The role of tyrosine kinase in gonadotropin-induced ovulation in the rat ovary

Tsutako Shimamoto, Mareo Yamoto and Ryosuke Nakano
Department of Obstetrics and Gynecology, Wakayama Medical College, Wakayama 640, Japan
(Correspondence should be addressed to T Shimamoto, Department of Obstetrics and Gynecology, Wakayama Medical College, 27 Shichibancho, Wakayama 640, Japan)

Abstract

Objectives: Our purpose was to elucidate the involvement of the tyrosine kinase pathway in gonadotropin-induced ovulation in the rat ovary.

Study design: We investigated the effect of a tyrosine kinase inhibitor, tyrphostin, on the rat ovulatory process in vivo and in vitro.

Methods: In cultured rat granulosa cells, the effect of tyrphostin on LH-, dibutyryl cyclic AMP ((Bu)2cAMP)- or forskolin-stimulated tissue type plasminogen activator (tPA) activities was examined by using a fibrin autography technique. In an in vivo system, tyrphostin was injected into the bursal cavity of the ovary in pregnant mare serum gonadotropin-treated rats, just before human chorionic gonadotropin administration. After 24 h, the number of oocytes in the oviduct was counted and the tyrphostin-treated ovaries were examined histologically.

Results: Tyrphostin inhibited LH-stimulated tPA activity but did not affect (Bu)2cAMP- or forskolin-stimulated ones. In an in vivo study, tyrphostin suppressed oocyte release dose-dependently. Histological observations revealed that tyrphostin-treated ovaries contained many large unruptured follicles and a few corpora lutea.

Conclusion: This study suggests that the suppressive effect of tyrphostin on ovulation may be partly due to tPA activity inhibition in the granulosa cells via the suppression of tyrosine kinase activity. Additionally, tyrosine kinase phosphorylation may be involved in gonadotropin-activated signaling systems in the rat ovulatory process.

European Journal of Endocrinology 138 594–600

Introduction

Luteinizing hormone (LH)/chorionic gonadotropin (CG) regulates ovarian functions, including functional differentiation of granulosa cells, ovulation and corpus luteum formation (1). It is well established that cAMP-dependent protein kinase acts as an intracellular signaling transduction system of LH/human CG (hCG) actions (2). LH also increases phosphoinositide turnover and activates protein kinase C that may modulate gonadal functions (2–4). In recombinant LH receptor expressing L-cells, higher concentrations of LH could lead to stimulation of phospholipase C and result in the formation of inositol phosphate and the elevation in Ca2+ (5). We previously reported that a protein kinase C inhibitor, H-7, could suppress gonadotropin-induced ovulation (6). Recently, it was reported that a tyrosine kinase inhibitor suppressed follicle-stimulating hormone (FSH)-dependent differentiation in cultured granulosa cells (7, 8). Costrici et al. (9) have reported that FSH effects on aromatase activity involve the activation of cytosolic soluble protein tyrosine kinases in human granulosa cells. According to Morris & Richards (10), the luteinization of granulosa cells that is stimulated by the ovulatory surge of LH is dependent on both the increased intracellular cAMP and the activation of tyrosine kinases. Taking these findings together, it is possible that LH stimulates multiple intracellular signaling systems.

Tissue type plasminogen activator (tPA), which has been shown to be secreted by granulosa cells, may play an important role in the ovulatory process (6, 11–13). In the ovary, tPA activity has been modulated by gonadotropins (14), cAMP derivatives (15), gonadotropin-releasing hormone (GnRH) (16), phorbol ester (17), and epidermal growth factor (EGF) (18). These factors presumably act through different intracellular signaling systems. Since it is well known that EGF stimulates tyrosine kinases, it is suggested that the activation of tyrosine kinases may be involved in the induction of tPA activity in granulosa cells.

In the present study, to elucidate the involvement of the tyrosine kinase pathway in gonadotropin-induced ovulation, we have studied the effect of a tyrosine kinase
inhibitor, tyrphostin, on LH-stimulated tPA activity in cultured rat granulosa cells. Furthermore, we have studied the in vivo effect of tyrphostin on oocyte release in pregnant mare serum gonadotropin (PMSG)-treated rats by using the ovarian intrabursal injection technique.

Materials and methods

Hormones and reagents

McCoy’s 5a medium, penicillin–streptomycin solution, and trypan blue stain were obtained from Gibco (Santa Clara, CA, USA). Ovine LH (oLH) (NIH-oLH-26; 2.3 U/mg; FSH contamination <0.5% by weight) was obtained from the National Hormone and Pituitary Distribution Program (National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA). Halothane was purchased from Hoechst Japan Co. (Tokyo, Japan). Tyrphostin, dibutyryl cAMP ((Bu)2cAMP), forskolin (FSK), GnRH, mouse EGF, thrombin, androstenedione, PMSG, and hCG were purchased from Sigma Chemical Co. (St Louis, MO, USA). Glu-plasminogen was purchased from Bio-Pool Co. (Umeå, Sweden).

