DXA-derived advanced hip analysis and the trabecular bone score in end-stage kidney disease secondary to type 1 diabetes

in European Journal of Endocrinology
Authors:
Jasna AleksovaHudson Institute for Medical Research
Department of Medicine, Monash University
Department of Endocrinology, Monash Health

Search for other papers by Jasna Aleksova in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0443-7165
,
Peter R EbelingDepartment of Medicine, Monash University
Department of Endocrinology, Monash Health

Search for other papers by Peter R Ebeling in
Current site
Google Scholar
PubMed
Close
,
Frances MilatHudson Institute for Medical Research
Department of Medicine, Monash University
Department of Endocrinology, Monash Health

Search for other papers by Frances Milat in
Current site
Google Scholar
PubMed
Close
, and
Grahame J ElderDepartment of Renal Medicine, Westmead Hospital
Skeletal Biology Program, Garvan Institute of Medical Research

Search for other papers by Grahame J Elder in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5685-4636
View More View Less

Correspondence should be addressed to G J Elder; Email: g.elder@garvan.org.au
Restricted access

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

Objective

Patients with end-stage kidney disease (ESKD) caused by type 1 diabetes mellitus (T1DM) have a heightened fracture risk. Bone mineral density (BMD) may predict fracture less accurately in ESKD than in patients with chronic kidney disease (CKD) stages 1–3b or the general population. Alternate, readily available imaging modalities are needed to improve ESKD fracture risk assessment. This study aimed to assess dual-energy X-ray absorptiometry (DXA)-derived BMD, the trabecular bone score (TBS) and advanced hip analysis parameters in patients with ESKD due to T1DM and to compare their results with those of patients with ESKD from other causes.

Methods

We compared the DXA-derived TBS, hip cortical thickness (CT) and femoral neck (FN) buckling ratio (BR), an index of FN stability, of patients with T1DM and ESKD undergoing simultaneous pancreas kidney transplantation, patients with ESKD from other causes receiving kidney transplants and population reference ranges.

Results

Of 227 patients with ESKD, 28% had T1DM and 65% were male. Compared with other ESKD patients, patients with T1DM were younger (42 ± 7.7 vs 51 ± 13.8 years), had shorter dialysis duration (24.4 ± 21 vs 42.6 ± 40 months), had higher HbA1c (7.9 ± 1.57% vs 5.4 ± 0.95%) and had lower BMI (25 ± 6 vs 27 ± 5 kg/m2). They had lower spine, hip and UD radius BMD Z-scores (all P ≤ 0.001), TBS (1.33 ± 0.12 vs 1.36 ± 0.12; P = 0.05), CT at the FN (P = 0.03), calcar (P = 0.006) and shaft (P < 0.001) and higher BR (10.1±7.1 vs 7.7±4; P = 0.006). All ESKD parameters were lower than population-based reference ranges (P <  0.001). Adjusting for age, sex, dialysis vintage and weight, prevalent vertebral fractures in patients with T1DM and ESKD were associated with higher BR (odds ratio (OR): 3.27 (95% CI: 1.19–8.92), P = 0.002) and lower FN CT (OR: 3.70 (95% CI: 1.13–12.50)).

Conclusion

Patients with ESKD and T1DM have reduced TBS, reduced CT and increased BR compared with other ESKD patients. Prospective study of these parameters is warranted to determine their utility in fracture risk prediction and management.

Significance statement

Patients with ESKD and T1DM have an elevated fracture risk due to decreased bone strength. As an adjunct to BMD, evaluating dual-energy X-ray absorptiometry parameters that incorporate structural change may have greater value in patients with ESKD and T1DM than in the general population. In this study, patients with ESKD due to T1DM had lower BMD, lower trabecular bone scores, more severe loss of CT and higher BR than other patients with ESKD and people from the general population. Both lower CT and higher BR were associated with prevalent vertebral fractures in patients with T1DM and ESKD. Changes to these parameters should be evaluated for incident fracture prediction.

