Lipoprotein(a) and growth hormone: is the puzzle solved?

Vincent Mooser and Helen H Hobbs

Department of Internal Medicine, CHUV University Hospital, Lausanne, Switzerland and 1Departments of Molecular Genetics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA

Correspondence should be addressed to V Mooser, Department of Internal Medicine, CHUV University Hospital, BH-19/135, 1011 CHUV-Lausanne, Switzerland

Recombinant human growth hormone (rhGH) is now used routinely in the treatment of congenital and acquired GH deficiency (GHD). Additional indications for long-term administration of rhGH such as osteoporosis and aging have been proposed, but concerns regarding the safety of such prolonged courses of rhGH have been raised. Administration of rhGH is associated with glucose intolerance, higher plasma insulin concentrations and fluid retention. To add to these potential problems is the finding that rhGH may increase plasma concentrations of the atherogenic lipoprotein(a) (Lp(a)) particle (1, 2).

In Caucasians, increased plasma concentrations of Lp(a) are associated with an increased risk of cardiovascular disease (3), but the mechanism by which Lp(a) is atherogenic has not been fully elucidated. Lp(a) is present only in hedgehogs, great apes and humans (4). In humans, plasma concentrations of Lp(a) vary over a 1000-fold range between individuals. Plasma Lp(a) concentrations are primarily determined by sequences at or close to the gene encoding apolipoprotein(a) (apo(a)), a highly polymorphic glycoprotein that is covalently attached to apolipoprotein B-100 (apoB-100) of low-density lipoprotein (LDL) in Lp(a) (5). apo(a) contains variable numbers of a tandemly repeated ~114 amino acid motif called kringle-4. Overall, there is an inverse relationship between the number of kringle-4 repeats encoded by the apo(a) gene and the associated plasma Lp(a) concentration (6, 7).

Only a restricted number of physiological, pharmacological or environmental factors influence plasma Lp(a) concentrations (8); GH is one of these factors. Over the past 5 years, more than 20 studies, including six placebo-controlled double-blind studies, have examined the effect of the administration of rhGH on plasma Lp(a) concentrations. Most studies show that rhGH administration is associated with a 110–200% increase in plasma Lp(a) concentrations, but in two studies, plasma Lp(a) concentrations remained unchanged after 12 months of rhGH therapy (9, 10). Both of these studies were performed in Japanese children, which may reflect inter-ethnic differences in the effect of rhGH on plasma Lp(a) concentrations.

In this issue of *European Journal of Endocrinology*, Nolte et al. (11) report the effect of rhGH administration on plasma Lp(a) concentrations in a randomised, placebo-controlled, double-blind 12-month study involving 32 adults with GHD. The authors found that rhGH administration induced an ~140% increase in plasma Lp(a) concentrations and an ~14% decrease in LDL-cholesterol concentrations. This well-designed and well-executed study demonstrates once again that administration of rhGH to GHD adults is associated with a significant increase in plasma Lp(a) concentrations. Should we, as clinicians, be concerned about the Lp(a)-increasing effect of rhGH? The answer to this question is not as straightforward as one might suppose. The increase in plasma Lp(a) concentrations associated with rhGH substitution in GHD patients is modest, especially in relationship to the wide inter-individual variability in plasma Lp(a) concentrations in the general population. A direct relationship exists between plasma LDL-cholesterol concentrations and the incidence of coronary atherosclerosis. In contrast, the atherogenicity of Lp(a) does not appear to be concentration-dependent over the entire range of plasma Lp(a) concentrations. Lp(a) is associated with a significant risk when plasma Lp(a) concentrations are greater than about 20–30 mg/dl (3). If subjects in the study by Nolte’s group were classified as having low Lp(a) concentrations (i.e. <20 mg/dl) or high Lp(a) concentrations (>20 mg/dl), only two of 32 subjects treated with rhGH moved from the low- to the high-risk category with treatment.

