, Jandel Scientific, Erkrath, Germany) was used in the analysis.
Results

Baseline characteristics

The baseline characteristics for patients and controls are given in Table 1. Patients and controls were of similar height, weight, and body mass index (BMI). The mean dose of thyroxine used by the patients was 215 μg daily. As expected, patients and controls differed from each other with respect to serum FT4, FT3, and TSH. The serum concentrations of SHBG, creatinine, and albumin were similar in patients and controls, but that of liver ALP was increased in patients.

Markers of bone and calcium metabolism

The values for the markers of bone and calcium metabolism in patients and controls are presented in Table 2 and in Figs 1 and 2. Of the markers of bone formation, the patients had significantly higher mean or median levels of ALP (+21%, P < 0.05), OC (+35%, P < 0.01), PICP (+10%, P < 0.05), and PINP (+46%, P < 0.001) compared with controls. The markers of bone resorption, serum ICTP (+21%, P < 0.05) and urinary excretion of HOP (+37%, P < 0.001) were also higher in patients than in controls. Patients had greater mean urinary excretion of phosphate (+23%, P < 0.05) and magnesium (+28%, P < 0.05). The other parameters of calcium and mineral metabolism were similar in patients and controls. There were no statistically significant correlations between FT4, FT3, and any of the bone markers. When pre- and postmenopausal female patients were compared separately with their respective controls, serum PINP and urinary HOP were increased in both patient groups, whereas serum OC and ICTP were only increased in premenopausal women (Table 3).

Effects of withdrawing thyroxine replacement on parameters of bone turnover

Five weeks after withdrawal of LT4 treatment the mean serum levels of OC (−42%, P < 0.001), PINP (−7%, P < 0.05), and ICTP (−54%, P < 0.001) decreased, whereas those of PICP (+24%, P < 0.001) and 1,25(OH)2-D (+29%, P < 0.01) increased (Fig. 3). PICP and PINP values for individual patients on and off thyroxine suppressive therapy are presented in Fig. 4. Mean serum concentrations of 25-OH-D and iPTH did not change (data not shown).

Bone mineral density

The whole patient population did not differ from controls with respect to BMD at any of the four measurement sites (the lumbar spine, the femoral neck, the trochanter and Ward’s triangle). This was also the case when pre- and postmenopausal women were compared with their respective controls (Table 4).
Table 1 The baseline characteristics for patients and controls (mean ± s.d. or median with ranges).

<table>
<thead>
<tr>
<th></th>
<th>Patients</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>45 (27–71)</td>
<td>43 (26–65)</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>168 (153–193)</td>
<td>166 (150–185)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>66 (52–103)</td>
<td>64 (46–90)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>23.7 (19.8–32.6)</td>
<td>23.5 (18.0–35.0)</td>
</tr>
<tr>
<td>T₄ dose (µg/day)</td>
<td>215 ± 53</td>
<td>–</td>
</tr>
<tr>
<td>FT₄ (nmol/l)</td>
<td>20.5 (13–36)**</td>
<td>13.1 (8–24)</td>
</tr>
<tr>
<td>TSH (mU/l)</td>
<td><0.05***</td>
<td>2.4 (0.06–4.1)</td>
</tr>
<tr>
<td>Albumin (g/l)</td>
<td>40 ± 3.4</td>
<td>40 ± 2.8</td>
</tr>
<tr>
<td>Liver ALP (IU/l)</td>
<td>93 ± 39*</td>
<td>74 ± 39</td>
</tr>
<tr>
<td>Creatinine (µmol/l)</td>
<td>79 ± 10</td>
<td>80 ± 9.9</td>
</tr>
</tbody>
</table>

* P < 0.05, ** P < 0.01, *** P < 0.001 for differences between patients and controls.

Discussion

As assessed by a comprehensive range of markers of bone turnover, patients on thyroxine suppressive therapy showed increased rates of both bone formation and resorption. After cessation of thyroxine replacement the turnover rate decreased acutely.

