Mosaic PRKACA duplication causing a novel and distinct phenotype of early-onset Cushing’s syndrome and acral cutaneous mucinosis

in European Journal of Endocrinology
Authors:
Sinéad M McGlacken-Byrne Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, UK
Genetics and Genomic Medicine Programme, UCL GOS Institute of Child Health, London

Search for other papers by Sinéad M McGlacken-Byrne in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4289-0852
,
Ashraf Abdelmaksoud International and Private Patient Department, Great Ormond Street Hospital NHS Foundation Trust

Search for other papers by Ashraf Abdelmaksoud in
Current site
Google Scholar
PubMed
Close
,
Mohammad Haini Department of Histopathology, Great Ormond Street Hospital for Children, London, UK

Search for other papers by Mohammad Haini in
Current site
Google Scholar
PubMed
Close
,
Liina Palm Department of Histopathology, Great Ormond Street Hospital for Children, London, UK

Search for other papers by Liina Palm in
Current site
Google Scholar
PubMed
Close
,
Michael Ashworth Department of Histopathology, Great Ormond Street Hospital for Children, London, UK

Search for other papers by Michael Ashworth in
Current site
Google Scholar
PubMed
Close
,
Juan Li Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China

Search for other papers by Juan Li in
Current site
Google Scholar
PubMed
Close
,
Wei Wang Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China

Search for other papers by Wei Wang in
Current site
Google Scholar
PubMed
Close
,
Xiumin Wang Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China

Search for other papers by Xiumin Wang in
Current site
Google Scholar
PubMed
Close
,
Jian Wang Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China

Search for other papers by Jian Wang in
Current site
Google Scholar
PubMed
Close
,
Bridget Callaghan International and Private Patient Department, Great Ormond Street Hospital NHS Foundation Trust

Search for other papers by Bridget Callaghan in
Current site
Google Scholar
PubMed
Close
,
Veronica A. Kinsler Genetics and Genomic Medicine Programme, UCL GOS Institute of Child Health, London
Department of Dermatology, Great Ormond Street Hospital for Children, London, UK
Mosaicism and Precision Medicine Laboratory, Francis Crick Institute, London, UK

Search for other papers by Veronica A. Kinsler in
Current site
Google Scholar
PubMed
Close
,
Francesca Faravelli North East Thames Regional Genetic Service, Great Ormond Street Hospital, London, UK

Search for other papers by Francesca Faravelli in
Current site
Google Scholar
PubMed
Close
, and
Mehul T Dattani Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, UK
Genetics and Genomic Medicine Programme, UCL GOS Institute of Child Health, London

Search for other papers by Mehul T Dattani in
Current site
Google Scholar
PubMed
Close

Correspondence should be addressed to S M McGlacken-Byrne; Email: sinead.mcglacken-byrne@gosh.nhs.uk
Restricted access

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

Genetic alterations within the cAMP/protein kinase A (PKA) pathway result in a spectrum of adrenocortical disorders. Implicated genes include GNAS, PDE8B, PDE11A, PRKAR1A/B, and PRKACA. To date, pathogenic somatic PRKACA variants and germline PRKACA copy number gain have been associated with the development of cortisol-secreting adrenocortical adenomas and bilateral adrenal hyperplasia, respectively. While perturbations within the PRKAR1A gene are known to cause Carney complex, PKRACA mutations are rarely associated with an extra-adrenal phenotype. We describe a mosaic PRKACA duplication in an infant who presented with a Carney-like complex at the age of 3 months with bilateral non-pigmented micronodular adrenal hyperplasia, severe early-onset Cushing’s syndrome, and distinct acral soft tissue overgrowth due to cutaneous mucinosis. This represents a novel manifestation of PRKACA disruption and broadens its extra-adrenal phenotype. It suggests that the Cushing’s syndrome phenotypes arising from somatic and germline PRKACA abnormalities likely exist on a spectrum. We emphasise the importance of ascertaining a genetic diagnosis for PRKACA-mediated disease.

