Novel inflammatory biomarkers in thyroid eye disease

in European Journal of Endocrinology
View More View Less
  • 1 Department of Ophthalmology, Haukeland University Hospital, Bergen, Norway
  • | 2 Department of Medicine, Haukeland University Hospital, Bergen, Norway
  • | 3 Department of Clinical Science and K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
  • | 4 Volvat Medical Center, Bergen, Norway
  • | 5 Department of Medicine, Stavanger University Hospital, Stavanger, Norway
  • | 6 Department of Clinical Medicine, University of Bergen, Bergen, Norway

Correspondence should be addressed to H O Ueland; Email: hans.olav.ueland@helse-bergen.no
Restricted access

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

Purpose

The aim of this study is to identify biochemical inflammatory markers predicting the presence or risk of developing thyroid eye disease (TED) in patients with Graves’ disease (GD).

Methods

Patients with GD (n = 100, 77 females) were included from the National Norwegian Registry of Organ-Specific Diseases. Serum samples were analysed for 92 different inflammatory biomarkers using the proximity extension assay. Biomarker levels were compared between groups of patients with and without TED and healthy subjects (HS) (n = 120).

Results

TED was found in 36 of 100 GD patients. Significant (P < 0.05) differences in the levels of 52 inflammatory biomarkers were found when GD patients and HS were compared (42 elevated and 10 decreased). Out of the 42 elevated biomarkers, a significantly higher serum level of interleukin-6 (IL6) (P = 0.022) and macrophage colony-stimulating factor (CSF1) (P = 0.015) were found in patients with TED compared to patients without TED. Patients with severe TED also had significantly elevated levels of Fms-related tyrosine kinase 3 ligand (FLT3LG) (P = 0.009). Furthermore, fibroblast growth factor 21 (FGF21) was significantly increased (P = 0.008) in patients with GD who had no signs of TED at baseline but developed TED later.

Conclusion

We demonstrate an immunologic fingerprint of GD, as serum levels of several inflammation-related proteins were elevated, while others were decreased. Distinctly increased levels of IL6, CSF1, FLT3LG, and FGF21 were observed in TED, suggesting that these inflammatory proteins could be important in the pathogenesis, and therefore potential new biomarkers for clinical use.

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 1341 1341 750
Full Text Views 99 99 52
PDF Downloads 114 114 53
  • 1

    Chin YH, Ng CH, Lee MH, Koh JWH, Kiew J, Yang SP, Sundar G, Khoo CM. Prevalence of thyroid eye disease in Graves’ disease: a meta-analysis and systematic review. Clinical Endocrinology 2020 93 363374. (https://doi.org/10.1111/cen.14296)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2

    Perros P, Žarković M, Azzolini C, Ayvaz G, Baldeschi L, Bartalena L, Boschi A, Bournaud C, Brix TH & Covelli D et al.PREGO (presentation of Graves’ orbitopathy) study: changes in referral patterns to European Group On Graves’ Orbitopathy (EUGOGO) centres over the period from 2000 to 2012. British Journal of Ophthalmology 2015 99 15311535. (https://doi.org/10.1136/bjophthalmol-2015-306733)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3

    Bartalena L, Kahaly GJ, Baldeschi L, Dayan CM, Eckstein A, Marcocci C, Marino M, Vaidya B, Wiersinga WM & EUGOGO. The 2021 European Group on Graves’ Orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Graves’ orbitopathy. European Journal of Endocrinology 2021 185 G43G67. (https://doi.org/10.1530/EJE-21-0479)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4

    Thornton J, Kelly SP, Harrison RA, Edwards R. Cigarette smoking and thyroid eye disease: a systematic review. Eye 2007 21 11351145. (https://doi.org/10.1038/sj.eye.6702603)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5

    Eckstein AK, Plicht M, Lax H, Neuhauser M, Mann K, Lederbogen S, Heckmann C, Esser J, Morgenthaler NG. Thyrotropin receptor autoantibodies are independent risk factors for Graves' ophthalmopathy and help to predict severity and outcome of the disease. Journal of Clinical Endocrinology and Metabolism 2006 91 34643470. (https://doi.org/10.1210/jc.2005-2813)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6

    Vannucchi G, Campi I, Covelli D, Dazzi D, Curro N, Simonetta S, Ratiglia R, Beck-Peccoz P, Salvi M. Graves’ orbitopathy activation after radioactive iodine therapy with and without steroid prophylaxis. Journal of Clinical Endocrinology and Metabolism 2009 94 33813386. (https://doi.org/10.1210/jc.2009-0506)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7

    Karlsson F, Westermark K, Dahlberg PA, Jansson R, Enoksson P. Ophthalmopathy and thyroid stimulation. Lancet 1989 2 691. (https://doi.org/10.1016/s0140-6736(8990945-8)

    • Search Google Scholar
    • Export Citation
  • 8

    Tanda ML, Piantanida E, Liparulo L, Veronesi G, Lai A, Sassi L, Pariani N, Gallo D, Azzolini C & Ferrario M et al.Prevalence and natural history of Graves’ orbitopathy in a large series of patients with newly diagnosed Graves’ hyperthyroidism seen at a single center. Journal of Clinical Endocrinology and Metabolism 2013 98 14431449. (https://doi.org/10.1210/jc.2012-3873)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9

