Compression of the optic chiasm is associated with reduced photoentrainment of the central biological clock

in European Journal of Endocrinology
Authors:
Tessel M Boertien Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, The Netherlands

Search for other papers by Tessel M Boertien in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1285-4834
,
Eus J W Van Someren Netherlands Institute for Neuroscience (NIN), Sleep and Cognition, Amsterdam, The Netherlands
Amsterdam UMC location VU University, Psychiatry, De Boelelaan 1117, Amsterdam, The Netherlands
Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Stress & Sleep, Amsterdam, The Netherlands
VU University, Centre for Neurogenomics and Cognitive Research, Integrative Neurophysiology, Amsterdam, The Netherlands

Search for other papers by Eus J W Van Someren in
Current site
Google Scholar
PubMed
Close
,
Adriaan D Coumou Amsterdam UMC location University of Amsterdam, Ophthalmology, Amsterdam, The Netherlands

Search for other papers by Adriaan D Coumou in
Current site
Google Scholar
PubMed
Close
,
Annemieke K van den Broek Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands

Search for other papers by Annemieke K van den Broek in
Current site
Google Scholar
PubMed
Close
,
Jet H Klunder Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands

Search for other papers by Jet H Klunder in
Current site
Google Scholar
PubMed
Close
,
Wing-Yi Wong Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands

Search for other papers by Wing-Yi Wong in
Current site
Google Scholar
PubMed
Close
,
Adrienne E van der Hoeven Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands

Search for other papers by Adrienne E van der Hoeven in
Current site
Google Scholar
PubMed
Close
,
Madeleine L Drent Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, The Netherlands
Amsterdam UMC location VU University, Internal Medicine, Section of Endocrinology, Amsterdam, The Netherlands

Search for other papers by Madeleine L Drent in
Current site
Google Scholar
PubMed
Close
,
Johannes A Romijn Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
Amsterdam UMC location University of Amsterdam, Internal Medicine, Amsterdam, The Netherlands

Search for other papers by Johannes A Romijn in
Current site
Google Scholar
PubMed
Close
,
Eric Fliers Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, The Netherlands

Search for other papers by Eric Fliers in
Current site
Google Scholar
PubMed
Close
, and
Peter H Bisschop Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, The Netherlands

Search for other papers by Peter H Bisschop in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to T M Boertien; Email: t.m.boertien@amsterdamumc.nl
Restricted access

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

Objective

Pituitary tumours that compress the optic chiasm are associated with long-term alterations in sleep–wake rhythm. This may result from damage to intrinsically photosensitive retinal ganglion cells (ipRGCs) projecting from the retina to the hypothalamic suprachiasmatic nucleus via the optic chiasm to ensure photoentrainment (i.e. synchronisation to the 24-h solar cycle through light). To test this hypothesis, we compared the post-illumination pupil response (PIPR), a direct indicator of ipRGC function, between hypopituitarism patients with and without a history of optic chiasm compression.

Design

Observational study, comparing two predefined groups.

Methods

We studied 49 patients with adequately substituted hypopituitarism: 25 patients with previous optic chiasm compression causing visual disturbances (CC+ group) and 24 patients without (CC– group). The PIPR was assessed by chromatic pupillometry and expressed as the relative change between baseline and post-blue-light stimulus pupil diameter. Objective and subjective sleep parameters were obtained using polysomnography, actigraphy, and questionnaires.

Results

Post-blue-light stimulus pupillary constriction was less sustained in CC+ patients compared with CC– patients, resulting in a significantly smaller extended PIPR (mean difference: 8.1%, 95% CI: 2.2–13.9%, P = 0.008, Cohen’s d = 0.78). Sleep–wake timing was consistently later in CC+ patients, without differences in sleep duration, efficiency, or other rest–activity rhythm features. Subjective sleep did not differ between groups.

Conclusion

Previous optic chiasm compression due to a pituitary tumour in patients with hypopituitarism is associated with an attenuated PIPR and delayed sleep timing. Together, these data suggest that ipRGC function and consequently photoentrainment of the central biological clock is impaired in patients with a history of optic chiasm compression.

