Browse

You are looking at 71 - 80 of 19,918 items

Open access

Francesca Urbano, Antonino Di Pino, Roberto Scicali, Agnese Filippello, Stefania Di Mauro, Alessandra Scamporrino, Simona Marchisello, Agata Maria Rabuazzo, Francesco Purrello and Salvatore Piro

Objective

Statin therapy has been linked to an increased risk of type 2 diabetes in high-risk populations; however, the pathophysiology of this association remains to be clarified. We investigated glucagon suppression and its relationship with insulin resistance in prediabetic subjects undergoing atorvastatin therapy; in addition, we studied molecular insulin signaling in pancreatic α-cells exposed to atorvastatin in vitro.

Design and methods

Fifty subjects with prediabetes were divided into two groups based on atorvastatin therapy. All subjects underwent an oral glucose tolerance test. Early (0–30 min), late (30–120 min) and overall (0–120 min) glucagon suppression were evaluated. Insulin sensitivity was estimated by the insulin sensitivity index (ISI0–120). Insulin signaling pathway and insulin-mediated glucagon suppression were investigated in pancreatic αTC1-6 cells chronically exposed (24 or 48 h) to atorvastatin (100 ng/mL).

Results

Individuals on statin therapy (n = 26) showed a significantly reduced early (0–30 min) (P = 0.003) and overall (0–120 min) (P = 0.01) glucagon suppression compared with controls (n = 24). In multivariate regression analysis, early glucagon suppression (0–30 min) exhibited a significant correlation with statin therapy. Regression analysis showed a significant association between ISI 0-120 and early0-30 (r = 0.33, P < 0.05) and overall0-120 (r = 0.38, P < 0.05) glucagon suppression. Moreover, in αTC1-6 cells atorvastatin treatment affected insulin-mediated glucagon suppression, insulin receptor phosphorylation and IRS-1-AKT pathway signaling.

Conclusions

Prediabetic patients undergoing statin therapy exhibit impaired glucagon suppression associated with lower insulin sensitivity. Our data revealed a new molecular aspect behind the deregulation of insulin sensitivity secondary to statin exposure.

Restricted access

Freja B Kampmann, Anne Cathrine B Thuesen, Line Hjort, Anne A Bjerregaard, Jorge E Chavarro, Jan Frystyk, Mette Bjerre, Inge Tetens, Sjurdur F Olsen, Allan A Vaag, Peter Damm and Louise G Grunnet

Objective

Fetal exposure to gestational diabetes mellitus (GDM) increases the risk of metabolic diseases in the offspring. Leptin, adiponectin, and fibroblast growth factor 21 (FGF21) may play potential roles in the underlying disease mechanisms. We investigated the impact of fetal exposure to GDM on leptin, adiponectin, and FGF21 concentrations and their associations with measures of adiposity and metabolic traits during childhood/adolescence.

Design and methods

The follow-up study included 504 GDM and 540 control offspring aged 9–16 from the Danish National Birth Cohort. Anthropometric measurements, fasting blood samples, puberty status and fat percentages by dual-energy X-ray absorptiometry were examined. Serum concentrations of leptin, adiponectin, and FGF21 were measured by validated immune assays.

Results

GDM offspring had 38% (95% CI: 22–55%) higher leptin, 0.6 mg/L (95% CI: −1.2, −0.04 mg/L) lower adiponectin, and 32% (95% CI: −47%, −12%) lower FGF21 concentrations than control offspring (P < 0.05). After adjustment for confounders including maternal pre-pregnancy BMI, GDM offspring had borderline higher leptin (P = 0.06) and significantly lower FGF21 concentrations (P = 0.006). When accounting for offspring BMI z-score, GDM exposure had no significant independent effect on leptin or adiponectin concentrations, whereas FGF21 was still significant. In univariate analyses, leptin and adiponectin were associated with fasting insulin, HOMA-IR, and adiposity, and FGF21 with total fat percentage.

Conclusions

GDM offspring had higher leptin, lower adiponectin and FGF21 concentrations than control offspring. Elevated leptin and decreased adiponectin concentrations associated with adverse metabolic traits and were most likely driven by higher obesity prevalence among GDM offspring. The functional implications of decreased FGF21 concentrations among GDM offspring need to be further explored.

Restricted access

Abilash Nair, Chellamma Jayakumari, Geena Susan George, Puthiyaveettil Khadar Jabbar, Darvin V Das, S J Jessy and T S Aneesh

Objectives

Injectable tetracosactide hexa-acetate, ACTH 1-24 (Synacthen), is not marketed in many countries including India, whereas Injectable long acting porcine sequence, ACTH 1-39 (Acton Prolongatum®) is easily available and much cheaper. This study aimed to find the diagnostic accuracy of ACTH stimulation test using i.m. Acton Prolongatum® (acton prolongatum stimulation test, APST) in comparison with Synacthen (short synacthen test, SST) for the diagnosis of glucocorticoid insufficiency.