    Schott M, Hermsen D, Broecker-Preuss M, Casati M, Mas JC, Eckstein A, Gassner D, Golla R, Graeber C & Van Helden J et al.Clinical value of the first automated TSH receptor autoantibody assay for the diagnosis of Graves’ disease (GD): an international multicentre trial. Clinical Endocrinology 2009 71 566573. (https://doi.org/10.1111/j.1365-2265.2008.03512.x)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10

    Xu L, Ma X, Wang Y, Li X, Qi Y, Cui B, Li X, Ning G, Wang S. The expression and pathophysiological role of osteopontin in Graves’ disease. Journal of Clinical Endocrinology and Metabolism 2011 96 E1866E1870. (https://doi.org/10.1210/jc.2011-1339)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11

    Laban-Guceva N, Bogoev M, Antova M. Serum concentrations of interleukin (IL-)1alpha, 1beta, 6 and tumor necrosis factor (TNF-) alpha in patients with thyroid eye disease (TED). Medical Archives 2007 61 203206.

    • Search Google Scholar
    • Export Citation
  • 12

    Nowak M, Siemińska L, Karpe J, Marek B, Kos-Kudła B, Kajdaniuk D. Serum concentrations of HGF and IL-8 in patients with active Graves’ orbitopathy before and after methylprednisolone therapy. Journal of Endocrinological Investigation 2016 39 6372. (https://doi.org/10.1007/s40618-015-0322-7)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13

    Kim SE, Yoon JS, Kim KH, Lee SY. Increased serum interleukin-17 in Graves’ ophthalmopathy. Graefe’s Archive for Clinical and Experimental Ophthalmology 2012 250 15211526. (https://doi.org/10.1007/s00417-012-2092-7)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14

    Shen J, Li Z, Li W, Ge Y, Xie M, Lv M, Fan Y, Chen Z, Zhao D, Han Y. Th1, Th2, and Th17 cytokine involvement in thyroid associated ophthalmopathy. Disease Markers 2015 2015 609593. (https://doi.org/10.1155/2015/609593)

    • Search Google Scholar
    • Export Citation
  • 15

    Huang D, Luo Q, Yang H, Mao Y. Changes of lacrimal gland and tear inflammatory cytokines in thyroid-associated ophthalmopathy. Investigative Ophthalmology and Visual Science 2014 55 49354943. (https://doi.org/10.1167/iovs.13-13704)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16

    Wei H, Guan M, Qin Y, Xie C, Fu X, Gao F, Xue Y. Circulating levels of miR-146a and IL-17 are significantly correlated with the clinical activity of Graves’ ophthalmopathy. Endocrine Journal 2014 61 10871092. (https://doi.org/10.1507/endocrj.ej14-0246)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17

    Aass C, Norheim I, Eriksen EF, Børnick EC, Thorsby PM, Pepaj M. Comparative proteomic analysis of tear fluid in Graves’ disease with and without orbitopathy. Clinical Endocrinology 2016 85 805812. (https://doi.org/10.1111/cen.13122)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18

    Aass C, Norheim I, Eriksen EF, Børnick EC, Thorsby PM, Pepaj M. Establishment of a tear protein biomarker panel differentiating between Graves’ disease with or without orbitopathy. PLoS ONE 2017 12 e0175274. (https://doi.org/10.1371/journal.pone.0175274)

    • Search Google Scholar
    • Export Citation
  • 19

    Zhang L, Masetti G, Colucci G, Salvi M, Covelli D, Eckstein A, Kaiser U, Draman MS, Muller I & Ludgate M et al.Combining micro-RNA and protein sequencing to detect robust biomarkers for Graves’ disease and orbitopathy. Scientific Reports 2018 8 8386. (https://doi.org/10.1038/s41598-018-26700-1)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20

    Mourits MP, Prummel MF, Wiersinga WM, Koornneef L. Clinical activity score as a guide in the management of patients with Graves’ ophthalmopathy. Clinical Endocrinology 1997 47 914. (https://doi.org/10.1046/j.1365-2265.1997.2331047.x)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21

    Assarsson E, Lundberg M, Holmquist G, Björkesten J, Bucht Thorsen SB, Ekman D, Eriksson A, Rennel Dickens E, Ohlsson S & Edfeldt G et al.Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS ONE 2014 9 e95192. (https://doi.org/10.1371/journal.pone.0095192)

    • Search Google Scholar
    • Export Citation
  • 22

    Dean RB, Dixon WJ. Simplified statistics for small numbers of observations. Analytical Chemistry 1951 23 636638. (https://doi.org/10.1021/ac60052a025)

  • 23

    Harris EK, Boyd JC. On dividing reference data into subgroups to produce separate reference ranges. Clinical Chemistry 1990 36 265270. (https://doi.org/10.1093/clinchem/36.2.265)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24