 

  • Collapse
  • Expand

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 2063 2063 706
Full Text Views 34 34 5
PDF Downloads 46 46 0
  • 1

    Ball AM, Gillen DL, Sherrard D, Weiss NS, Emerson SS, Seliger SL, Kestenbaum BR, Stehman-Breen C. Risk of hip fracture among dialysis and renal transplant recipients. JAMA 2002 288 30143018. (https://doi.org/10.1001/jama.288.23.3014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Alem AM, Sherrard DJ, Gillen DL, Weiss NS, Beresford SA, Heckbert SR, Wong C, Stehman-Breen C. Increased risk of hip fracture among patients with end-stage renal disease. Kidney International 2000 58 396399. (https://doi.org/10.1046/j.1523-1755.2000.00178.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Nickolas TL, McMahon DJ, Shane E. Relationship between moderate to severe kidney disease and hip fracture in the United States. Journal of the American Society of Nephrology 2006 17 32233232. (https://doi.org/10.1681/ASN.2005111194)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Ensrud KE, Lui LY, Taylor BC, Ishani A, Shlipak MG, Stone KL, Cauley JA, Jamal SA, Antoniucci DM & Cummings SR et al.Renal function and risk of hip and vertebral fractures in older women. Archives of Internal Medicine 2007 167 133139. (https://doi.org/10.1001/archinte.167.2.133)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Moyer-Mileur LJ, Slater H, Jordan KC, Murray MA. IGF-1 and IGF-binding proteins and bone mass, geometry, and strength: relation to metabolic control in adolescent girls with type 1 diabetes. Journal of Bone and Mineral Research 2008 23 18841891. (https://doi.org/10.1359/jbmr.080713)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Akune T, Ogata N, Hoshi K, Kubota N, Terauchi Y, Tobe K, Takagi H, Azuma Y, Kadowaki T & Nakamura K et al. Insulin receptor substrate-2 maintains predominance of anabolic function over catabolic function of osteoblasts. Journal of Cell Biology 2002 159 147156. (https://doi.org/10.1083/jcb.200204046)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Weber DR, O'Brien KO, Schwartz GJ. Evidence of disordered calcium metabolism in adolescent girls with type 1 diabetes: an observational study using a dual-stable calcium isotope technique. Bone 2017 105 184190. (https://doi.org/10.1016/j.bone.2017.09.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Yamamoto M, Sugimoto T. Advanced glycation end products, diabetes, and bone strength. Current Osteoporosis Reports 2016 14 320326. (https://doi.org/10.1007/s11914-016-0332-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Robertson L, Black C, Fluck N, Gordon S, Hollick R, Nguyen H, Prescott G, Marks A. Hip fracture incidence and mortality in chronic kidney disease: the GLOMMS-II record linkage cohort study. BMJ Open 2018 8 e020312. (https://doi.org/10.1136/bmjopen-2017-020312)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Runesson B, Trevisan M, Iseri K, Qureshi AR, Lindholm B, Barany P, Elinder CG, Carrero JJ. Fractures and their sequelae in non-dialysis-dependent chronic kidney disease: the Stockholm creatinine Measurement project. Nephrology, Dialysis, Transplantation 2020 35 19081915. (https://doi.org/10.1093/ndt/gfz142)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Ketteler M, Block GA, Evenepoel P, Fukagawa M, Herzog CA, McCann L, Moe SM, Shroff R, Tonelli MA & Toussaint ND et al. Executive summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Guideline Update: what's changed and why it matters. Kidney International 2017 92 2636. (https://doi.org/10.1016/j.kint.2017.04.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Malluche HH, Mawad HW, Monier-Faugere MC. Renal osteodystrophy in the first decade of the new millennium: analysis of 630 bone biopsies in black and white patients. Journal of Bone and Mineral Research 2011 26 13681376. (https://doi.org/10.1002/jbmr.309)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Sprague SM, Bellorin-Font E, Jorgetti V, Carvalho AB, Malluche HH, Ferreira A, D'Haese PC, Drueke TB, Du H & Manley T et al. Diagnostic accuracy of bone turnover markers and bone histology in patients with CKD treated by dialysis. American Journal of Kidney Diseases 2016 67 559566. (https://doi.org/10.1053/j.ajkd.2015.06.023)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Yenchek RH, Ix JH, Shlipak MG, Bauer DC, Rianon NJ, Kritchevsky SB, Harris TB, Newman AB, Cauley JA & Fried LF et al. Bone mineral density and fracture risk in older individuals with CKD. Clinical Journal of the American Society of Nephrology 2012 7 11301136. (https://doi.org/10.2215/CJN.12871211)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    