ACTH-independent production of 11-oxygenated androgens and glucocorticoids in an adrenocortical adenoma

in European Journal of Endocrinology
Authors:
Takuya Kitamura Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan

Search for other papers by Takuya Kitamura in
Current site
Google Scholar
PubMed
Close
,
Amy R Blinder Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA

Search for other papers by Amy R Blinder in
Current site
Google Scholar
PubMed
Close
,
Kazutaka Nanba Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute

Search for other papers by Kazutaka Nanba in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6475-5141
,
Mika Tsuiki Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan

Search for other papers by Mika Tsuiki in
Current site
Google Scholar
PubMed
Close
,
Mutsuki Mishina Department of Urology

Search for other papers by Mutsuki Mishina in
Current site
Google Scholar
PubMed
Close
,
Hiroshi Okuno Department of Urology

Search for other papers by Hiroshi Okuno in
Current site
Google Scholar
PubMed
Close
,
Koki Moriyoshi Department of Diagnostic Pathology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan

Search for other papers by Koki Moriyoshi in
Current site
Google Scholar
PubMed
Close
,
Yuto Yamazaki Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan

Search for other papers by Yuto Yamazaki in
Current site
Google Scholar
PubMed
Close
,
Hironobu Sasano Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan

Search for other papers by Hironobu Sasano in
Current site
Google Scholar
PubMed
Close
,
Keisuke Yoneyama Aska Pharma Medical Co. Ltd., Fujisawa, Japan

Search for other papers by Keisuke Yoneyama in
Current site
Google Scholar
PubMed
Close
,
Aaron M Udager Department of Pathology
Michigan Center for Translational Pathology
Rogel Cancer Center

Search for other papers by Aaron M Udager in
Current site
Google Scholar
PubMed
Close
,
William E Rainey Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan, USA

Search for other papers by William E Rainey in
Current site
Google Scholar
PubMed
Close
,
Akihiro Yasoda Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan

Search for other papers by Akihiro Yasoda in
Current site
Google Scholar
PubMed
Close
,
Noriko Satoh-Asahara Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute

Search for other papers by Noriko Satoh-Asahara in
Current site
Google Scholar
PubMed
Close
, and
Tetsuya Tagami Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute

Search for other papers by Tetsuya Tagami in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to K Nanba; Email: knamba@umich.edu

*(T Kitamura and A R Blinder contributed equally to this work)

Restricted access

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

Although excess production of androgens and glucocorticoids has often been observed in adrenocortical carcinomas, adrenocortical adenoma with such hormonal activity is rare. Herein, we report a 41-year-old woman who presented with hyperandrogenemia and mild autonomous cortisol secretion with an undetectable level of adrenocorticotropic hormone. Imaging demonstrated a 6 cm left adrenal tumor. The histologic diagnosis of the resected adrenal tumor was adrenocortical adenoma. Pre- and post-operative serum samples were used for steroid profiling with liquid chromatography-tandem mass spectrometry (LC-MS/MS). LC-MS/MS analysis of pre-operative serum revealed an abnormal buildup of steroid precursors and androgens. Importantly, circulating levels of 11-oxygenated androgens, including 11β-hydroxytestosterone (11OHT) and 11-ketotestosterone (11KT), were highly elevated. Both androgen and glucocorticoid levels significantly decreased post-operatively. Immunohistochemical analysis of steroidogenic enzymes and cofactor protein supported the tumor’s ability to directly produce 11OHT and 11KT. This study is the first to describe and characterize an adrenocortical adenoma that co-secretes glucocorticoids and 11-oxygenated androgens.

Significance statement

Due to its rarity, biochemical and histologic characteristics of androgen and glucocorticoid co-secreting adrenocortical adenomas are largely unknown. Herein, we report a case of adrenocortical adenoma that caused marked hyperandrogenemia and mild autonomous cortisol secretion. In this study, we investigated serum steroid profiles using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and histologic characteristics of the resected tumor. LC-MS/MS revealed highly elevated levels of 11-oxygenated androgens which have not been well studied in adrenal tumors. The expression patterns of steroidogenic enzymes determined by immunohistochemistry supported the results of steroid profiling and suggested the capacity of the tumor cells to produce 11-oxygenated androgens. Measurement of 11-oxygenated steroids should facilitate a better understanding of androgen-producing adrenocortical neoplasms.