Significance statement

We describe a mosaic PRKACA duplication in a young infant who presented with a Carney-like complex: bilateral non-pigmented micronodular adrenal hyperplasia, severe early-onset Cushing’s syndrome, and distinct acral soft tissue overgrowth due to cutaneous mucinosis. This represents a novel manifestation of PRKACA disruption and broadens the extra-adrenal phenotype of PRKACA-associated Cushing’s syndrome. Our data suggest that Cushing’s syndrome phenotypes arising from somatic and germline PRKACA abnormalities can exist on a spectrum. We emphasise the value of ascertaining a genetic diagnosis for PRKACA-mediated adrenal and extra-adrenal disease to guide individualised and targeted care.

 

  • Collapse
  • Expand

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 3517 93 76
Full Text Views 56 0 0
PDF Downloads 70 0 0
  • 1

    Gallo-Payet N, Payet MD. Mechanism of action of ACTH: beyond cAMP. Microscopy Research and Technique 2003 61 275287 (https://doi.org/10.1002/jemt.10337)

  • 2

    Sewer MB, Waterman MR. cAMP-dependent transcription of steroidogenic genes in the human adrenal cortex requires a dual-specificity phosphatase in addition to protein kinase A. Journal of Molecular Endocrinology 2002 29 163174 (https://doi.org/10.1677/jme.0.0290163)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Calebiro D, Di Dalmazi G, Bathon K, Ronchi CL, Beuschlein F. cAMP signaling in cortisol-producing adrenal adenoma. European Journal of Endocrinology 2015 173 M99M106 (https://doi.org/10.1530/EJE-15-0353)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM. Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. New England Journal of Medicine 1991 325 16881695 (https://doi.org/10.1056/NEJM199112123252403)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Bertherat J, Groussin L, Bertagna X. Mechanisms of disease: adrenocortical tumors--molecular advances and clinical perspectives. Nature Clinical Practice. Endocrinology and Metabolism 2006 2 632641 (https://doi.org/10.1038/ncpendmet0321)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Horvath A, Boikos S, Giatzakis C, Robinson-White A, Groussin L, Griffin KJ, Stein E, Levine E, Delimpasi G & Hsiao HP et al.A genome-wide scan identifies mutations in the gene encoding phosphodiesterase 11A4 (PDE11A) in individuals with adrenocortical hyperplasia. Nature Genetics 2006 38 794800 (https://doi.org/10.1038/ng1809)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Horvath A, Giatzakis C, Robinson-White A, Boikos S, Levine E, Griffin K, Stein E, Kamvissi V, Soni P & Bossis I et al.Adrenal hyperplasia and adenomas are associated with inhibition of phosphodiesterase 11A in carriers of PDE11A sequence variants that are frequent in the population. Cancer Research 2006 66 1157111575 (https://doi.org/10.1158/0008-5472.CAN-06-2914)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Rothenbuhler A, Horvath A, Libé R, Faucz FR, Fratticci A, Raffin Sanson ML, Vezzosi D, Azevedo M, Levy I & Almeida MQ et al.Identification of novel genetic variants in phosphodiesterase 8B (PDE8B), a cAMP-specific phosphodiesterase highly expressed in the adrenal cortex, in a cohort of patients with adrenal tumours. Clinical Endocrinology 2012 77 195199 (https://doi.org/10.1111/j.1365-2265.2012.04366.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Tsai LC, Shimizu-Albergine M, Beavo JA. The high-affinity cAMP-specific phosphodiesterase 8B controls steroidogenesis in the mouse adrenal gland. Molecular Pharmacology 2011 79 639648 (https://doi.org/10.1124/mol.110.069104)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Bertherat J, Horvath A, Groussin L, Grabar S, Boikos S, Cazabat L, Libe R, René-Corail F, Stergiopoulos S & Bourdeau I et al.Mutations in regulatory subunit type 1A of cyclic adenosine 5’-monophosphate-dependent protein kinase (PRKAR1A): phenotype analysis in 353 patients and 80 different genotypes. Journal of Clinical Endocrinology and Metabolism 2009 94 20852091 (https://doi.org/10.1210/jc.2008-2333)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Kirschner LS, Carney JA, Pack SD, Taymans SE, Giatzakis C, Cho YS, Cho-Chung YS, Stratakis CA. Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nature Genetics 2000 26 8992 (https://doi.org/10.1038/79238)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Drougat L, Settas N, Ronchi CL, Bathon K, Calebiro D, Maria AG, Haydar S, Voutetakis A, London E & Faucz FR et al.Genomic and sequence variants of protein kinase A regulatory subunit type 1β (PRKAR1B) in patients with adrenocortical disease and Cushing syndrome. Genetics in Medicine 2021 23 174182 (https://doi.org/10.1038/s41436-020-00958-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Zhou J, Azizan EAB, Cabrera CP, Fernandes-Rosa FL, Boulkroun S, Argentesi G, Cottrell E, Amar L, Wu X & O’Toole S et al.Somatic mutations of GNA11 and GNAQ in CTNNB1-mutant aldosterone-producing adenomas presenting in puberty, pregnancy or menopause. Nature Genetics 2021 53 13601372 (https://doi.org/10.1038/s41588-021-00906-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Cao Y, He M, Gao Z, Peng Y, Li Y, Li L, Zhou W, Li X, Zhong X & Lei Y et al.Activating hotspot L205R mutation in PRKACA and adrenal Cushing’s syndrome. Science 2014 344 913917 (https://doi.org/10.1126/science.1249480)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Goh G, Scholl UI, Healy JM, Choi M, Prasad ML, Nelson-Williams C, Kunstman JW, Korah R, Suttorp AC & Dietrich D et al.Recurrent activating mutation in PRKACA in cortisol-producing adrenal