Previous findings of increased serum levels of osteocalcin and alkaline phosphatase and urinary excretion of hydroxyproline (6, 7, 9, 10) are extended by the observation that two other markers of bone formation, PICP and PINP, and a marker of bone resorption, ICTP, were also elevated in patients using TSH suppressive doses of LT₄. Instead of trying to use the smallest dose of LT₄ sufficient to keep serum TSH undetectable, we administered standard doses of thyroxine to the present patients. Consequently, the mean thyroxine dose used (215 µg daily) was 60 µg higher than in the study of Marcocci et al. (11), in which LT₄ suppressive therapy was carefully monitored by using the smallest dose necessary to suppress serum TSH below the detection limit of the assay used (0.07 mU/l). Interestingly, in that study (11) the rate of bone formation and resorption as assessed by serum osteocalcin and ICTP did not differ from normal. Although the normal BMD found in the present patients does not support the idea that accelerated bone turnover increases the risk of osteoporosis, this possibility does, however, exist and thus small adjustments in the thyroxine dose to normalize bone turnover rate may be rational. Note that in a study by Schneider et al. (17) postmenopausal women taking daily LT₄ suppressive doses of 200 µg or more had lower BMD at the midshaft radius and hip compared with those taking lower doses. Although we did not use novel and possibly the most bone-specific urine markers to estimate bone resorption

Table 2 The markers of bone and calcium metabolism in patients and controls (mean ± s.d. or median with ranges).

<table>
<thead>
<tr>
<th></th>
<th>Patients</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum albumin-corrected calcium (mmol/l)</td>
<td>2.45 ± 0.10</td>
<td>2.46 ± 0.08</td>
</tr>
<tr>
<td>Serum phosphate (mmol/l)</td>
<td>1.05 ± 0.17</td>
<td>1.08 ± 0.13</td>
</tr>
<tr>
<td>Serum magnesium (mmol/l)</td>
<td>0.87 ± 0.08</td>
<td>0.90 ± 0.07</td>
</tr>
<tr>
<td>Serum 25-OH-D (nmol/l)</td>
<td>64 ± 22</td>
<td>62 ± 21</td>
</tr>
<tr>
<td>Serum 1,25-(OH)₂-D (pmol/l)</td>
<td>106 (55–218)</td>
<td>111 (72–204)</td>
</tr>
<tr>
<td>Serum iPTH (ng/l)</td>
<td>39 (16–77)</td>
<td>30 (13–56)</td>
</tr>
<tr>
<td>Urinary calcium (mmol/24 h)</td>
<td>3.6 ± 1.7</td>
<td>3.4 ± 1.8</td>
</tr>
<tr>
<td>Urinary phosphate (mmol/24 h)</td>
<td>32 ± 10*</td>
<td>26 ± 8</td>
</tr>
<tr>
<td>Urinary magnesium (mmol/24 h)</td>
<td>5.0 ± 1.8*</td>
<td>3.9 ± 1.4</td>
</tr>
<tr>
<td>Urinary creatinine (mmol/24 h)</td>
<td>10.3 (8.6–18.4)**</td>
<td>8.5 (4.9–13.4)</td>
</tr>
</tbody>
</table>

* P < 0.05, ** P < 0.01 for differences between patients and controls.

Table 3 The markers of bone turnover (mean ± s.d. or median with ranges) in pre- and postmenopausal female patients and respective controls.

<table>
<thead>
<tr>
<th></th>
<th>Premenopausal (n = 15)</th>
<th>Controls (n = 22)</th>
<th>Postmenopausal (n = 10)</th>
<th>Controls (n = 13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum B-ALP (IU/l)</td>
<td>56 ± 36</td>
<td>46 ± 23</td>
<td>81 ± 18</td>
<td>74 ± 28</td>
</tr>
<tr>
<td>Serum OC (µg/l)</td>
<td>7.7 ± 3.3*</td>
<td>4.6 ± 3.0</td>
<td>8.8 ± 3.7</td>
<td>8.5 ± 4.3</td>
</tr>
<tr>
<td>Serum PICP (µg/l)</td>
<td>159 (27–236)</td>
<td>103 (66–164)</td>
<td>127 ± 37</td>
<td>115 ± 35</td>
</tr>
<tr>
<td>Serum PINP (µg/l)</td>
<td>56 (13–105)*</td>
<td>34 (22–52)</td>
<td>62 ± 16*</td>
<td>44 ± 16</td>
</tr>
<tr>
<td>Serum ICTP (µg/l)</td>
<td>3.5 ± 0.9</td>
<td>2.8 ± 0.8</td>
<td>3.5 ± 1.2</td>
<td>3.1 ± 0.7</td>
</tr>
<tr>
<td>Urinary HOP (µmol/24 h/m²)</td>
<td>0.088 (0.049–0.137)*</td>
<td>0.062 (0.042–0.101)</td>
<td>0.089 ± 0.028*</td>
<td>0.067 ± 0.017</td>
</tr>
</tbody>
</table>

* P < 0.05 for differences between patients and controls.
(deoxypyridinoline, C-telopeptide, N-telopeptide), a range of biochemical markers was employed to evaluate bone formation rate. This set included serum PINP assayed with the most recent and reliable technique for intact PINP (13); older technology for PINP measurements has not yielded adequate information about the rate of bone formation (18).