Supplementary Materials

 

  • Collapse
  • Expand

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 6209 1251 1217
Full Text Views 74 0 0
PDF Downloads 102 0 0
  • 1

    Murad MH, Fernández-Balsells MM, Barwise A, Gallegos-Orozco JF, Paul A, Lane MA, Lampropulos JF, Natividad I, Perestelo-Pérez L & Ponce de León-Lovatón PG et al.Outcomes of surgical treatment for nonfunctioning pituitary adenomas: a systematic review and meta-analysis. Clinical Endocrinology 2010 73 777791. (https://doi.org/10.1111/j.1365-2265.2010.03875.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Dekkers OM, Klaauw van der AA, Pereira AM, Biermasz NR, Honkoop PJ, Roelfsema F, Smit JWA, Romijn JA. Quality of life is decreased after treatment for nonfunctioning pituitary macroadenoma. Journal of Clinical Endocrinology and Metabolism 2006 91 33643369. (https://doi.org/10.1210/jc.2006-0003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Joustra SD, Kruijssen E, Verstegen MJT, Pereira AM, Biermasz NR. Determinants of altered sleep-wake rhythmicity in patients treated for nonfunctioning pituitary macroadenomas. Journal of Clinical Endocrinology and Metabolism 2014 99 44974505. (https://doi.org/10.1210/jc.2014-2602)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Klaauw van der AA, Biermasz NR, Pereira AM, Kralingen van KW, Dekkers OM, Rabe KF, Smit JWA, Romijn JA. Patients cured from craniopharyngioma or nonfunctioning pituitary macroadenoma (NFMA) suffer similarly from increased daytime somnolence despite normal sleep patterns compared to healthy controls. Clinical Endocrinology 2008 69 769774. (https://doi.org/10.1111/j.1365-2265.2008.03284.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Biermasz NR, Joustra SD, Donga E, Pereira AM, van Duinen N, van Dijk M, van der Klaauw AA, Corssmit EPM, Lammers GJ & van Kralingen KW et al.Patients previously treated for nonfunctioning pituitary macroadenomas have disturbed sleep characteristics, circadian movement rhythm, and subjective sleep quality. Journal of Clinical Endocrinology and Metabolism 2011 96 15241532. (https://doi.org/10.1210/jc.2010-2742)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Romijn JA, Smit JWA, Lamberts SWJ. Intrinsic imperfections of endocrine replacement therapy. European Journal of Endocrinology 2003 149 9197. (https://doi.org/10.1530/eje.0.1490091)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Romijn JA Pituitary diseases and sleep disorders. Current Opinion in Endocrinology, Diabetes, and Obesity 2016 23 345351. (https://doi.org/10.1097/MED.0000000000000265)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Borgers AJ, Romeijn N, Van Someren EJW, Fliers E, Alkemade A, Bisschop PH. Compression of the optic chiasm is associated with permanent shorter sleep duration in patients with pituitary insufficiency. Clinical Endocrinology 2011 75 347353. (https://doi.org/10.1111/j.1365-2265.2011.04053.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Romeijn N, Borgers AJ, Fliers E, Alkemade A, Bisschop PH, Van Someren EJW. Medical history of optic chiasm compression in patients with pituitary insufficiency affects skin temperature and its relation to sleep. Chronobiology International 2012 29 10981108. (https://doi.org/10.3109/07420528.2012.708000)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature 2002 418 935941. (https://doi.org/10.1038/nature00965)