tumors. Nature Genetics 2014 46 613617 (https://doi.org/10.1038/ng.2956)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Sato Y, Maekawa S, Ishii R, Sanada M, Morikawa T, Shiraishi Y, Yoshida K, Nagata Y, Sato-Otsubo A & Yoshizato T et al.Recurrent somatic mutations underlie corticotropin-independent Cushing’s syndrome. Science 2014 344 917920 (https://doi.org/10.1126/science.1252328)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Beuschlein F, Fassnacht M, Assié G, Calebiro D, Stratakis CA, Osswald A, Ronchi CL, Wieland T, Sbiera S & Faucz FR et al.Constitutive activation of PKA catalytic subunit in adrenal Cushing’s syndrome. New England Journal of Medicine 2014 370 10191028 (https://doi.org/10.1056/NEJMoa1310359)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Di Dalmazi G, Kisker C, Calebiro D, Mannelli M, Canu L, Arnaldi G, Quinkler M, Rayes N, Tabarin A & Laure Jullié M et al.Novel somatic mutations in the catalytic subunit of the protein kinase A as a cause of adrenal Cushing’s syndrome: a European multicentric study. Journal of Clinical Endocrinology and Metabolism 2014 99 E2093E2100 (https://doi.org/10.1210/jc.2014-2152)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Berthon AS, Szarek E, Stratakis CA. PRKACA: the catalytic subunit of protein kinase A and adrenocortical tumors. Frontiers in Cell and Developmental Biology 2015 3 26 (https://doi.org/10.3389/fcell.2015.00026)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Carney JA, Lyssikatos C, Lodish MB, Stratakis CA. Germline PRKACA amplification leads to Cushing syndrome caused by 3 adrenocortical pathologic phenotypes. Human Pathology 2015 46 4049 (https://doi.org/10.1016/j.humpath.2014.09.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Lodish MB, Yuan B, Levy I, Braunstein GD, Lyssikatos C, Salpea P, Szarek E, Karageorgiadis AS, Belyavskaya E & Raygada M et al.Germline PRKACA amplification causes variable phenotypes that may depend on the extent of the genomic defect: molecular mechanisms and clinical presentations. European Journal of Endocrinology 2015 172 803811 (https://doi.org/10.1530/EJE-14-1154)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Espiard S, Knape MJ, Bathon K, Assié G, Rizk-Rabin M, Faillot S, Luscap-Rondof W, Abid D, Guignat L & Calebiro D et al.Activating PRKACB somatic mutation in cortisol-producing adenomas. JCI Insight 2018 3 (https://doi.org/10.1172/jci.insight.98296)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Tatsi C, Faucz FR, Blavakis E, Carneiro BA, Lyssikatos C, Belyavskaya E, Quezado M, Stratakis CA, Somatic P. Somatic PRKAR1A gene mutation in a nonsyndromic metastatic large cell calcifying Sertoli cell tumor. Journal of the Endocrine Society 2019 3 13751382 (https://doi.org/10.1210/js.2019-00022)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Stratakis CA, Kirschner LS, Carney JA. Clinical and molecular features of the Carney complex: diagnostic criteria and recommendations for patient evaluation. Journal of Clinical Endocrinology and Metabolism 2001 86 40414046 (https://doi.org/10.1210/jcem.86.9.7903)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Palencia-Campos A, Aoto PC, Machal EMF, Rivera-Barahona A, Soto-Bielicka P, Bertinetti D, Baker B, Vu L, Piceci-Sparascio F & Torrente I et al.Germline and mosaic variants in PRKACA and PRKACB cause a multiple congenital malformation syndrome. American Journal of Human Genetics 2020 107 977988 (https://doi.org/10.1016/j.ajhg.2020.09.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Stratakis CA E pluribus unum? The main protein kinase A catalytic subunit (PRKACA), a likely oncogene, and cortisol-producing tumors. Journal of Clinical Endocrinology and Metabolism 2014 99 36293633 (https://doi.org/10.1210/jc.2014-3295)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Fleseriu M, Auchus R, Bancos I, Ben-Shlomo A, Bertherat J, Biermasz NR, Boguszewski CL, Bronstein MD, Buchfelder M & Carmichael JD et al.Consensus on diagnosis and management of Cushing’s disease: a guideline update. Lancet. Diabetes and Endocrinology 2021 9 847875 (https://doi.org/10.1016/S2213-8587(2100235-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Ferrigno R, Hasenmajer V, Caiulo S, Minnetti M, Mazzotta P, Storr HL, Isidori AM, Grossman AB, De Martino MC, Savage MO. Paediatric Cushing’s disease: epidemiology, pathogenesis, clinical management and outcome. Reviews in Endocrine and Metabolic Disorders 2021 22 817835 (https://doi.org/10.1007/s11154-021-09626-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Pivonello R, Isidori AM, De Martino MC, Newell-Price J, Biller BMK, Colao A. Complications of Cushing’s syndrome: state of the art. Lancet. Diabetes and Endocrinology 2016 4 611629 (https://doi.org/10.1016/S2213-8587(1600086-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Kinsler VA, Boccara O, Fraitag S, Torrelo A, Vabres P, Diociaiuti A. Mosaic abnormalities of the skin: review and guidelines from the European Reference Network for rare skin diseases. British Journal of Dermatology 2020 182 552563 (https://doi.org/10.1111/bjd.17924)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Tseng IC, Huang WJ, Jhuang YL, Chang YY, Hsu HP, Jeng YM. Microinsertions in PRKACA cause activation of the protein kinase A pathway in cardiac myxoma. Journal of Pathology 2017 242 134139 (https://doi.org/10.1002/path.4899)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Kong JH, Siebold C, Rohatgi R. Biochemical mechanisms of vertebrate hedgehog signaling. Development 2019 146 (https://doi.org/10.1242/dev.166892)