Supplementary Materials

 

  • Collapse
  • Expand

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 6955 1549 1501
Full Text Views 151 1 1
PDF Downloads 203 1 1
  • 1

    Fassnacht M, Arlt W, Bancos I, Dralle H, Newell-Price J, Sahdev A, Tabarin A, Terzolo M, Tsagarakis S, Dekkers OM. Management of adrenal incidentalomas: European Society of Endocrinology Clinical Practice Guideline in collaboration with the European Network for the study of adrenal tumors. European Journal of Endocrinology 2016 175 G1G34. (https://doi.org/10.1530/EJE-16-0467)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Ichijo T, Ueshiba H, Nawata H, Yanase T. A nationwide survey of adrenal incidentalomas in Japan: the first report of clinical and epidemiological features. Endocrine Journal 2020 67 141152. (https://doi.org/10.1507/endocrj.EJ18-0486)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Kebebew E Adrenal incidentaloma. New England Journal of Medicine 2021 384 15421551. (https://doi.org/10.1056/NEJMcp2031112)

  • 4

    Prete A, Subramanian A, Bancos I, Chortis V, Tsagarakis S, Lang K, Macech M, Delivanis DA, Pupovac ID & Reimondo G et al.Cardiometabolic disease burden and steroid excretion in benign adrenal tumors: a cross-sectional multicenter study. Annals of Internal Medicine 2022 175 325334. (https://doi.org/10.7326/M21-1737)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Danilowicz K, Albiger N, Vanegas M, Gomez RM, Cross G, Bruno OD. Androgen-secreting adrenal adenomas. Obstetrics and Gynecology 2002 100 10991102. (https://doi.org/10.1016/s0029-7844(0202098-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Del Gaudio AD, Del Gaudio GA. Virilizing adrenocortical tumors in adult women. Report of 10 patients, 2 of whom each had a tumor secreting only testosterone. Cancer 1993 72 19972003. (https://doi.org/10.1002/1097-0142(19930915)72:6<1997::aid-cncr2820720634>3.0.co;2-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Murakami Y, Sasaki M, Sasano H, Suzuki T, Kitamura N, Tomoi M, Yorifuji H, Koshimura K, Kato Y. Young female patient with testosterone-producing adrenocortical adenoma also showing signs of subclinical Cushing’s syndrome. Endocrine Journal 1995 42 283288. (https://doi.org/10.1507/endocrj.42.283)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Tanaka S, Tanabe A, Aiba M, Hizuka N, Takano K, Zhang J, Young WF. Glucocorticoid- and androgen-secreting black adrenocortical adenomas: unique cause of corticotropin-independent Cushing syndrome. Endocrine Practice 2011 17 e73e78. (https://doi.org/10.4158/ep.17.3.e73)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Rauh M Steroid measurement with LC-MS/MS in pediatric endocrinology. Molecular and Cellular Endocrinology 2009 301 272281. (https://doi.org/10.1016/j.mce.2008.10.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Rege J, Turcu AF, Else T, Auchus RJ, Rainey WE. Steroid biomarkers in human adrenal disease. Journal of Steroid Biochemistry and Molecular Biology 2019 190 273280. (https://doi.org/10.1016/j.jsbmb.2019.01.018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Zennaro MC, Boulkroun S, Fernandes-Rosa F. Genetic causes of functional adrenocortical adenomas. Endocrine Reviews 2017 38 516537. (https://doi.org/10.1210/er.2017-00189)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Vaduva P, Bonnet F, Bertherat J. Molecular basis of primary aldosteronism and adrenal Cushing syndrome. Journal of the Endocrine Society 2020 4 bvaa075. (https://doi.org/10.1210/jendso/bvaa075)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Kamilaris CDC, Stratakis CA, Hannah-Shmouni F. Molecular genetic and genomic alterations in Cushing’s syndrome and primary aldosteronism. Frontiers in Endocrinology 2021 12 632543. (https://doi.org/10.3389/fendo.2021.632543)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Islam MS, Uwada J, Hayashi J, Kikuya KI, Muranishi Y, Watanabe H, Yaegashi K, Hasegawa K, Ida T & Sato T et al.Analyses of molecular characteristics and enzymatic activities of ovine HSD17B3. Animals 2021 11 2876. (https://doi.org/10.3390/ani11102876)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Tezuka Y, Yamazaki Y, Ono Y, Morimoto R, Omata K, Seiji K, Takase K, Kawasaki Y, Ito A & Nakamura Y et al.Unique sex steroid profiles in estrogen-producing adrenocortical adenoma associated with bilateral hyperaldosteronism. Journal of the Endocrine Society 2020 4 bvaa004. (https://doi.org/10.1210/jendso/bvaa004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Weiss LM, Medeiros LJ, Vickery Jr AL. Pathologic features of prognostic significance in adrenocortical carcinoma. American Journal of Surgical Pathology 1989 13 202206. (https://doi.org/10.1097/00000478-198903000-00004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Gomez-Sanchez EP, Gomez-Sanchez CE. 11beta-Hydroxysteroid dehydrogenases: a growing multi-tasking family. Molecular and Cellular Endocrinology 2021 526 111210. (https://doi.org/10.1016/j.mce.2021.111210)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Turcu AF, Rege J, Auchus RJ, Rainey WE. 11-Oxygenated androgens in health and disease. Nature Reviews: Endocrinology 2020 16 284296. (https://doi.org/10.1038/s41574-020-0336-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Swart AC, Schloms L, Storbeck KH, Bloem LM, Toit Td, Quanson JL, Rainey WE, Swart P. 11beta-Hydroxyandrostenedione, the product of androstenedione metabolism in the adrenal, is metabolized in LNCaP cells by 5alpha-reductase yielding 11beta-hydroxy-5alpha-androstanedione. Journal of Steroid Biochemistry and Molecular Biology 2013 138 132142. (https://doi.org/10.1016/j.jsbmb.2013.04.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Metser U, Miller E, Lerman H, Lievshitz G, Avital S, Even-Sapir E. 18F-FDG PET/CT in the evaluation of adrenal masses. Journal of Nuclear Medicine 2006 47 3237.