Animals

Intact immature female Sprague–Dawley rats (21 days old) were purchased from Kiwa Laboratory Animals Co. Ltd (Wakayama, Japan). Animals were housed three to five per cage with free access to food and water and with lights on from 0600–2000 h.

Granulosa cell culture

The animals (23 days old) were injected with 20 IU PMSG to initiate follicular development. After 48 h, the rats were killed by cervical dislocation. The ovaries were removed and were punctured with a 26 gauge needle attached to a Hamilton syringe (Hamilton Co., Reno, NV, USA). The ovary was gently replaced in the peritoneum. The fat area was rinsed with ethanol. An approximately 1 cm incision was made through the skin and muscle layers, followed by a 5 mm cut into the peritoneum. The fat pad containing the right ovary and oviduct was gently pulled from the abdominal cavity. Forty microliters of thyropin dissolved in PBS or vehicle were injected into the bursal cavity of the ovary with a 30 gauge needle attached to a Hamilton syringe (Hamilton Co., Reno, NV, USA). The ovary was gently replaced in the presence of or absence of tyrphostin at concentrations of 0.3–100μmol/l with oLH (30 ng/ml), mouse EGF (30 ng/ml), GnRH (30 ng/ml), (Bu)2cAMP (5 mmol/l), or FSK (10−6 mol/l). Fresh tyrphostin was added at 24 h intervals. Tyrphostin was replenished after 24 h because the cells degraded the reagent. At the end of culture, conditioned media were removed and stored at −40°C in the presence of 0.01% Tween-80 until assayed for tPA activity. Assessment of cell viability by trypan blue exclusion after the culture with tyrphostin (0.3–100μmol/l) demonstrated no overt toxicity (data not shown).

Intrabursal injection technique and oocyte retrieval

At 27 days after birth, the female rats were injected intraperitoneally with 20 IU PMSG at 0900 h to stimulate follicle development. After 48 h (0900 h on day 29), the rats were anesthetized with halothane. Fur was shaved from the right dorsolateral flank, and the shaved area was rinsed with ethanol. An approximately 1 cm incision was made through the skin and muscle layers, followed by a 5 mm cut into the peritoneum. The fat pad containing the right ovary and oviduct was gently pulled from the abdominal cavity. Forty microliters of thyropin dissolved in PBS or vehicle were injected into the bursal cavity of the ovary with a 30 gauge needle attached to a Hamilton syringe (Hamilton Co., Reno, NV, USA). The ovary was gently replaced in the
The peritoneal cavity, and the abdominal wall was closed (20). The left ovary received no treatment and served as a control. After the completion of these procedures, the animals were immediately injected intraperitoneally with 10 IU hCG to induce the ovulation. After 24 h, the animals were killed by cervical dislocation. The ovaries and oviducts were removed from each animal and examined with a dissecting microscope. The oocyte–cumulus mass was removed by making a small incision into the tubal wall through which the mass was extruded. Further flushing of the oviduct and the uterus did not reveal the presence of any additional oocytes. The number of oocytes removed from each side was recorded. Statistical analysis was performed by Student’s t-test.

Histological examinations

Treated and untreated ovaries were fixed in Bouin’s solution. The tissue was then dehydrated, embedded in paraffin, and serially sectioned at 4 μm. The sections were mounted on glass slides and stained with hematoxylin and eosin and photographed under a microscope.

Results

Specificity of effect of tyrphostin on tPA activity in rat granulosa cells

Granulosa cells were obtained from PMSG-treated rats and cultured for 48 h in medium alone (control) or in media with mouse EGF (30 ng/ml), or GnRH (30 ng/ml) without or with tyrphostin (30 μmol/l). EGF, which activates tyrosine kinases as an intracellular signaling system, enlarged the lytic area compared with control and tyrphostin reduced the EGF-stimulated lytic area. GnRH, whose intracellular signaling system is the protein kinase C pathway, also enlarged the lytic area, whereas tyrphostin could not affect the GnRH-enlarged lytic area (Fig. 1).

We also studied the effect of tyrphostin on (Bu)2cAMP- or FSK-stimulated tPA activity in cultured rat granulosa cells in order to examine whether tyrphostin affected the protein kinase A pathway. Although (Bu)2cAMP (5 mmol/l) or FSK (10⁻⁶ mol/l) increased tPA activity, 30 μmol/l tyrphostin did not inhibit the (Bu)2cAMP- or FSK-stimulated tPA activity (Fig. 2). These data indicated that tyrphostin specifically inhibited the tyrosine kinase pathway.

