Unravelling genetic causality of haematopoiesis on bone metabolism in human

in European Journal of Endocrinology
Authors:
Shun-Cheong Ho Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong

Search for other papers by Shun-Cheong Ho in
Current site
Google Scholar
PubMed
Close
,
Gloria Hoi-Yee Li Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong

Search for other papers by Gloria Hoi-Yee Li in
Current site
Google Scholar
PubMed
Close
,
Anskar Yu-Hung Leung Department of Medicine, Queen Mary Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong

Search for other papers by Anskar Yu-Hung Leung in
Current site
Google Scholar
PubMed
Close
,
Kathryn C B Tan Department of Medicine, Queen Mary Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong

Search for other papers by Kathryn C B Tan in
Current site
Google Scholar
PubMed
Close
, and
Ching-Lung Cheung Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Pak Shek Kok, Hong Kong

Search for other papers by Ching-Lung Cheung in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6233-9144

Correspondence should be addressed to C-L Cheung; Email: lung1212@hku.hk

*(S-C Ho and G H-Y Li contributed equally to this work)

Restricted access

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

Objective

Haematopoiesis was shown to regulate bone metabolism in in vivo studies. However, whether haematopoiesis has causal effects on bone health has never been investigated in humans. We aimed to evaluate the causal relationships of blood traits with bone mineral density (BMD) and fracture.

Design and methods

Using two-sample Mendelian randomization, causal relationship of 29 blood traits with estimated BMD (eBMD), total body BMD (TBBMD), lumbar spine BMD (LSBMD), femoral neck BMD (FNBMD) and fracture were evaluated by inverse-variance weighted (IVW) method and multiple sensitivity analyses. Relevant genetic data were obtained from the largest possible publicly available genome-wide association studies.

Results

Eight genetically determined red blood cell traits showed positive causal effects on eBMD, with beta estimates ranging from 0.009 (mean corpuscular haemoglobin) to 0.057 (haemoglobin concentration), while three white blood cell traits, including lymphocyte count (beta: −0.020; 95% CI: −0.033 to −0.007), neutrophil count (beta: −0.020; 95% CI: −0.035 to −0.006) and white blood cell count (beta: −0.027; 95% CI: −0.039 to −0.014), were inversely associated with eBMD. Causal effects for six of these blood traits were validated on TBBMD, LSBMD, FNBMD and/or fracture. The association of reticulocyte count (beta: 0.040; 95% CI: 0.016 to 0.063), haemoglobin (beta: 0.058; 95% CI: 0.021 to 0.094) and mean corpuscular haemoglobin concentration (beta: 0.030; 95% CI: 0.007 to 0.054) with eBMD remained significant in multivariable IVW analyses adjusted for other blood traits.

Conclusion

This study provided evidence that haematopoietic system might regulate the skeletal system in humans and suggested the possible pathophysiology of bone diseases among people with haematological diseases.

Significance statement

We conducted a novel Mendelian randomization study investigating the causal relationship of blood cells with bone mineral density. Red and white blood cell traits have positive and inverse causal relationship with bone mineral density, respectively, suggesting a potential link of haematopoietic system with the skeletal system in humans. Current findings suggest individuals with related haematological diseases, such as anaemia and leukocytosis, may have a lifelong increased risk of osteoporosis and/or fracture. Given that complete blood count is commonly performed in clinical setting, whether complete blood count can be used to predict fracture risk warrants further investigation.

 

  • Collapse
  • Expand

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 2666 33 23
Full Text Views 78 0 0
PDF Downloads 108 0 0
  • 1

    Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K, Nagasawa T. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 2010 33 387399. (https://doi.org/10.1016/j.immuni.2010.08.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Ding L, Morrison SJ. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 2013 495 231235. (https://doi.org/10.1038/nature11885)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Greenbaum A, Hsu YM, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, Nagasawa T, Link DC. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 2013 495 227230. (https://doi.org/10.1038/nature11926)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Rankin EB, Wu C, Khatri R, Wilson TL, Andersen R, Araldi E, Rankin AL, Yuan J, Kuo CJ & Schipani E et al. The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO. Cell 2012 149 6374. (https://doi.org/10.1016/j.cell.2012.01.051)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Tsukasaki M, Takayanagi H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nature Reviews: Immunology 2019 19 626642. (https://doi.org/10.1038/s41577-019-0178-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Blumenreich MS The white blood cell and differential count. In Clinical Methods: The History, Physical, and Laboratory Examinations, 3 rd ed., ch. 153, pp. 724727. Eds Walker HK, Hall WD, Hurst JW. Boston: Butterworths, 1990.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Kang IH, Baliga UK, Wu Y, Mehrotra S, Yao H, LaRue AC, Mehrotra M. Hematopoietic stem cell-derived functional osteoblasts exhibit therapeutic efficacy in a murine model of Osteogenesis imperfecta. Stem Cells 2021 39 14571477. (https://doi.org/10.1002/stem.3432)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Kim HL, Cho HY, Park IY, Choi JM, Kim M, Jang HJ, Hwang SM. The positive association between peripheral blood cell counts and bone mineral density in postmenopausal women. Yonsei Medical Journal 2011 52 739745. (https://doi.org/10.3349/ymj.2011.52.5.739)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Li L, Ge JR, Chen J, Ye YJ, Xu PC, Li JY. Association of bone mineral density with peripheral blood cell counts and hemoglobin in Chinese postmenopausal women: a retrospective study. Medicine 2020 99 e20906. (https://doi.org/10.1097/MD.0000000000020906)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Polineni S, Resulaj M, Faje AT, Meenaghan E, Bredella MA, Bouxsein M, Lee H, MacDougald OA, Klibanski A, Fazeli PK. Red and white blood cell counts are associated with bone marrow adipose tissue, bone mineral density, and bone microarchitecture in premenopausal women. Journal of Bone and Mineral Research 2020 35 10311039. (https://doi.org/10.1002/jbmr.3986)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Valderrabano RJ, Lui LY, Lee J, Cummings SR, Orwoll ES, Hoffman AR, Wu JY & Osteoporotic Fractures in Men (MrOS) Study Research Group. Bone density loss is associated with blood cell counts. Journal of Bone and Mineral Research 2017 32 212220. (https://doi.org/10.1002/jbmr.3000)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Kim HS, Park HM, Lee HS, Lee YJ. Hemoglobin levels and low bone mineral density in non-anemic older adults: secondary analysis of the Korean National Health and Nutrition Examination Survey. Experimental Gerontology 2019 126 110706. (https://doi.org/10.1016/j.exger.2019.110706)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Valderrabano RJ, Buzkova P, Chang PY, Zakai NA, Fink HA, Robbins JA, Lee JS, Wu JY & Cardiovascular Health Study group. Association of bone mineral density with hemoglobin and change in hemoglobin among older men and women: the cardiovascular health study. Bone 2019 120 321326. (https://doi.org/10.1016/j.bone.2018.11.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Vuckovic D, Bao EL, Akbari P, Lareau CA, Mousas A, Jiang T, Chen MH, Raffield LM, Tardaguila M & Huffman JE et al. The polygenic and monogenic basis of blood traits and diseases. Cell 2020 182 1214 .e111231.e11. (https://doi.org/10.1016/j.cell.2020.08.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Ho S, Li G, Leung A, Tan K, Cheung C. Unravelling genetic causality of haematopoiesis on bone metabolism in human – Supplementary Data. (available at: https://osf.io/k4m37/). Accessed on 26 August 2022.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Morris JA, Kemp JP, Youlten SE, Laurent L, Logan JG, Chai RC, Vulpescu NA, Forgetta V, Kleinman A & Mohanty ST et al. An atlas of genetic influences on osteoporosis in humans and mice. Nature Genetics 2019 51 258266. (https://doi.org/10.1038/s41588-018-0302-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genetic Epidemiology 2013 37 658665. (https://doi.org/10.1002/gepi.21758)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Bowden J, Spiller W, Del Greco F, Sheehan N, Thompson J, Minelli C, Davey Smith G. Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the Radial plot and Radial regression. International Journal of Epidemiology 2018 47 12641278. (https://doi.org/10.1093/ije/dyy101)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Hemani G, Tilling K, Davey Smith G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genetics 2017 13 e1007081. (https://doi.org/10.1371/journal.pgen.1007081)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Burgess S Sample size and power calculations in Mendelian randomization with a single instrumental variable and a binary outcome. International Journal of Epidemiology 2014 43 922929. (https://doi.org/10.1093/ije/dyu005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genetic Epidemiology 2016 40 304314. (https://doi.org/10.1002/gepi.21965)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. International Journal of Epidemiology 2015 44 512525. (https://doi.org/10.1093/ije/dyv080)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Burgess S, Foley CN, Allara E, Staley JR, Howson JMM. A robust and efficient method for Mendelian randomization with hundreds of genetic variants. Nature Communications 2020 11 376. (https://doi.org/10.1038/s41467-019-14156-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Wu F, Ames R, Clearwater J, Evans MC, Gamble G, Reid IR. Prospective 10-year study of the determinants of bone density and bone loss in normal postmenopausal women, including the effect of hormone replacement therapy. Clinical Endocrinology 2002 56 703711. (https://doi.org/10.1046/j.1365-2265.2002.01534.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Kemp JP, Morris JA, Medina-Gomez C, Forgetta V, Warrington NM, Youlten SE, Zheng J, Gregson CL, Grundberg E & Trajanoska K et al. Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis. Nature Genetics 2017 49 14681475. (https://doi.org/10.1038/ng.3949)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Zhang J, Cohen A, Shen B, Du L, Tasdogan A, Zhao Z, Shane EJ, Morrison SJ. The effect of parathyroid hormone on osteogenesis is mediated partly by osteolectin. PNAS 2021 118 e2026176118. (https://doi.org/10.1073/pnas.2026176118)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Yue R, Shen B, Morrison SJ. Clec11a/osteolectin is an osteogenic growth factor that promotes the maintenance of the adult skeleton. eLife 2016 5 e18782. (https://doi.org/10.7554/eLife.18782)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Giordano P, Urbano F, Lassandro G, Faienza MF. Mechanisms of bone impairment in sickle bone disease. International Journal of Environmental Research and Public Health 2021 18 1832. (https://doi.org/10.3390/ijerph18041832)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Castro-Mollo M, Gera S, Ruiz-Martinez M, Feola M, Gumerova A, Planoutene M, Clementelli C, Sangkhae V, Casu C & Kim SM et al. The hepcidin regulator erythroferrone is a new member of the erythropoiesis-iron-bone circuitry. eLife 2021 10 e68217. (https://doi.org/10.7554/eLife.68217)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Udagawa N The mechanism of osteoclast differentiation from macrophages: possible roles of T lymphocytes in osteoclastogenesis. Journal of Bone and Mineral Metabolism 2003 21 337343. (https://doi.org/10.1007/s00774-003-0439-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Lee MS, Kim HS, Yeon JT, Choi SW, Chun CH, Kwak HB, Oh J. GM-CSF regulates fusion of mononuclear osteoclasts into bone-resorbing osteoclasts by activating the Ras/ERK pathway. Journal of Immunology 2009 183 33903399. (https://doi.org/10.4049/jimmunol.0804314)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Hu Y, Wang L, Zhao Z, Lu W, Fan J, Gao B, Luo Z, Jie Q, Shi X, Yang L. Cytokines CCL2 and CXCL1 may be potential novel predictors of early bone loss. Molecular Medicine Reports 2020 22 47164724. (https://doi.org/10.3892/mmr.2020.11543)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Burgess S, Davies NM, Thompson SG. Bias due to participant overlap in two‐sample Mendelian randomization. Genetic Epidemiology 2016 40 597608. (https://doi.org/10.1002/gepi.21998)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Minelli C, Del Greco F, van der Plaat DA, Bowden J, Sheehan NA, Thompson J. The use of two-sample methods for Mendelian randomization analyses on single large datasets. International Journal of Epidemiology 2021 50 16511659. (https://doi.org/10.1093/ije/dyab084)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Medina-Gomez C, Kemp JP, Trajanoska K, Luan J, Chesi A, Ahluwalia TS, Mook-Kanamori DO, Ham A, Hartwig FP & Evans DS et al. Life-course genome-wide association study meta-analysis of total body BMD and assessment of age-specific effects. American Journal of Human Genetics 2018 102 88102. (https://doi.org/10.1016/j.ajhg.2017.12.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Estrada K, Styrkarsdottir U, Evangelou E, Hsu YH, Duncan EL, Ntzani EE, Oei L, Albagha OM, Amin N & Kemp JP et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nature Genetics 2012 44 491501. (https://doi.org/10.1038/ng.2249)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Trajanoska K, Morris JA, Oei L, Zheng HF, Evans DM, Kiel DP, Ohlsson C, Richards JB, Rivadeneira F & GEFOS/GENOMOS Consortium and the 23andMe Research Team. Assessment of the genetic and clinical determinants of fracture risk: genome wide association and Mendelian randomisation study. BMJ 2018 362 k3225. (https://doi.org/10.1136/bmj.k3225)

    • PubMed
    • Search Google Scholar
    • Export Citation