  • 21

    Guerin C, Pattou F, Brunaud L, Lifante JC, Mirallie E, Haissaguerre M, Huglo D, Olivier P, Houzard C & Ansquer C et al.Performance of 18F-FDG PET/CT in the characterization of adrenal masses in noncancer patients: a prospective study. Journal of Clinical Endocrinology and Metabolism 2017 102 24652472. (https://doi.org/10.1210/jc.2017-00254)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Patel D, Gara SK, Ellis RJ, Boufraqech M, Nilubol N, Millo C, Stratakis CA, Kebebew E. FDG PET/CT scan and functional adrenal tumors: a pilot study for lateralization. World Journal of Surgery 2016 40 683689. (https://doi.org/10.1007/s00268-015-3242-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Ishiwata K, Suzuki S, Igarashi K, Ruike Y, Naito K, Ishida A, Deguchi-Horiuchi H, Fujimoto M, Koide H & Imamura Y et al.Characteristics of benign adrenocortical adenomas with 18F-FDG PET accumulation. European Journal of Endocrinology 2021 185 155165. (https://doi.org/10.1530/EJE-20-1459)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocrine Reviews 2011 32 81151. (https://doi.org/10.1210/er.2010-0013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Auchus RJ, Lee TC, Miller WL. Cytochrome b5 augments the 17,20-lyase activity of human P450c17 without direct electron transfer. Journal of Biological Chemistry 1998 273 31583165. (https://doi.org/10.1074/jbc.273.6.3158)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Suzuki T, Sasano H, Takeyama J, Kaneko C, Freije WA, Carr BR, Rainey WE. Developmental changes in steroidogenic enzymes in human postnatal adrenal cortex: immunohistochemical studies. Clinical Endocrinology 2000 53 739747. (https://doi.org/10.1046/j.1365-2265.2000.01144.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Tezuka Y, Atsumi N, Blinder AR, Rege J, Giordano TJ, Rainey WE, Turcu AF. The age-dependent changes of the human adrenal cortical zones are not congruent. Journal of Clinical Endocrinology and Metabolism 2021 106 13891397. (https://doi.org/10.1210/clinem/dgab007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Rainey WE, Nakamura Y. Regulation of the adrenal androgen biosynthesis. Journal of Steroid Biochemistry and Molecular Biology 2008 108 281286. (https://doi.org/10.1016/j.jsbmb.2007.09.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Rege J, Nakamura Y, Satoh F, Morimoto R, Kennedy MR, Layman LC, Honma S, Sasano H, Rainey WE. Liquid chromatography-tandem mass spectrometry analysis of human adrenal vein 19-carbon steroids before and after ACTH stimulation. Journal of Clinical Endocrinology and Metabolism 2013 98 11821188. (https://doi.org/10.1210/jc.2012-2912)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Barnard M, Quanson JL, Mostaghel E, Pretorius E, Snoep JL, Storbeck KH. 11-Oxygenated androgen precursors are the preferred substrates for aldo-keto reductase 1C3 (AKR1C3): implications for castration resistant prostate cancer. Journal of Steroid Biochemistry and Molecular Biology 2018 183 192201. (https://doi.org/10.1016/j.jsbmb.2018.06.