Oxygenation of 18-hydroxycorticosterone as the final reaction for aldosterone biosynthesis

Itaru Kojima¹, Etsuro Ogata¹, Hiroshi Inano²
and Bun-ichi Tamaoki²

The Fourth Department of Internal Medicine¹, University of Tokyo,
School of Medicine, Mejiro-dai, Bunkyo-ku, Tokyo 112 and
National Institute of Radiological Sciences², Anagawa-4-chome, Chiba-shi 260, Japan

Abstract. Incubation of 18-hydroxycorticosterone with the sonicated mitochondrial preparation of bovine adrenal glomerulosa tissue leads to the production of aldosterone, as measured by radioimmunoassay. The in vitro production of aldosterone from 18-hydroxycorticosterone requires both molecular oxygen and NADPH, and is inhibited by carbon monoxide. Cytochrome P-450 inhibitors such as metrapone, SU 8000, SU 10603, SKF 525A, amphenone B and spironolactone decrease the biosynthesis of aldosterone from 18-hydroxycorticosterone. These results support the conclusion that the final reaction in aldosterone synthesis from 18-hydroxycorticosterone is catalyzed by an oxygenase, but not by 18-hydroxysteroid dehydrogenase. By the same preparation, the production of [3H]aldosterone but not [3H]18-hydroxycorticosterone from [1,2-3H]corticosterone is decreased in a dose-dependent manner by addition of non-radioactive 18-hydroxycorticosterone.

For synthesis of aldosterone from corticosterone and/or 18-hydroxycorticosterone, an oxygenation and involvement of cytochrome P-450 have been proposed (Marusic et al. 1973; Rapp & Dahl 1976; Kojima et al. 1982; Aupetit et al. 1979, 1983). On the other hand, it has been widely accepted that the final step in aldosterone biosynthesis from 18-hydroxycorticosterone is catalyzed by the so-called 18-hydroxysteroid dehydrogenase (for example, Fraser & Lantos (1978)). In this paper, we examined formation of aldosterone from 18-hydroxycorticosterone by radioimmunoassay, in order to characterize the enzyme relevant to the final reaction by requirement of molecular oxygen and co-factor, and addition of several inhibitors. Furthermore, we confirmed 18-hydroxycorticosterone as an obligatory intermediate in the course of radioactive aldosterone production from [3H]corticosterone by a trapping experiment.

Materials and Methods

Preparation of adrenal mitochondrial fraction and incubation

The mitochondrial fraction of zona glomerulosa tissue of bovine adrenal glands and its sonicated preparation were prepared as previously described (Kojima et al. 1982). Protein concentration was determined with a Bio-Rad protein assay kit, using bovine γ-globulin as the standard.

The incubations were performed utilizing one of two techniques. First, in radioimmunoassay experiments, the incubation mixture consisted of 18-hydroxycorticosterone or corticosterone (Makor Chem. Israel, 100 nmol each per flask), the mitochondrial preparation (40 mg protein per flask) and co-factors (final concentration 240 μM) dissolved in 0.33 M sucrose solution buffered with 10 mM Tris-HCl at pH 7.4. Second, in radiotracer experiment, the incubation mixture consisted of [1,2,3H]corticosterone (Amersham, UK, 5 pmol, 20000 dpm per flask), 18-hydroxycorticosterone (0 - 1 x 10⁻⁴ M), the mitochondrial preparation (40 mg protein per flask) and NADPH (final concentration 240 μM) dissolved in...
the 0.33 M sucrose solution buffered with 10 mM Tris-
HCl at pH 7.4.

In each technique, the steroids were dissolved in etha-
nol and then transferred to the incubation flasks. Two
drops of propylene glycol were added per flask, and then
the ethanol was removed under reduced pressure. In
both radioimmunoassay and radiotracer experiments,
the final volume of the incubation mixture was adjusted
to 5 ml. The mixture was incubated at 37°C for 60 min
in an aerobic atmosphere, unless otherwise stated. Im-
mediately following incubation, the reaction was stopped
by addition of methylenechloride (15 ml) and the mixture
was vigorously shaken to extract steroids.