West SL, Lok CE, Langsetmo L, Cheung AM, Szabo E, Pearce D, Fusaro M, Wald R, Weinstein J, Jamal SA. Bone mineral density predicts fractures in chronic kidney disease. Journal of Bone and Mineral Research 2015 30 913919. (https://doi.org/10.1002/jbmr.2406)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Iimori S, Mori Y, Akita W, Kuyama T, Takada S, Asai T, Kuwahara M, Sasaki S, Tsukamoto Y. Diagnostic usefulness of bone mineral density and biochemical markers of bone turnover in predicting fracture in CKD stage 5D patients–a single-center cohort study. Nephrology, Dialysis, Transplantation 2012 27 345351. (https://doi.org/10.1093/ndt/gfr317)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Nickolas TL, Stein E, Cohen A, Thomas V, Staron RB, McMahon DJ, Leonard MB, Shane E. Bone mass and microarchitecture in CKD patients with fracture. Journal of the American Society of Nephrology 2010 21 13711380. (https://doi.org/10.1681/ASN.2009121208)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Sharma AK, Toussaint ND, Elder GJ, Masterson R, Holt SG, Robertson PL, Ebeling PR, Baldock P, Miller RC, Rajapakse CS. Magnetic resonance imaging based assessment of bone microstructure as a non-invasive alternative to histomorphometry in patients with chronic kidney disease. Bone 2018 114 1421. (https://doi.org/10.1016/j.bone.2018.05.029)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Humbert L, Martelli Y, Fonolla R, Steghofer M, Di Gregorio S, Malouf J, Romera J, Del Rio Barquero LM. 3D-DXA: assessing the Femoral Shape, the Trabecular Macrostructure and the Cortex in 3D from DXA images. IEEE Transactions on Medical Imaging 2017 36 2739. (https://doi.org/10.1109/TMI.2016.2593346)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Whitmarsh T, Fritscher KD, Humbert L, del Rio Barquero LM, Roth T, Kammerlander C, Blauth M, Schubert R, Frangi AF. Hip fracture discrimination from dual-energy X-ray absorptiometry by statistical model registration. Bone 2012 51 896901. (https://doi.org/10.1016/j.bone.2012.08.114)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Aleksova J, Milat F, Kotowicz MA, Pasco JA, Schultz C, Wong P, Ebeling PR, Elder GJ. Patients with end-stage kidney disease have markedly abnormal cortical hip parameters by dual-energy X-ray absorptiometry. Nephrology, Dialysis, Transplantation 2021 36 543550. (https://doi.org/10.1093/ndt/gfz195)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Aleksova J, Kurniawan S, Elder GJ. The trabecular bone score is associated with bone mineral density, markers of bone turnover and prevalent fracture in patients with end stage kidney disease. Osteoporosis International 2018 29 14471455. (https://doi.org/10.1007/s00198-018-4468-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Henry MJ, Pasco JA, Korn S, Gibson JE, Kotowicz MA, Nicholson GC. Bone mineral density reference ranges for Australian men: Geelong Osteoporosis Study. Osteoporosis International 2010 21 909917. (https://doi.org/10.1007/s00198-009-1042-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Henry MJ, Pasco JA, Pocock NA, Nicholson GC, Kotowicz MA. Reference ranges for bone densitometers adopted Australia-wide: Geelong osteoporosis study. Australasian Radiology 2004 48 473475. (https://doi.org/10.1111/j.1440-1673.2004.01351.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Harvey NC, Glüer CC, Binkley N, McCloskey EV, Brandi ML, Cooper C, Kendler D, Lamy O, Laslop A & Camargos BM et al. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone 2015 78 216224. (https://doi.org/10.1016/j.bone.2015.05.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Beck TJ, Looker AC, Ruff CB, Sievanen H, Wahner HW. Structural trends in the aging femoral neck and proximal shaft: analysis of the Third National Health and Nutrition Examination Survey dual-energy X-ray absorptiometry data. Journal of Bone and Mineral Research 2000 15 22972304. (https://doi.org/10.1359/jbmr.2000.15.12.2297)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. Journal of Bone and Mineral Research 1993 8 11371148. (https://doi.org/10.1002/jbmr.5650080915)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Anderson KB, Holloway-Kew KL, Hans D, Kotowicz MA, Hyde NK, Pasco JA. Reference ranges for trabecular bone score in Australian men and women: a cross-sectional study. JBMR Plus 2019 3 e10133. (https://doi.org/10.1002/jbm4.10133)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Bonnick SL HSA: beyond BMD with DXA. Bone 2007 41(Supplement 1) S9S12. (https://doi.org/10.1016/j.bone.2007.03.007)