  • 11

    Borgers AJ, Fliers E, Siljee JE, Swaab DF, Van Someren EJW, Bisschop PH, Alkemade A. Arginine vasopressin immunoreactivity is decreased in the hypothalamic suprachiasmatic nucleus of subjects with suprasellar tumors. Brain Pathology 2013 23 440444. (https://doi.org/10.1111/bpa.12016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Czeisler CA, Duffy JF, Shanahan TL, Brown EN, Mitchell JF, Rimmer DW, Ronda JM, Silva EJ, Allan JS & Emens JS et al.Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 1999 284 21772181. (https://doi.org/10.1126/science.284.5423.2177)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Dai J, van der Vliet J, Swaab DF, Buijs RM. Human retinohypothalamic tract as revealed by in vitro postmortem tracing. Journal of Comparative Neurology 1998 397 357370. (https://doi.org/10.1002/(SICI)1096-9861(19980803)397:3<357::AID-CNE4>3.0.CO;2-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD. A novel human opsin in the inner retina. Journal of Neuroscience 2000 20 600605. (https://doi.org/10.1523/JNEUROSCI.20-02-00600.2000)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 2002 295 10701073. (https://doi.org/10.1126/science.1067262)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Hatori M, Le H, Vollmers C, Keding SR, Tanaka N, Buch T, Waisman A, Schmedt C, Jegla T, Panda S. Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS ONE 2008 3 e2451. (https://doi.org/10.1371/journal.pone.0002451)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Hannibal J, Kankipati L, Strang CE, Peterson BB, Dacey DM, Gamlin PDR. Central projections of intrinsically photosensitive retinal ganglion cells in the macaque monkey. Journal of Comparative Neurology 2014 522 22312248. (https://doi.org/10.1002/cne.23588)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Gamlin PDR, McDougal DH, Pokorny J, Smith VC, Yau KW, Dacey DM. Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vision Research 2007 47 946954. (https://doi.org/10.1016/j.visres.2006.12.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Kelbsch C, Strasser T, Chen Y, Feigl B, Gamlin PD, Kardon R, Peters T, Roecklein KA, Steinhauer SR & Szabadi E et al.Standards in pupillography. Frontiers in Neurology 2019 10 129. (https://doi.org/10.3389/fneur.2019.00129)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    van der Meijden WP, Te Lindert BHW, Bijlenga D, Coppens JE, Gómez-Herrero G, Bruijel J, Kooij JJS, Cajochen C, Bourgin P, Van Someren EJW. Post-illumination pupil response after blue light: reliability of optimized melanopsin-based phototransduction assessment. Experimental Eye Research 2015 139 7380. (https://doi.org/10.1016/j.exer.2015.07.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Rukmini AV, Milea D, Gooley JJ. Chromatic pupillometry methods for assessing photoreceptor health in retinal and optic nerve diseases. Frontiers in Neurology 2019 10 76. (https://doi.org/10.3389/fneur.2019.00076)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Gracitelli CPB, Duque-Chica GL, Roizenblatt M, de Araújo Moura AL, Nagy BV, Ragot de Melo G, Borba PD, Teixeira SH, Tufik S & Ventura DF et al.Intrinsically photosensitive retinal ganglion cell activity is associated with decreased sleep quality in patients with glaucoma. Ophthalmology 2015 122 11391148. (https://doi.org/10.1016/j.ophtha.2015.02.030)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Reutrakul S, Crowley SJ, Park JC, Chau FY, Priyadarshini M, Hanlon EC, Danielson KK, Gerber BS, Baynard T & Yeh JJ et al.Relationship between intrinsically photosensitive ganglion cell function and circadian regulation in diabetic retinopathy. Scientific Reports 2020 10 1560. (https://doi.org/10.1038/s41598-020-58205-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Castor E Castor electronic data capture, 2019. Available at https://castoredc.com.