Methods

Subjects with a suspicion of adrenal insufficiency based on clinical features underwent a SST with 250 µg Synacthen followed by APST using 30 units of Acton Prolongatum®. Serum cortisol levels were measured at 60 and 120 min following injection of Acton Prolongatum®. Stimulated peak cortisol of less than 18 µg/dL on SST was considered as adrenal insufficiency.

Results

Forty seven patients with mean age of 36.7 ± 14.4 years were enrolled for the study. Based on SST, twenty (n = 20) persons were classified as having adrenal insufficiency, whereas twenty-seven (n = 27) were found to be normal. Area under the curve of APST (at 120 min) was 0.986 when compared to SST, thus proving its high accuracy. A serum cortisol cut off value of 19.5 µg/dL at 120-min following stimulation with Acton Prolongatum® showed a sensitivity of 100% and specificity of 88%.

Conclusion

ACTH stimulation test using Acton Prolongatum® is an economical and accurate alternative to the short Synacthen test.

Restricted access

Evert F S van Velsen, Elske T Massolt, Hélène Heersema, Boen L R Kam, Tessa M van Ginhoven, W Edward Visser and Robin P Peeters

Objective

Earlier cross-sectional studies showed that patients with differentiated thyroid cancer (DTC) have a significant reduction of quality of life (QoL) compared to controls. However, recent longitudinal studies showed mixed results and had relative short follow-up or lacked knowledge about QoL before initial surgery. Therefore, we initiated a longitudinal study to assess changes of QoL in patients undergoing treatment for DTC.

Methods

We prospectively included patients, aged 18–80 years, who were treated for DTC at a Dutch university hospital. Using questionnaires, QoL was assessed before surgery, just before radioiodine (RAI) therapy, and regularly during follow-up. Repeated measurement analysis was used to assess changes of QoL over time, and we explored the influence of different characteristics on QoL.

Results

Longitudinal QoL assessments were available in 185 patients (mean age 47 years; 71% women). All patients were treated according to the Dutch guidelines with total thyroidectomy followed by RAI (83% after thyroid hormone withdrawal). Median time between baseline and final questionnaire was 31 months, and patients completed a median of three questionnaires. QoL at baseline was lower than that in the general population, developed non-linear over time, was lowest around RAI therapy, and recovered over time. Females, younger patients, and patients with persistent hypoparathyroidism had lower QoL scores.

Conclusions

In a population of DTC patients, QoL before initial therapy is already lower than that in the general population. Thereafter, QoL develops non-linearly over time in general, with the lowest QoL around RAI therapy, while 2 to 3 years later, it approximates baseline values.

Free access

Michael A Nauck and Juris J Meier

GLP-1, a peptide hormone secreted from the gut, stimulating insulin and suppressing glucagon secretion was identified as a parent compound for novel treatments of diabetes, but was degraded (dipeptidyl peptidase-4) and eliminated (mainly by kidneys) too fast (half-life 1–2 min) to be useful as a therapeutic agent. GLP-1 receptor agonist has been used to treat patients with type 2 diabetes since 2007, when exenatide (twice daily) was approved in 2007. Compounds with longer duration of action (once daily, once weekly) and with increasingly better efficacy with respect to glycaemic control and body weight reduction have been developed, and in a recent ADA/EASD consensus statement, were recommended as the first injectable diabetes therapy after failure of oral glucose-lowering medications. Most GLP-1 receptor agonists (lixisenatide q.d., liraglutide q.d., exenatide q.w., dulaglutide q.w., albiglutide q.w., semaglutide q.w., all for s.c. injection, and the first oral preparation, oral semaglutide) have been examined in cardiovascular outcomes studies. Beyond proving their safety in vulnerable patients, most of whom had pre-existing heart disease, liraglutide, semaglutide, albiglutide, and dulaglutide reduced the time to first major adverse cardiovascular events (non-fatal myocardial infarction and stroke, cardiovascular death). Liraglutide, in addition, reduced cardiovascular and all-cause mortality. It is the purpose of the present review to describe clinically important differences, regarding pharmacokinetic behaviour, glucose-lowering potency, effectiveness of reducing body weight and controlling other cardiovascular risk factors, and of the influence of GLP-1 receptor agonist treatment on cardiovascular outcomes in patients either presenting with or without pre-existing cardiovascular disease (atherosclerotic, ischemic or congestive heart failure).

Restricted access

Zoran Erlic, Max Kurlbaum, Timo Deutschbein, Svenja Nölting, Aleksander Prejbisz, Henri Timmers, Susan Richter, Cornelia Prehn, Dirk Weismann, Jerzy Adamski, Andrzej Januszewicz, Martin Reincke, Martin Fassnacht, Mercedes Robledo, Graeme Eisenhofer, Felix Beuschlein and Matthias Kroiss

Objective

Excess catecholamine release by pheochromocytomas and paragangliomas (PPGL) leads to characteristic clinical features and increased morbidity and mortality. The influence of PPGLs on metabolism is ill described but may impact diagnosis and management. The objective of this study was to systematically and quantitatively study PPGL-induced metabolic changes at a systems level.