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Paulukinas RD, Mesaros CA, Penning TM. Conversion of classical and 11-oxygenated androgens by insulin-induced AKR1C3 in a model of human PCOS adipocytes. Endocrinology 2022 163 bqac068. (https://doi.org/10.1210/endocr/bqac068)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Williams TA, Gomez-Sanchez CE, Rainey WE, Giordano TJ, Lam AK, Marker A, Mete O, Yamazaki Y, Zerbini MCN & Beuschlein F et al.International histopathology consensus for unilateral primary aldosteronism. Journal of Clinical Endocrinology and Metabolism 2021 106 4254. (https://doi.org/10.1210/clinem/dgaa484)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Rege J, Hoxie J, Liu CJ, Cash MN, Luther JM, Gellert L, Turcu AF, Else T, Giordano TJ & Udager AM et al.Targeted mutational analysis of cortisol-producing adenomas. Journal of Clinical Endocrinology and Metabolism 2022 107 e594e603. (https://doi.org/10.1210/clinem/dgab682)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Bertherat J, Groussin L, Sandrini F, Matyakhina L, Bei T, Stergiopoulos S, Papageorgiou T, Bourdeau I, Kirschner LS & Vincent-Dejean C et al.Molecular and functional analysis of PRKAR1A and its locus (17q22-24) in sporadic adrenocortical tumors: 17q losses, somatic mutations, and protein kinase A expression and activity. Cancer Research 2003 63 53085319.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Espiard S, Knape MJ, Bathon K, Assie G, Rizk-Rabin M, Faillot S, Luscap-Rondof W, Abid D, Guignat L & Calebiro D et al.Activating PRKACB somatic mutation in cortisol-producing adenomas. JCI Insight 2018 3 e98296. (https://doi.org/10.1172/jci.insight.98296)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Thiel A, Reis AC, Haase M, Goh G, Schott M, Willenberg HS, Scholl UI. PRKACA mutations in cortisol-producing adenomas and adrenal hyperplasia: a single-center study of 60 cases. European Journal of Endocrinology 2015 172 677685. (https://doi.org/10.1530/EJE-14-1113)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Ronchi CL, Di Dalmazi G, Faillot S, Sbiera S, Assie G, Weigand I, Calebiro D, Schwarzmayr T, Appenzeller S & Rubin B et al.Genetic landscape of sporadic unilateral adrenocortical adenomas without PRKACA p.Leu206Arg mutation. Journal of Clinical Endocrinology and Metabolism 2016 101 35263538. (https://doi.org/10.1210/jc.2016-1586)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    Eisenhofer G, Masjkur J, Peitzsch M, Di Dalmazi G, Bidlingmaier M, Gruber M, Fazel J, Osswald A, Beuschlein F, Reincke M. Plasma steroid metabolome profiling for diagnosis and subtyping patients with Cushing syndrome. Clinical Chemistry 2018 64 58659 6. (https://doi.org/10.1373/clinchem.2017.282582)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Mezzullo M, Pelusi C, Fazzini A, Repaci A, Di Dalmazi G, Gambineri A, Pagotto U, Fanelli F. Female and male serum reference intervals for challenging sex and precursor steroids by liquid chromatography – tandem mass spectrometry. Journal of Steroid Biochemistry and Molecular Biology 2020 197 105538. (https://doi.org/10.1016/j.jsbmb.2019.105538)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    Nanba AT, Rege J, Ren J, Auchus RJ, Rainey WE, Turcu AF. 11-Oxygenated C19 steroids do not decline with age in women. Journal of Clinical Endocrinology and Metabolism 2019 104 26152 62 2. (https://doi.org/10.1210/jc.2018-02527)

    • PubMed
    • Search Google Scholar
    • Export Citation