After therapy for hyperthyroidism the increased levels of markers of bone formation and resorption returned to normal within one month (5). Except for serum PICP, this also occurred in the present patients five weeks after withdrawing thyroxine treatment. Interestingly, during the development of hypothyroidism the serum concentrations of PICP and PINP behaved differently; the former clearly increased, whereas the latter decreased slightly. During bone formation PICP and PINP are stoichiometrically released from type I procollagen molecules; thus, slowing bone formation should lead to the decreased release of both these markers into the circulation. If this is the case, then the divergent behavior of PICP and PINP must result from differences in their rates of removal by the liver. PICP is eliminated from the circulation mainly via mannose receptors on liver endothelial cells (19), whereas PINP is cleared by the same cells of the liver via the scavenger receptor (20). Hypothyroidism may differentially affect the function of these two receptors and, consequently, the removal of PICP and PINP, thus providing an explanation for their divergent behavior.

In keeping with previous findings (21), the serum concentration of 1,25-dihydroxyvitamin D increased during developing hypothyroidism. Thyroid hormones inhibit the renal production of 1,25(OH)2-D; consequently, in hypothyroidism this production increases (22). Although 1,25-dihydroxyvitamin D stimulates osteoblasts to produce osteocalcin (23), the concentration of this marker of bone formation decreased together with a slow down in bone turnover despite the simultaneous increase in 1,25(OH)1,25-D levels.

The present study population was comprised predominantly of premenopausal women, but even in a subgroup of 10 postmenopausal women with normal BMD we could not agree with the conclusion of the recent meta-analysis that postmenopausal women on thyroxine suppressive treatment are at risk of accelerated bone loss (1). We would like, however, to make one point. In few studies has the significance of calcium intake been taken into account when the untoward effects on bone of thyroxine suppressive therapy have been addressed. In a study by Kung et al. (10) postmenopausal women on thyroxine suppressive therapy and with a mean daily calcium intake of 545 mg, had lower BMD in the lumbar spine, femoral neck, trochanter and Ward’s triangle compared with controls. In a recent prospective study by the same

Table 4 Bone mineral density (mean ± s.d.; g/cm²) in the whole patient group, pre- and postmenopausal female patients and respective controls.

<table>
<thead>
<tr>
<th></th>
<th>Premenopausal</th>
<th>Postmenopausal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Patients</td>
<td>Controls</td>
</tr>
<tr>
<td>lumbar spine</td>
<td>0.997 ± 0.144</td>
<td>0.997 ± 0.134</td>
</tr>
<tr>
<td>femoral neck</td>
<td>0.830 ± 0.144</td>
<td>0.807 ± 0.104</td>
</tr>
<tr>
<td>trochanter</td>
<td>0.704 ± 0.100</td>
<td>0.727 ± 0.108</td>
</tr>
<tr>
<td>ward’s triangle</td>
<td>0.602 ± 0.155</td>
<td>0.623 ± 0.147</td>
</tr>
</tbody>
</table>
authors, thyroxine-induced bone loss was totally prevented when postmenopausal women increased their mean daily calcium intake from 0.5 g to 1.5 g (24); the increased serum levels of osteocalcin were also normalized. Thus, bone loss induced by thyroxine suppressive therapy may be less significant in those populations, such as the Finnish one, which have a high basal calcium intake of 0.9–1.2 g daily (25, 26). Thus, despite increased bone turnover, if there is sufficient calcium intake, bone formation may meet the demands of bone resorption better, and osteoporosis does not ensue.

We conclude that patients on LT4 suppressive therapy have a high bone turnover rate, which may increase their risk for osteoporosis. After withdrawal of LT4 treatment, both bone formation and resorption decrease acutely. Divergent behavior of serum PICP and PINP during development of hypothyroidism may be due to their removal through different receptors in the liver.

Acknowledgements
This study has been supported by a grant from the Finnish Cancer Research Foundation.

References
4 Solomon S & Burman KD. The prevalence of bone fractures in women with thyroid disease. Thyroid 1993 3 17–23.
12 Liewendahl K, Tikanoja S, Helenius T & Välimäki M. Discrepancies between serum free triiodothyronine and free thyroxine as measured by equilibrium dialysis and analog radioimmunoassays in nonthyroidal illnesses. Clinical Chemistry 1984 30 760–762.

Received 25 August 1997
Accepted 5 February 1998