  • 25

    von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP & STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Annals of Internal Medicine 2007 147 573–577. (https://doi.org/10.7326/0003-4819-147-8-200710160-00010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Münch M, Léon L, Crippa SV, Kawasaki A. Circadian and wake-dependent effects on the pupil light reflex in response to narrow-bandwidth light pulses. Investigative Ophthalmology and Visual Science 2012 53 45464555. (https://doi.org/10.1167/iovs.12-9494)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Wong KY, Dunn FA, Berson DM. Photoreceptor adaptation in intrinsically photosensitive retinal ganglion cells. Neuron 2005 48 10011010. (https://doi.org/10.1016/j.neuron.2005.11.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Mure LS, Cornut PL, Rieux C, Drouyer E, Denis P, Gronfier C, Cooper HM. Melanopsin bistability: a fly’s eye technology in the human retina. PLoS ONE 2009 4 e5991. (https://doi.org/10.1371/journal.pone.0005991)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Berry RB, Brooks R, Gamalda CE, Harding SM, Lloyd RM, Quan SF, Troester MT, Vaughn BV. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications – Version 2.4. Darien, IL: American Academy of Sleep Medicine, 2017.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Elbaz M, Yauy K, Metlaine A, Martoni M, Leger D. Validation of a new actigraph motion watch versus polysomnography on 70 healthy and suspected sleep disordered subjects. Journal of Sleep Research 2012 21 (Supplement 1) 1387. (https://doi.org/10.1111/j.1365-2869.2012.01044.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Kushida CA, Chang A, Gadkary C, Guilleminault C, Carrillo O, Dement WC. Comparison of actigraphic, polysomnographic, and subjective assessment of sleep parameters in sleep-disordered patients. Sleep Medicine 2001 2 389396. (https://doi.org/10.1016/S1389-9457(0000098-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Someren Van EJW, Swaab DF, Colenda CC, Cohen W, McCall WV, Rosenquist PB. Bright light therapy: improved sensitivity to its effects on rest-activity rhythms in Alzheimer patients by application of nonparametric methods. Chronobiology International 1999 16 505518. (https://doi.org/10.3109/07420529908998724)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Carney CE, Buysse DJ, Ancoli-Israel S, Edinger JD, Krystal AD, Lichstein KL, Morin CM. The consensus sleep diary: standardizing prospective sleep self-monitoring. Sleep 2012 35 287302. (https://doi.org/10.5665/sleep.1642)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Roenneberg T, Pilz LK, Zerbini G, Winnebeck EC. Chronotype and social jetlag: a (self-) critical review. Biology 2019 8 119. (https://doi.org/10.3390/biology8030054)

  • 35

    Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Research 1989 28 193213. (https://doi.org/10.1016/0165-1781(8990047-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Bastien CH, Vallières A, Morin CM. Validation of the insomnia severity index as an outcome measure for insomnia research. Sleep Medicine 2001 2 297307. (https://doi.org/10.1016/s1389-9457(0000065-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Johns MW A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 1991 14 540545. (https://doi.org/10.1093/sleep/14.6.540)

  • 38

    Smets EM, Garssen B, Bonke B, De Haes JC. The multidimensional fatigue inventory (MFI) psychometric qualities of an instrument to assess fatigue. Journal of Psychosomatic Research 1995 39 315325. (https://doi.org/10.1016/0022-3999(9400125-o)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Kerkhof GA, Geuke MEH, Brouwer A, Rijsman RM, Schimsheimer RJ, van Kasteel V. Holland sleep disorders questionnaire: a new sleep disorders questionnaire based on the international classification of sleep disorders-2. Journal of Sleep Research 2013 22 104107. (https://doi.org/10.1111/j.1365-2869.2012.01041.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    Kräuchi K The thermophysiological cascade leading to sleep initiation in relation to phase of entrainment. Sleep Medicine Reviews 2007 11 439451. (https://doi.org/10.1016/j.smrv.2007.07.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Tikuisis P, Ducharme MB. The effect of postural changes on body temperatures and heat balance. European Journal of Applied Physiology and Occupational Physiology 1996 72 451459. (https://doi.org/10.1007/BF00242275)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    Berman G, Muttuvelu D, Berman D, Larsen JI, Licht RW, Ledolter J, Kardon RH. Decreased retinal sensitivity in depressive disorder: a controlled study. Acta Psychiatrica Scandinavica 2018 137 231240. (https://doi.org/10.1111/acps.12851)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43

    Barr DJ, Levy R, Scheepers C, Tily HJ. Random effects structure for confirmatory hypothesis testing: keep it maximal. Journal of Memory and Language 2013 68 255278. (https://doi.org/10.1016/j.jml.2012.11.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Kankipati L, Girkin CA, Gamlin PDR. The post-illumination pupil response is reduced in glaucoma patients. Investigative Ophthalmology and Visual Science 2011 52 22872292. (https://doi.org/10.1167/iovs.10-6023)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45

    van der Meijden WP, Van JL, Te Lindert BHW, Bruijel J, van Oosterhout F, Coppens JE, Kalsbeek A, Cajochen C, Bourgin P, Van Someren EJW. Individual differences in sleep timing relate to melanopsin-based phototransduction in healthy adolescents and young adults. Sleep 2016 39 13051310. (https://doi.org/10.5665/sleep.5858)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46