Radioimmunoassay of aldosterone and
18-hydroxycorticosterone
Immunoreactive 18-hydroxyvorticosterone was deter-
dined by the method of Martin et al. (1975). Immuno-
reactive aldosterone was determined by the method of
Ito et al. (1972). The assay performance characteristics
demonstrated inter-assay variations of 12.8% for 18-
hydroxyvorticosterone and 10.0% for aldosterone. The
amount of 18-hydroxyvorticosterone and aldosterone in
the extract from the mixture which was incubated with-
out the substrates was measured as the control. The net
production of each steroid was calculated by subtracting
the content of the steroids in the control incubation
mixture from the steroid content obtained after incuba-
tion with the substrates. The results in the tables rep-
resent mean values of triplicates. As the findings of re-
petted experiments under the same design of experi-
ments were consistent, representative results for each
type of study are given in this paper.

Quantitation of aldosterone and 18-hydroxvorticosterone
in radiotracer experiment
Non-radioactive 18-hydroxyvorticosterone and aldoste-
one (100 nmol each) were added to the extract as the
carriers. Separation and quantitation of aldosterone and
18-hydroxyvorticosterone were carried out as previously
reported (Kojima et al. 1982).

Results

Requirement of co-factor for synthesis of aldosterone
by intact and sonicated mitochondrial preparations
under an aerobic condition
NADP+, NADPH or malate was added to the
mitochondrial preparation with 18-hydroxyvorti-
costerone prior to incubation. After the incubation,
the amount of aldosterone was measured by radio-
immunoassay. As shown in Table 1, using intact
mitochondria, malate was effective in stimulating

<table>
<thead>
<tr>
<th>Mitochondria</th>
<th>Co-factor or malate (concentration)</th>
<th>Production of aldosterone (fmol/mg protein for 60 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intact</td>
<td>Malate (10 mM)</td>
<td>89.4 (100)*</td>
</tr>
<tr>
<td></td>
<td>NADPH (240 µM)</td>
<td>9.7 (11)</td>
</tr>
<tr>
<td></td>
<td>NADP⁺ (240 µM)</td>
<td>9.8 (11)</td>
</tr>
<tr>
<td>Sonicated</td>
<td>NADPH (240 µM)</td>
<td>96.5 (100)**</td>
</tr>
<tr>
<td></td>
<td>NADP⁺ (240 µM)</td>
<td>10.6 (11)</td>
</tr>
</tbody>
</table>

* Relative ratio (%) to the yield obtained with malate.
** Relative ratio (%) to the yield obtained with NADPH in case of sonicated mitochondria.

Effects of co-factors and malate upon production of aldosterone by intact and sonicated mitochondria pre-
parations under an aerobic condition.

the formation of aldosterone from 18-hydroxyvor-
ticosterone, but either NADPH or NADP⁺ alone
was ineffective. When the mitochondria were soni-
cated, NADPH but not NADP⁺ was as effective as
malate in stimulating the aldosterone synthesis.

Influence of incubation gas phase
upon formation of aldosterone
from 18-hydroxyvorticosterone and corticosterone
To examine possible involvement of cytochrome
P-450 in aldosterone biosynthesis, corticosterone
and 18-hydroxyvorticosterone were respectively
incubated with the sonicated mitochondrial frac-
tion in the presence of NADPH under an oxygen-
enriched, or carbon monoxide-replaced, atmos-
phere. When aldosterone was measured by radio-
immunoassay, production of aldosterone from 18-
hydroxyvorticosterone was severely reduced in an
atmosphere of 100% carbon monoxide (Table 2). When
oxygen was introduced into the carbon monoxide at 10% (v/v) as the final concentration, production of aldosterone was somewhat stimu-
lated. In contrast, when the carbon monoxide was
replaced with argon in the same concentration of oxygen (10%, v/v), production of aldosterone was markedly enhanced. Similarly, production of 18-hydroxyvorticosterone as well as aldosterone from corticosterone was inhibited by 100% carbon
monoxide, but enhanced by the molecular oxygen
(Table 2).
Table 2.
Effects of incubation atmosphere upon production of aldosterone and 18-hydroxycorticosterone in the presence of NADPH.

<table>
<thead>
<tr>
<th>Gas phase (%, v/v)</th>
<th>18-hydroxycorticosterone (substrate)</th>
<th>Corticosterone (substrate)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aldosterone</td>
<td>18-hydroxycorticosterone</td>
</tr>
<tr>
<td>O₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 90 0</td>
<td>35.1* (36)**</td>
<td>120.6* (43)**</td>
</tr>
<tr>
<td>10 0 90</td>
<td>98.9 (100)</td>
<td>282.4 (100)</td>
</tr>
<tr>
<td>0 100 0</td>
<td>20.7 (21)</td>
<td>108.2 (38)</td>
</tr>
</tbody>
</table>

* fmol/mg protein for 60 min.
** Relative ratio (%) to the yield of steroids obtained in the atmosphere of O₂ and Ar (10:90).