Effect of tyrphostin on LH-induced tPA activity

We examined the effect of tyrphostin on oLH-induced tPA activity. Figure 3A shows one representative photographic record of the four separate examinations. oLH markedly enlarged the lytic area compared with control, and tyrphostin (0.3–100 μmol/l) dose-dependently reduced oLH-stimulated tPA activity. Urokinase type plasminogen activator activity was not affected in any treatment groups (data not shown). Figure 3B shows the results of semiquantitative analysis of the four different examinations on tPA activity. Setting the tPA activity in the control group at 1.0, oLH markedly enlarged the lytic area compared with control, and tyrphostin (0.3–100 μmol/l) dose-dependently reduced oLH-stimulated tPA activity. Urokinase type plasminogen activator activity was not affected in any treatment groups (data not shown).
We examined the time course of the effect of tyrphostin on oLH-stimulated tPA activity. oLH stimulated tPA activity by 6 h of culture. The inhibitory effect of tyrphostin on the LH-stimulated tPA activity was found by 6 h of culture and the effect was maintained at 12 h of culture (Fig. 4).

Effect of tyrphostin on ovulation

PMSG-treated immature rats were injected with tyrphostin into the ovarian bursal space. Table 1 shows the number of released oocytes from the treated and untreated ovaries in the different dose groups. Injection of 300 or 3000 μmol/l tyrphostin significantly decreased the number of released oocytes from the treated ovaries compared with that from the contralateral untreated ovaries. PBS alone did not affect the number of released oocytes. The percent inhibition was expressed as the difference in the number of released oocytes between the treated and untreated ovaries divided by the total number of released oocytes from the untreated ovary.

Table 1 Effects of tyrphostin on PMSG–hCG induced ovulation. Results are means ± S.E.M.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>No. of oocytes/ovary (± S.E.M.)</th>
<th>Inhibition (%, ± S.E.M.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Untreated</td>
<td>Treated</td>
</tr>
<tr>
<td>PBS</td>
<td>25.3 ± 3.7</td>
<td>23.8 ± 3.6</td>
</tr>
<tr>
<td>Tyrphostin (μmol/l)</td>
<td>30</td>
<td>24.2 ± 3.2</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>22.7 ± 3.5</td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td>28.5 ± 3.1</td>
</tr>
</tbody>
</table>

Forty microliters of PBS or tyrphostin (30–3000 μmol/l) were injected unilaterally into the ovarian bursa (n = 6 rats) at the time of hCG administration. The number of released oocytes from treated and untreated control ovaries are shown separately. Percent inhibitions are also shown. Percent inhibition is expressed as the difference in the number of oocytes released between the treated and untreated ovaries divided by the total number of oocytes on the untreated side. * P < 0.01, when compared with untreated ovary. ** P < 0.01, when compared with PBS-injected rats.
Administration of 300 or 3000 μmol/l tyrphostin significantly inhibited ovulation compared with the PBS-treated group.

Histological observations

Intrabursal injections did not cause any obvious pathological changes in the ovaries, such as vascular thrombosis, infarcts, or hemorrhage. The ovaries treated with PBS contained many corpora lutea and a few large preovulatory follicles (Fig. 5A). In contrast, the ovaries treated with 3000 μmol/l tyrphostin contained a few corpora lutea and many large unruptured follicles (Fig. 5B). In these large unruptured follicles, the oocytes with normal meiotic maturation were entrapped within the follicular antrum. Figure 5C shows one representative luteinized unruptured follicle in a tyrphostin (3000 μmol/l)-treated ovary. The oocytes were entrapped in the antrum, the basal lamina separating the granulosa cells and the theca interna was disintegrated and there were no signs of disintegration of the tunica albuginea.

Discussion

In the present study, we investigated a possible involvement of tyrosine kinase phosphorylation in the ovulatory process in vitro and in vivo. Although quercetin and genistein block not only a variety of tyrosine kinases but also other protein kinases, including cAMP-dependent protein kinases and protein kinase C, tyrphostin seems to be a selective and nontoxic protein tyrosine kinase inhibitor which competes for the substrate site of protein tyrosine kinases and not with ATP (21, 22). Therefore, we used tyrphostin as a tyrosine kinase inhibitor. In cultured rat granulosa cells, tyrphostin could inhibit EGF-stimulated tPA activity, whereas tyrphostin did not have any effects on cAMP-, FSK-, or GnRH-stimulated tPA activity. Taking these findings together, tyrphostin can selectively inhibit tyrosine kinases in rat granulosa cells.