    Jyonouchi SC, Valyasevi RW, Harteneck DA, Dutton CM, Bahn RS. Interleukin-6 stimulates thyrotropin receptor expression in human orbital preadipocyte fibroblasts from patients with Graves’ ophthalmopathy. Thyroid 2001 11 929934. (https://doi.org/10.1089/105072501753210984)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25

    Hirano T Interleukin 6 and its receptor: ten years later. International Reviews of Immunology 1998 16 249284. (https://doi.org/10.3109/08830189809042997)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26

    Kishazi E, Dor M, Eperon S, Oberic A, Turck N, Hamedani M. Differential profiling of lacrimal cytokines in patients suffering from thyroid-associated orbitopathy. Scientific Reports 2018 8 10792. (https://doi.org/10.1038/s41598-018-29113-2)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27

    Molnár I, Balazs C. High circulating IL-6 level in Graves’ ophthalmopathy. Autoimmunity 1997 25 9196. (https://doi.org/10.3109/08916939708996275)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28

    Perez-Moreiras JV, Gomez-Reino JJ, Maneiro JR, Perez-Pampin E, Romo Lopez A, Rodríguez Alvarez FM, Castillo Laguarta JM, Del Estad Cabello A, Gessa Sorroche M & España Gregori E et al.Efficacy of tocilizumab in patients with moderate-to-severe corticosteroid-resistant Graves orbitopathy: a randomized clinical trial. American Journal of Ophthalmology 2018 195 181190. (https://doi.org/10.1016/j.ajo.2018.07.038)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29

    Stanley ER, Berg KL, Einstein DB, Lee PS, Pixley FJ, Wang Y, Yeung YG. Biology and action of colony-stimulating factor-1. Molecular Reproduction and Development 1997 46 410. (https://doi.org/10.1002/(SICI)1098-2795(199701)46:1<4::AID-MRD2>3.0.CO;2-V)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30

    Garcia S, Hartkamp LM, Malvar-Fernandez B, van Es IE, Lin H, Wong J, Long L, Zanghi JA, Rankin AL & Masteller EL et al.Colony-stimulating factor (CSF) 1 receptor blockade reduces inflammation in human and murine models of rheumatoid arthritis. Arthritis Research and Therapy 2016 18 75. (https://doi.org/10.1186/s13075-016-0973-6)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31

    Menke J, Rabacal WA, Byrne KT, Iwata Y, Schwartz MM, Stanley ER, Schwarting A, Kelley VR. Circulating CSF-1 promotes monocyte and macrophage phenotypes that enhance lupus nephritis. Journal of the American Society of Nephrology 2009 20 25812592. (https://doi.org/10.1681/ASN.2009050499)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32

    Ramos MI, Perez SG, Aarrass S, Helder B, Broekstra P, Gerlag DM, Reedquist KA, Tak PP, Lebre MC. FMS-related tyrosine kinase 3 ligand (Flt3L)/CD135 axis in rheumatoid arthritis. Arthritis Research and Therapy 2013 15 R209. (https://doi.org/10.1186/ar4403)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33

    Smith TJ Potential roles of CD34+ fibrocytes masquerading as orbital fibroblasts in thyroid-associated ophthalmopathy. Journal of Clinical Endocrinology and Metabolism 2019 104 581594. (https://doi.org/10.1210/jc.2018-01493)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34

    Kumar S, Coenen MJ, Scherer PE, Bahn RS. Evidence for enhanced adipogenesis in the orbits of patients with Graves’ ophthalmopathy. Journal of Clinical Endocrinology and Metabolism 2004 89 930935. (https://doi.org/10.1210/jc.2003-031427)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35

    Schovanek J, Krupka M, Cibickova L, Karhanova M, Reddy S, Kucerova V, Frysak Z, Karasek D. Adipocytokines in Graves’ orbitopathy and the effect of high-dose corticosteroids. Adipocyte 2021 10 456462. (https://doi.org/10.1080/21623945.2021.1980258)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36

    Ferrari SM, Ruffilli I, Elia G, Ragusa F, Paparo SR, Patrizio A, Mazzi V, Antonelli A, Fallahi P. Chemokines in hyperthyroidism. Journal of Clinical and Translational Endocrinology 2019 16 100196. (https://doi.org/10.1016/j.jcte.2019.100196)

    • Search Google Scholar
    • Export Citation
  • 37

    Jung HW, Choi SW, Choi JI, Kwon BS. Serum concentrations of soluble 4-1BB and 4-1BB ligand correlated with the disease severity in rheumatoid arthritis. Experimental and Molecular Medicine 2004 36 1322. (https://doi.org/10.1038/emm.2004.2)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38

    Moraes L, Magnusson MK, Mavroudis G, Polster A, Jonefjäll B, Törnblom H, Sundin J, Simrén M, Strid H, Öhman L. Systemic inflammatory protein profiles distinguish irritable bowel syndrome (IBS) and ulcerative colitis, irrespective of inflammation or IBS-like symptoms. Inflammatory Bowel Diseases 2020 26 874884. (https://doi.org/10.1093/ibd/izz322)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39

    Prummel MF, Wiersinga WM. Smoking and risk of Graves’ disease. JAMA 1993 269 479482. (https://doi.org/10.1001/jama.1993.03500040045034)