Effect of cytochrome P-450 inhibitors on production of aldosterone and 18-hydroxycorticosterone

The effects of known inhibitors of cytochrome P-450 were demonstrated upon formation of aldosterone and 18-hydroxycorticosterone from their respective precursors, as shown in Table 3. These compounds markedly inhibited aldosterone production from 18-hydroxycorticosterone as well as the formation of aldosterone and 18-hydroxycorticosterone from corticosterone.

Table 3.
Influence of cytochrome P-450 inhibitors upon production of aldosterone and 18-hydroxycorticosterone.

<table>
<thead>
<tr>
<th>Inhibitor (5 mM)</th>
<th>Corticosterone (substrate)</th>
<th>18-hydroxycorticosterone (substrate)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18-hydroxycorticosterone</td>
<td>Aldosterone</td>
</tr>
<tr>
<td>None</td>
<td>340.0* (100)**</td>
<td>208.6* (100)**</td>
</tr>
<tr>
<td>SU 4885</td>
<td>134.2 (39)</td>
<td>63.6 (31)</td>
</tr>
<tr>
<td>SU 8000</td>
<td>108.9 (32)</td>
<td>54.2 (26)</td>
</tr>
<tr>
<td>SU 10603</td>
<td>102.4 (30)</td>
<td>39.6 (19)</td>
</tr>
<tr>
<td>SKF 525A</td>
<td>190.6 (56)</td>
<td>52.1 (25)</td>
</tr>
<tr>
<td>Amphenone B</td>
<td>208.8 (61)</td>
<td>79.3 (38)</td>
</tr>
<tr>
<td>Spironolactone</td>
<td>98.0 (29)</td>
<td>29.2 (14)</td>
</tr>
</tbody>
</table>

* fmol/mg protein for 60 min.
** Relative ratio (%) to the yield of steroids obtained without inhibitors.

Production of ³H-labelled 18-hydroxycorticosterone and aldosterone from [¹,²-³H]corticosterone in the presence of non-radioactive 18-hydroxycorticosterone

The sonicated mitochondrial preparation was capable of producing both ³H-labelled 18-hydroxycorticosterone and aldosterone from [¹,²-³H]corticosterone. The aldosterone was finally identified by constant specific activities of the crystal obtained through the repeated crystallization: 741, 706, 800, 763 DPM/mg. As shown in Table 4, production of
tritiated aldosterone from [1,2-3H]corticosterone was decreased by addition of non-radioactive 18-hydroxyxycorticosterone in a dose-dependent manner. The result indicates that 18-hydroxyxycorticosterone is an intermediate for aldosterone synthesis. On the other hand, formation of radioactive 18-hydroxyxycorticosterone was independent of the amounts of non-radioactive 18-hydroxyxycorticosterone.

Discussion

By the present experiments, in which the absolute amount of immunoreactive aldosterone produced from 18-hydroxyxycorticosterone was measured by radioimmunoassay, the enzyme relevant to the final step of aldosterone synthesis required molecular oxygen and NADPH, and was susceptible to carbon monoxide. These results are in agreement with that of our previous work, in which production of [3H]aldosterone from [1,2-3H]18-hydroxyxycorticosterone was studied (Kojima et al. 1982). On the basis of these findings, the possibility of involvement of ‘18-hydroxysteroid dehydrogenase’ in aldosterone synthesis, as previously postulated, can be excluded. The synthesis of aldosterone from 18-hydroxyxycorticosterone was suggested to involve cytochrome P-450 as an active constituent of the hydroxylation reaction. SU-compounds, SKF 525A, amphenone B and spironolactone inhibit enzyme reactions involving cytochrome P-450 for androgen biosynthesis (Inano et al. 1976), but do not affect activity of a hydroxysteroid dehydrogenase. In the present experiment, these compounds inhibited aldosterone synthesis from 18-hydroxyxycorticosterone as quantitated by radioimmunoassays (Table 3). This supports our contention that aldosterone is produced from 18-hydroxyxycorticosterone by cytochrome P-450-linked enzyme system(s), being consistent with the previous data with spironolactone and others (Aupetit et al. 1979, Kojima et al. 1982).