The Lp(a)-increasing effect of rhGH is coupled with a significant reduction in the plasma LDL-cholesterol concentrations (1, 2, 11). GHD patients tend to have higher plasma LDL-cholesterol concentrations than healthy controls and are at a significantly greater risk of developing cardiovascular events (12), despite their lower plasma Lp(a) concentrations. The beneficial LDL-decreasing effect of rhGH in GHD individuals may counterbalance the potentially detrimental effect of the increase in plasma Lp(a) concentrations. Moreover, in non-GHD subjects, reduction of plasma LDL-cholesterol concentrations using pharmacological agents that do not affect plasma Lp(a) significantly reduces coronary risk (13). Even in individuals with high plasma concentrations of Lp(a), it appears that decreasing plasma LDL-cholesterol concentrations may obviate the atherogenic effects of a high plasma Lp(a) concentration (14).
Should plasma concentrations of Lp(a) be monitored during administration of rhGH in GHD subjects? It seems reasonable to determine plasma Lp(a) concentrations at baseline, as this will assist in the characterization of the cardiovascular risk-factor profile of the subject. However, as there is no evidence suggesting that the modest changes in plasma Lp(a) concentrations during rhGH therapy are grounds for adjusting the doses or discontinuing rhGH, plasma Lp(a) concentrations need not be monitored in GHD subjects. Additional long-term prospective studies are required to determine if the Lp(a)-increasing effect of rhGH treatment has any effect on the development of atherosclerosis in GHD, or in the much larger population of potential non-GHD subjects.

The mechanism by which rhGH administration increases plasma Lp(a) concentrations and yet decreases plasma concentrations of LDL-cholesterol is not understood. The Lp(a)-increasing effect of rhGH does not seem to be mediated by insulin-like growth factor-I (IGF-I), as IGF-I tends to decrease plasma Lp(a) concentrations, at least during short-term administration (15, 16). Apo(a) is synthesized by the liver, but the cis-regulatory sequences and the transcription factors that control the apo(a) gene expression have not been defined. A significant fraction of the newly synthesized apo(a) protein undergoes endoplasmic reticulum (ER)-associated degradation (A White, personal communication). It appears there is an inverse relationship between the size of the apo(a) glycoprotein and the proportion of apo(a) that is degraded, which may account for the larger molecular weight forms of apo(a) tending to be associated with lower plasma concentrations of Lp(a). After apo(a) is translocated from the ER to the Golgi complex, where additional sugars are added to the protein backbone, the protein is secreted. apo(a) remains bound to the hepatocyte surface and then forms a disulfide linkage with apoB-100 to form Lp(a) (17). The fate of Lp(a) in the circulation is not known. Metabolic turnover studies of Lp(a) before and after rhGH treatment would settle the question as to whether rhGH enhances the synthesis of apo(a) or retards its clearance. GH treatment increases LDL-receptor activity (18) which is likely to be responsible for its LDL-cholesterol decreasing effect. The fact that rhGH administration increases the LDL-receptor activity and yet increases plasma Lp(a) concentrations, provides additional evidence that the LDL-receptor is not the major clearance pathway for Lp(a). Elucidation of the molecular mechanisms by which rhGH increases plasma Lp(a) concentrations may unravel some new targets by which the metabolism of apo(a) could be manipulated.

Finally, the Lp(a)-increasing effect of GH may contribute to inter-ethnic differences in the distribution of plasma Lp(a) concentrations. Median plasma Lp(a) concentrations are two- to threefold higher in individuals of African descent than in either Caucasian or Oriental people (19, 20). Recently, we demonstrated that plasma Lp(a) concentrations are largely determined by the apo(a) gene in African-Americans, just as they are in Caucasians (21), and that plasma Lp(a) concentrations tend to be higher in African-Americans over the entire size spectrum of apo(a) alleles. These data are consistent with the higher plasma concentrations of Lp(a) in African-Americans being due to a common sequence variant in the apo(a) gene or a trans-acting factor that either upregulates the synthesis of Lp(a) or decreases its degradation. We favor the latter hypothesis, and suggest that GH is such a candidate trans-acting factor. Recently, it has been reported that individuals of African descent have higher plasma concentrations of GH (22), but whether this, or other, inter-ethnic differences are responsible for the high plasma Lp(a) concentrations in Africans remains to be established.

Acknowledgements

We thank Ann White and Gérard Waebcr for their careful reading of the manuscript.

References

5 Boerwinkle E, Jeffert CC, Lin J, Lackner C, Chiesa G & Hobbs HH. Apolipoprotein(a) gene accounts for greater than 90% of the variation in plasma lipoprotein(a) concentrations. Journal of Clinical Investigation 1992 90 52–60.
therapy on lipoprotein(a) and other lipid parameters in adults with acquired GH deficiency: results of a double-blind and placebo-controlled trial. European Journal of Endocrinology 1997 137 459–466.
20 Gaw A, Boerwinkle E, Cohen JC & Hobbs HH. Comparative analysis of the apo(a) gene, apo(a) glycoprotein and plasma concentrations of Lp(a) in three ethnic groups. Journal of Clinical Investigation 1994 93 2526–2534.

Received 24 July 1997
Accepted 29 July 1997