  • 30

    Sharma AK, Toussaint ND, Masterson R, Holt SG, Rajapakse CS, Ebeling PR, Mohanty ST, Baldock P, Elder GJ. Deterioration of cortical bone microarchitecture: critical component of renal osteodystrophy evaluation. American Journal of Nephrology 2018 47 376384. (https://doi.org/10.1159/000489671)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Nickolas TL, Stein EM, Dworakowski E, Nishiyama KK, Komandah-Kosseh M, Zhang CA, McMahon DJ, Liu XS, Boutroy S & Cremers S et al. Rapid cortical bone loss in patients with chronic kidney disease. Journal of Bone and Mineral Research 2013 28 18111820. (https://doi.org/10.1002/jbmr.1916)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Paranhos-Neto FP, Lima GAC, Silva LC, Madeira M, Vieira Neto L, Mendonca LMC, Lima ICB, Delgado AG, Leite M Jr & Gomes CP et al. HR-pQCT detects alterations in bone microstructure in men with CKD stages 3 and 4, which are influenced by hormonal changes and body composition. Clinical Nephrology 2018 89 1017. (https://doi.org/10.5414/CN109006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Cejka D, Patsch JM, Weber M, Diarra D, Riegersperger M, Kikic Z, Krestan C, Schueller-Weidekamm C, Kainberger F, Haas M. Bone microarchitecture in hemodialysis patients assessed by HR-pQCT. Clinical Journal of the American Society of Nephrology 2011 6 22642271. (https://doi.org/10.2215/CJN.09711010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Trombetti A, Stoermann C, Chevalley T, Van Rietbergen B, Herrmann FR, Martin PY, Rizzoli R. Alterations of bone microstructure and strength in end-stage renal failure. Osteoporosis International 2013 24 17211732. (https://doi.org/10.1007/s00198-012-2133-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Shanbhogue VV, Hansen S, Frost M, Jorgensen NR, Hermann AP, Henriksen JE, Brixen K. Bone geometry, volumetric density, microarchitecture, and estimated bone strength assessed by HR-pQCT in adult patients with type 1 diabetes mellitus. Journal of Bone and Mineral Research 2015 30 21882199. (https://doi.org/10.1002/jbmr.2573)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Starup-Linde J, Lykkeboe S, Gregersen S, Hauge EM, Langdahl BL, Handberg A, Vestergaard P. Bone structure and predictors of fracture in Type 1 and Type 2 diabetes. Journal of Clinical Endocrinology and Metabolism 2016 101 928936. (https://doi.org/10.1210/jc.2015-3882)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Abdalrahaman N, McComb C, Foster JE, McLean J, Lindsay RS, McClure J, McMillan M, Drummond R, Gordon D & McKay GA et al. Deficits in trabecular bone microarchitecture in young women with type 1 diabetes mellitus. Journal of Bone and Mineral Research 2015 30 13861393. (https://doi.org/10.1002/jbmr.2465)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    Christiansen BA, Kopperdahl DL, Kiel DP, Keaveny TM, Bouxsein ML. Mechanical contributions of the cortical and trabecular compartments contribute to differences in age-related changes in vertebral body strength in men and women assessed by QCT-based finite element analysis. Journal of Bone and Mineral Research 2011 26 974983. (https://doi.org/10.1002/jbmr.287)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Roux JP, Wegrzyn J, Arlot ME, Guyen O, Delmas PD, Chapurlat R, Bouxsein ML. Contribution of trabecular and cortical components to biomechanical behavior of human vertebrae: an ex vivo study. Journal of Bone and Mineral Research 2010 25 356361. (https://doi.org/10.1359/jbmr.090803)