Because of higher yield of aldosterone from corticosterone than from 18-hydroxyxycorticosterone (Müller 1980), 18-hydroxyxycorticosterone has been doubted as the actual intermediate. In the present experiment (Table 4), however, the formation of radioactive aldosterone derived from 1,2-3H-labelled corticosterone was significantly decreased in the presence of non-radioactive 18-hydroxyxycorticosterone in a dose-dependent manner. The radioactive 18-hydroxyxycorticosterone synthesized de novo seems to have effectively diluted with exogenous non-radioactive 18-hydroxyxycorticosterone. The results indicate that 18-hydroxyxycorticosterone is an intermediate between corticosterone and aldosterone, in agreement with the previous findings (Greengard et al. 1967; Kojima et al. 1982). In this regard, 18-hydroxyxycorticosterone was converted to aldosterone by a reconstituted system involving cytochrome P-450 purified from bovine adrenal mitochondria (Wada et al. 1984).

In a case of [14C]oestrone synthesis from [14C]androstenedione by human placental microsomes, production of radioactive 19-hydroxyandrostenedione, 19-oxo(or 19,19-dihydroxy)androstenedione and oestrone was competitively and almost equally inhibited by the addition of non-radioactive of 19-oxoandrostenedione, however, production of radioactive oestrone was more severely inhibited than that of 19-oxygenated androgens (Fishman & Goto 1981). From these results, it was concluded that the first and second 19-hydroxylations occurred at the same catalytic site of the aromatase, but the C-10 – C-19 cleavage occurred at the other site of the enzyme. Similarly from the

<table>
<thead>
<tr>
<th>Concentration of added non-radioactive 18-hydroxyxycorticosterone (M)</th>
<th>Production of [3H]18-hydroxyxycorticosterone</th>
<th>[3H]aldosterone</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1728* (100)**</td>
<td>1048* (100)**</td>
</tr>
<tr>
<td>1 x 10^-10</td>
<td>1528 (86)</td>
<td>660 (63)</td>
</tr>
<tr>
<td>1 x 10^-7</td>
<td>1812 (102)</td>
<td>260 (25)</td>
</tr>
<tr>
<td>1 x 10^-4</td>
<td>1640 (93)</td>
<td>112 (11)</td>
</tr>
</tbody>
</table>

* DPM of radioactive steroid/40 mg protein for 60 min.
** Relative ratio (%) to the yield of steroids obtained in the absence of non-radioactive 18-hydroxyxycorticosterone.
results of the present tracer experiment (Table 4), the 18-hydroxylase which is involved in the conversion of corticosterone to 18-hydroxycorticosterone seems different from the enzyme in further 18-hydroxylation of 18-hydroxycorticosterone directed to aldosterone synthesis, because production of radioactive 18-hydroxycorticosterone from [3H]corticosterone was not influenced by the addition of non-radioactive 18-hydroxycorticosterone. Therefore, the first and second 18-hydroxylases are postulated as mutually distinct from the present results, and from the cases of genetic disorder of man (Ulick 1973, 1976) and rat (Rapp & Dahl 1976). The first 18-hydroxylase together with 11β-hydroxylating activity may exist extensively in zona fasciculata, reticularis and glomerulosa, and is induced by ACTH (Kraemer et al. 1983). The cytochrome P-450 involved in the enzyme system is responsible for both 11β- and 18-hydroxylations (Watanuki et al. 1977; Sato et al. 1978). On the other hand, the second 18-hydroxylase, which is localized in zona glomerulosa is inhibited by a prolonged administration of ACTH (Aguilera et al. 1981), but stimulated by the renin-angiotensin system (McKenna et al. 1978).

On the basis of our previous and present results, we propose that the major pathway of aldosterone biosynthesis is via 18-hydroxycorticosterone and its conversion by a cytochrome P-450-linked enzyme system (an oxygenase) to 18,18-dihydroxycorticosterone which is finally transformed to aldosterone by non-enzymatic dehydration (Fig. 1).

Fig. 1.

Biosynthetic pathway of aldosterone from corticosterone and related enzymes, cofactor and atmosphere.

Acknowledgments

We wish to express our deep gratitude to Dr. Howard Rasmussen and Dr. Howard Lippes, Division of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, for their kind reading and correction of this manuscript, and to Dr. A. Kambeegawa, Teikoku Hormone Pharm. Co., Kawasaki-shi and presently Teikyo University Medical School for his kind offer of antibody to aldosterone. This work was supported in part by the grants from the Ministry of Education, Science and Culture, Japan.

References

Received on June 1st, 1984.