*(U Nahum and J Refardt contributed equally to this work)
Differentiation between central diabetes insipidus (cDI) and primary polydipsia (PP) remains challenging in clinical practice. Although the hypertonic saline infusion test led to high diagnostic accuracy, it is a laborious test requiring close monitoring of plasma sodium levels. As such, we leverage machine learning (ML) to facilitate differential diagnosis of cDI.
We analyzed data of 59 patients with cDI and 81 patients with PP from a prospective multicenter study evaluating the hypertonic saline test as new test approach to diagnose cDI. Our primary outcome was the diagnostic accuracy of the ML-based algorithm in differentiating cDI from PP patients.
The data set used included 56 clinical, biochemical, and radiological covariates. We identified a set of five covariates which were crucial for differentiating cDI from PP patients utilizing standard ML methods. We developed ML-based algorithms on the data and validated them with an unseen test data set.
Urine osmolality, plasma sodium and glucose, known transsphenoidal surgery, or anterior pituitary deficiencies were selected as input parameters for the basic ML-based algorithm. Testing it on an unseen test data set resulted in a high area under the curve (AUC) score of 0.87. A further improvement of the ML-based algorithm was reached with the addition of MRI characteristics and the results of the hypertonic saline infusion test (AUC: 0.93 and 0.98, respectively).
The developed ML-based algorithm facilitated differentiation between cDI and PP patients with high accuracy even if only clinical information and laboratory data were available, thereby possibly avoiding cumbersome clinical tests in the future.
EJE is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 136 | 1 | 1 |
PDF Downloads | 165 | 0 | 0 |