    • Search Google Scholar
    • Export Citation
  • 40

    Neumann T, Lodes S, Kastner B, Lehmann T, Hans D, Lamy O, Muller UA, Wolf G, Samann A. Trabecular bone score in type 1 diabetes--a cross-sectional study. Osteoporosis International 2016 27 127133. (https://doi.org/10.1007/s00198-015-3222-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Shah VN, Sippl R, Joshee P, Pyle L, Kohrt WM, Schauer IE, Snell-Bergeon JK. Trabecular bone quality is lower in adults with type 1 diabetes and is negatively associated with insulin resistance. Osteoporosis International 2018 29 733739. (https://doi.org/10.1007/s00198-017-4353-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    Brunerová L, Ronová P, Verešová J, Beranová P, Potoèková J, Kasalický P, Rychlík I. Osteoporosis and impaired trabecular bone score in hemodialysis patients. Kidney and Blood Pressure Research 2016 41 345354. (https://doi.org/10.1159/000443439)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43

    Naylor KL, Garg AX, Zou G, Langsetmo L, Leslie WD, Fraser LA, Adachi JD, Morin S, Goltzman D & Lentle B et al. Comparison of fracture risk prediction among individuals with reduced and normal kidney function. Clinical Journal of the American Society of Nephrology 2015 10 646653. (https://doi.org/10.2215/CJN.06040614)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Lewis JR, Wong G, Taverniti A, Vucak-Dzumhur M, Elder GJ. Association between aortic calcification, cardiovascular events, and mortality in kidney and pancreas-kidney transplant recipients. American Journal of Nephrology 2019 50 177186. (https://doi.org/10.1159/000502328)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45

    Rivadeneira F, Zillikens MC, De Laet CE, Hofman A, Uitterlinden AG, Beck TJ, Pols HA. Femoral neck BMD is a strong predictor of hip fracture susceptibility in elderly men and women because it detects cortical bone instability: the Rotterdam Study. Journal of Bone and Mineral Research 2007 22 17811790. (https://doi.org/10.1359/jbmr.070712)

    • Search Google Scholar
    • Export Citation
  • 46

    Araujo MJCLN, Karohl C, Elias RM, Barreto FC, Barreto DV, Canziani MEF, Carvalho AB, Jorgetti V, Moyses RMA. The pitfall of treating low bone turnover: effects on cortical porosity. Bone 2016 91 7580. (https://doi.org/10.1016/j.bone.2016.07.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47

    Luckman M, Hans D, Cortez N, Nishiyama KK, Agarawal S, Zhang C, Nikkel L, Iyer S, Fusaro M & Guo EX et al. Spine trabecular bone score as an indicator of bone microarchitecture at the peripheral skeleton in kidney transplant recipients. Clinical Journal of the American Society of Nephrology 2017 12 644652. (https://doi.org/10.2215/CJN.09850916)

    • PubMed
    • Search Google Scholar
    • Export Citation