  • 33

    Mukhopadhyay S, Wen X, Ratti N, Loktev A, Rangell L, Scales SJ, Jackson PK. The ciliary G-protein-coupled receptor Gpr161 negatively regulates the Sonic hedgehog pathway via cAMP signaling. Cell 2013 152 210223 (https://doi.org/10.1016/j.cell.2012.12.026)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Digilio MC, Pugnaloni F, De Luca A, Calcagni G, Baban A, Dentici ML, Versacci P, Dallapiccola B, Tartaglia M, Marino B. Atrioventricular canal defect and genetic syndromes: the unifying role of sonic hedgehog. Clinical Genetics 2019 95 268276 (https://doi.org/10.1111/cge.13375)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Goel S, Desai K, Macapinlac M, Wadler S, Goldberg G, Fields A, Einstein M, Volterra F, Wong B & Martin R et al.A phase I safety and dose escalation trial of docetaxel combined with GEM231, a second generation antisense oligonucleotide targeting protein kinase A R1alpha in patients with advanced solid cancers. Investigational New Drugs 2006 24 125134 (https://doi.org/10.1007/s10637-006-2378-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Omar F, Findlay JE, Carfray G, Allcock RW, Jiang Z, Moore C, Muir AL, Lannoy M, Fertig BA & Mai D et al.Small-molecule allosteric activators of PDE4 long form cyclic AMP phosphodiesterases. Proceedings of the National Academy of Sciences of the United States of America 2019 116 1332013329 (https://doi.org/10.1073/pnas.1822113116)

    • PubMed
    • Search Google Scholar
    • Export Citation