    Bruijel J, van der Meijden WP, Bijlenga D, Dorani F, Coppens JE, Te Lindert BHW, Kooij JJS, Van Someren EJW. Individual differences in the post-illumination pupil response to blue light: assessment without mydriatics. Biology 2016 5 34. (https://doi.org/10.3390/biology5030034)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47

    van der Klaauw AA, Kars M, Biermasz NR, Roelfsema F, Dekkers OM, Corssmit EP, van Aken MO, Havekes B, Pereira AM & Pijl H et al.Disease-specific impairments in quality of life during long-term follow-up of patients with different pituitary adenomas. Clinical Endocrinology 2008 69 775784. (https://doi.org/10.1111/j.1365-2265.2008.03288.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48

    McIlwaine GG, Carrim ZI, Lueck CJ, Chrisp TM. A mechanical theory to account for bitemporal hemianopia from chiasmal compression. Journal of Neuro-Ophthalmology 2005 25 4043. (https://doi.org/10.1097/00041327-200503000-00011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49

    Danesh-Meyer HV, Wong A, Papchenko T, Matheos K, Stylli S, Nichols A, Frampton C, Daniell M, Savino PJ, Kaye AH. Optical coherence tomography predicts visual outcome for pituitary tumors. Journal of Clinical Neuroscience 2015 22 10981104. (https://doi.org/10.1016/j.jocn.2015.02.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50

    Tieger MG, Hedges 3rd TR, Ho J, Erlich-Malona NK, Vuong LN, Athappilly GK, Mendoza-Santiesteban CE. Ganglion cell complex loss in chiasmal compression by brain tumors. Journal of Neuro-Ophthalmology 2017 37 712. (https://doi.org/10.1097/WNO.0000000000000424)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51

    Feigl B, Dumpala S, Kerr GK, Zele AJ. Melanopsin cell dysfunction is involved in sleep disruption in Parkinson’s disease. Journal of Parkinson’s Disease 2020 10 14671476. (https://doi.org/10.3233/JPD-202178)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52

    Fernandez DC, Chang YT, Hattar S, Chen SK. Architecture of retinal projections to the central circadian pacemaker. PNAS 2016 113 60476052. (https://doi.org/10.1073/pnas.1523629113)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53

    Ancoli-Israel S, Cole R, Alessi C, Chambers M, Moorcroft W, Pollak CP. The role of actigraphy in the study of sleep and circadian rhythms. Sleep 2003 26 342392. (https://doi.org/10.1093/sleep/26.3.342)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54

    Greenman Y MANAGEMENT OF ENDOCRINE DISEASE: Present and future perspectives for medical therapy of nonfunctioning pituitary adenomas. European Journal of Endocrinology 2017 177 R113R124. (https://doi.org/10.1530/EJE-17-0216)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55

    Abbott SM, Choi J, Wilson J, Zee PC. Melanopsin-dependent phototransduction is impaired in delayed sleep–wake phase disorder and sighted non-24-hour sleep–wake rhythm disorder. Sleep 2021 44 19. (https://doi.org/10.1093/sleep/zsaa184)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56

    Joustra SD, Claessen KMJA, Dekkers OM, Beek van AP, Wolffenbuttel BHR, Pereira AM, Biermasz NR. High prevalence of metabolic syndrome features in patients previously treated for nonfunctioning pituitary macroadenoma. PLoS ONE 2014 9 e90602. (https://doi.org/10.1371/journal.pone.0090602)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57

    Zhang J, Wang H, Wu S, Liu Q, Wang N. Regulation of reentrainment function is dependent on a certain minimal number of intact functional ipRGCs in rd mice. Journal of Ophthalmology 2017 2017 6804853. (https://doi.org/10.1155/2017/6804853)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58

    Auger RR, Burgess HJ, Emens JS, Deriy LV, Thomas SM, Sharkey KM. Clinical practice guideline for the treatment of intrinsic circadian rhythm sleep–wake disorders: advanced sleep–wake phase disorder (ASWPD), delayed sleep–wake phase disorder (DSWPD), non-24-hour sleep–wake rhythm disorder (N24SWD), and irregular sleep–wake rhythm disorder (ISWRD) an update for 2015: an American Academy of Sleep Medicine Clinical Practice Guideline. Journal of Clinical Sleep Medicine 2015 11 11991236. (https://doi.org/10.5664/jcsm.5100)

    • PubMed
    • Search Google Scholar
    • Export Citation