Design

Targeted metabolomics by liquid chromatography-tandem mass spectrometry of plasma specimens in a clinically well-characterized prospective cohort study.

Methods

Analyses of metabolic profiles of plasma specimens from 56 prospectively enrolled and clinically well-characterized patients (23 males, 33 females) with catecholamine-producing PPGL before and after surgery, as well as measurement of 24-h urinary catecholamine using LC-MS/MS.

Results

From 127 analyzed metabolites, 15 were identified with significant changes before and after surgery: five amino acids/biogenic amines (creatinine, histidine, ornithine, sarcosine, tyrosine) and one glycerophospholipid (PCaeC34:2) with increased concentrations and six glycerophospholipids (PCaaC38:1, PCaaC42:0, PCaeC40:2, PCaeC42:5, PCaeC44:5, PCaeC44:6), two sphingomyelins (SMC24:1, SMC26:1) and hexose with decreased levels after surgery. Patients with a noradrenergic tumor phenotype had more pronounced alterations compared to those with an adrenergic tumor phenotype. Weak, but significant correlations for 8 of these 15 metabolites with total urine catecholamine levels were identified.

Conclusions

This first large prospective metabolomics analysis of PPGL patients demonstrates broad metabolic consequences of catecholamine excess. Robust impact on lipid and amino acid metabolism may contribute to increased morbidity of PPGL patients.

Restricted access

Joseph D Maxwell, Howard H Carter, Ylva Hellsten, Gemma D Miller, Victoria S Sprung, Daniel J Cuthbertson, Dick H J Thijssen and Helen Jones

Background

Remote ischaemic preconditioning (rIPC) may improve cardiac/cerebrovascular outcomes of ischaemic events. Ischaemic damage caused by cardiovascular/cerebrovascular disease are primary causes of mortality in type 2 diabetes mellitus (T2DM). Due to the positive effects from a bout of rIPC within the vasculature, we explored if daily rIPC could improve endothelial and cerebrovascular function. The aim of this pilot study was to obtain estimates for the change in conduit artery and cerebrovascular function following a 7-day rIPC intervention.

Methods

Twenty-one patients with T2DM were randomly allocated to either 7-day daily upper-arm rIPC (4 × 5 min 220 mmHg, interspaced by 5-min reperfusion) or control. We examined peripheral endothelial function using flow mediated dilation (FMD) before and after ischemia-reperfusion injury (IRI, 20 min forearm ischaemic-20 min reperfusion) and cerebrovascular function, assessed by dynamic cerebral autoregulation (dCA) at three time points; pre, post and 8 days post intervention.

Results

For exploratory purposes, we performed statistical analysis on our primary comparison (pre-to-post) to provide an estimate of the change in the primary and secondary outcome variables. Using pre-intervention data as a covariate, the change from pre-post in FMD was 1.3% (95% CI: 0.69 to 3.80; P = 0.09) and 0.23 %cm/s %/mmHg mmHg/% (−0.12, 0.59; P = 0.18) in dCA normalised gain with rIPC versus control. Based upon this, a sample size of 20 and 50 for FMD and normalised gain, respectively, in each group would provide 90% power to detect statistically significant (P < 0.05) between-group difference in a randomised controlled trial.

Conclusion

We provide estimates of sample size for a randomised control trial exploring the impact of daily rIPC for 7 days on peripheral endothelial and cerebrovascular function. The directional changes outline from our pilot study suggest peripheral endothelial function can be enhanced by daily rIPC in patients with T2DM.

Free access

Silvia Vandeva, Adrian F Daly, Patrick Petrossians, Sabina Zacharieva and Albert Beckers

Pituitary adenomas are frequently occurring neoplasms that produce clinically significant disease in 1:1000 of the general population. The pathogenesis of pituitary tumors is a matter of interest as it could help to improve diagnosis and treatment. Until recently, however, disruptions in relatively few genes were known to predispose to pituitary tumor formation. In the last decade, several more genes and pathways have been described. Germline pathogenic variants in the aryl hydrocarbon receptor-interacting protein (AIP) gene were found in familial or sporadic pituitary adenomas, usually with an aggressive clinical course. Cyclin-dependent kinase inhibitor 1B (CDKN1B) pathogenic variants lead to multiple endocrine neoplasia type 4 (MEN4) syndrome, in which pituitary adenomas can occur. Xq26.3 duplications involving the gene GPR101 cause X-linked acrogigantism. The pheochomocytoma and/or paraganglioma with pituitary adenoma association (3PAs) syndrome suggests that pathogenic variants in the genes of the succinate dehydrogenase complex or MYC-associated factor X (MAX) might be involved in pituitary tumorigenesis. New recurrent somatic alterations were also discovered in pituitary adenomas, such as, ubiquitin-specific protease 8 (USP8) and USP48 pathogenic variants in corticotropinomas. The aim of the present review is to provide an overview of the genetic pathophysiology of pituitary adenomas and their clinical relevance.