In this study, tyrphostin inhibited LH-stimulated tPA activity in cultured rat granulosa cells in a dose-dependent manner. It is indicated that tyrosine kinase phosphorylation might be involved in LH action.
for tPA activity induction in the granulosa cells. On the other hand, it is suggested that in the granulosa cells, the tyrosine kinase activation by LH may be an indirect effect via some factors such as EGF and insulin-like growth factor-I (IGF-I) whose intracellular signaling system is tyrosine kinase phosphorylation. According to LaPolt et al. (23), EGF stimulates tPA activity in rat granulosa cells but IGF-I has no effect on tPA activity. Feng et al. (24) reported that LH/hCG reduced EGF-binding sites in rat granulosa cells. In the present time-course study, both the stimulatory effect of LH on tPA activity and the inhibitory effect of tyrophostin on LH-stimulated tPA activity occurred at the same time and there was no time lag with these effects. Therefore, the stimulation of tPA activity by LH does not seem to be an indirect effect mediated via EGF and IGF-I. Davis (25) has demonstrated that the intracellular C-terminal domain and the three putative intracellular loops of the transmembrane domain of the LH/CG receptor contain numerous motifs possessing serine, threonine, and tyrosine residues, suggesting the potential role for modulation of receptor function by phosphorylation, serine–threonine protein kinases, and tyrosine kinases. Therefore, it is suggested that the effect of tyrophostin on LH-stimulated tPA activity might be partly due to the inhibition of LH-involved tyrosine kinase phosphorylation.

According to the previous studies on ovulation, tumor-promoting phorbol ester (26) and GnRH (27) can induce ovulation without gonadotropins. Some authors have reported that oocyte maturation and gonadotropin-induced follicular rupture may be mediated via a cAMP-dependent pathway (28, 29). On the other hand, Hosoi et al. (30) have reported that cAMP fails to induce ovulation in the absence of gonadotropins. Moreover, a tyrosine kinase inhibitor blocks LH induction of luteinization and of prostaglandin endoperoxide synthase-2 expression in granulosa cells, which is one of the markers of ovulation (10, 31). These data suggest a primary role for cAMP, a supportive but essential role for protein kinase C, and an obligatory role for tyrosine kinases acting in the cascade of luteinization and ovulation. Together with these findings, multiple signal transduction systems seem to be involved in the ovulatory process. To examine the involvement of a tyrosine kinase activation in hCG-induced ovulation in vivo, tyrophostin was intrabursally injected into PMSG-treated rats. Tyrophostin suppressed hCG-induced ovulation in a dose-related manner, suggesting that tyrosine kinase phosphorylation may be involved in the ovulatory process.

Since the actual ovarian concentration of tyrophostin is unknown, it is difficult to relate concentration of tyrophostin in the in vivo studies to those in vitro. In the histological examination, ovaries treated with tyrophostin (3000 µmol/l) did not have any pathological changes such as vascular thrombosis, infarcts, or hemorrhage. Therefore, the effect of tyrophostin does not seem to be pharmacological within the doses used in this study. Although tyrophostin-treated ovaries had healthy follicles and a few normally ruptured follicles and corpora lutea, they also had many large unruptured follicles with normally maturing oocytes histologically. In some of these unruptured follicles, the basal lamina separating the granulosa cells and the theca interna were disintegrated, while the tunica albuginea was intact. These findings are consistent with the reports of Tsafriri et al. (32) that disintegration of the apical theca externa and tunica albuginea was dependent on tPA. It is suggested that tyrophostin may not affect folliculogenesis and oocyte maturation and may inhibit the dissolution of theca externa and tunica albuginea. On the other hand, Davis and Richards (10) have shown that in the presence of an ovulatory dose of LH, the luteinization of the granulosa cells was blocked by a tyrosine kinase inhibitor, AG18. In our in vivo study, even the ovaries treated with high dose of tyrophostin had luteinated granulosa cells morphologically. Although the reason for this discrepancy is unknown, some factors other than tyrosine kinases may also be involved in luteinization mechanism.

In summary, the results of our in vitro and in vivo studies suggest that the suppressive effect of tyrophostin on hCG-induced ovulation might be partly due to the inhibition of tPA activity in the granulosa cells via the block of tyrosine kinase phosphorylations. In the ovulatory process, gonadotropin action might be mediated not only by a cAMP-dependent pathway and protein kinase C activation but also by tyrosine kinase activation. The mechanism of gonadotropin-related tyrosine kinase activation in the ovulatory process is not yet clear and further studies will be required.

Acknowledgements
We thank the National Hormone and Pituitary Distribution Program for oLH.

References

