Effects of estradiol on bone in men undergoing androgen deprivation therapy: a randomized placebo-controlled trial

in European Journal of Endocrinology
Authors:
Nicholas Russell Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Victoria, Australia
Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia

Search for other papers by Nicholas Russell in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5596-6601
,
Ali Ghasem-Zadeh Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Victoria, Australia
Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia

Search for other papers by Ali Ghasem-Zadeh in
Current site
Google Scholar
PubMed
Close
,
Rudolf Hoermann Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Victoria, Australia

Search for other papers by Rudolf Hoermann in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1326-4270
,
Ada S Cheung Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Victoria, Australia
Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia

Search for other papers by Ada S Cheung in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5257-5525
,
Jeffrey D Zajac Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Victoria, Australia
Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia

Search for other papers by Jeffrey D Zajac in
Current site
Google Scholar
PubMed
Close
,
Cat Shore-LorentiDepartment of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia

Search for other papers by Cat Shore-Lorenti in
Current site
Google Scholar
PubMed
Close
,
Peter R EbelingDepartment of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia

Search for other papers by Peter R Ebeling in
Current site
Google Scholar
PubMed
Close
,
David J HandelsmanANZAC Research Institute, University of Sydney, Concord Hospital, New South Wales, Australia

Search for other papers by David J Handelsman in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4200-7476
, and
Mathis Grossmann Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Victoria, Australia
Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia

Search for other papers by Mathis Grossmann in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8261-3457
View More View Less

Correspondence should be addressed to N Russell; Email: nicholas.russell@austin.org.au
Restricted access

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

Objective

In men, many effects of testosterone (T) on the skeleton are thought to be mediated by estradiol (E2), but trial evidence is largely lacking. This study aimed to determine the effects of E2 on bone health in men in the absence of endogenous T.

Design

This study is a 6-month randomized, placebo-controlled trial with the hypothesis that E2 would slow the decline of volumetric bone mineral density (vBMD) and bone microstructure, maintain areal bone mineral density (aBMD), and reduce bone remodelling.

Methods

78 participants receiving androgen deprivation therapy for prostate cancer were randomized to 0.9 mg of 0.1% E2 gel daily or matched placebo. The outcome measures were vBMD and microarchitecture at the distal tibia and distal radius by high-resolution peripheral quantitative CT, aBMD at the spine and hip by dual-energy x-ray absorptiometry, and serum bone remodelling markers.

Results

For the primary endpoint, total vBMD at the distal tibia, there was no significant difference between groups, mean adjusted difference (MAD) 2.0 mgHA/cm3 (95% CI: −0.8 to 4.8), P = 0.17. Cortical vBMD at the distal radius increased in the E2 group relative to placebo, MAD 14.8 mgHA/cm3 (95% CI: 4.5 to 25.0), P = 0.005. Relative to placebo, E2 increased estimated failure load at tibia, MAD 250 N (95% CI: 36 to 465), P = 0.02, and radius, MAD 193 N (95% CI: 65 to 320), P = 0.003. Relative to placebo, E2 increased aBMD at the lumbar spine, MAD 0.02 g/cm2 (95% CI: 0.01 to 0.03), P = 0.01, and ultra-distal radius, MAD 0.01 g/cm2 (95% CI: 0.00 to 0.02), P = 0.01, and reduced serum bone remodelling markers.

Conclusion

Relative to placebo, E2 treatment increases some measures of bone density and bone strength in men and reduces bone remodelling, effects that occur in the absence of endogenous T.

 

  • Collapse
  • Expand

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 3631 3493 11
Full Text Views 142 131 0
PDF Downloads 187 171 0
  • 1

    Russell N, Grossmann M. MECHANISMS IN ENDOCRINOLOGY: Estradiol as a male hormone. European Journal of Endocrinology 2019 181 R23R43. (https://doi.org/10.1530/EJE-18-1000)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2

    Bouillon R, Bex M, Vanderschueren D, Boonen S. Estrogens are essential for male pubertal periosteal bone expansion. Journal of Clinical Endocrinology and Metabolism 2004 89 60256029. (https://doi.org/10.1210/jc.2004-0602)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3

    Herrmann BL, Janssen OE, Hahn S, Broecker-Preuss M, Mann K. Effects of estrogen replacement therapy on bone and glucose metabolism in a male with congenital aromatase deficiency. Hormone and Metabolic Research 2005 37 178183. (https://doi.org/10.1055/s-2005-861292)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4

    Smith EP, Specker B, Bachrach BE, Kimbro KS, Li XJ, Young MF, Fedarko NS, Abuzzahab MJ, Frank GR & Cohen RM et al. Impact on bone of an estrogen receptor-alpha gene loss of function mutation. Journal of Clinical Endocrinology and Metabolism 2008 93 30883096. (https://doi.org/10.1210/jc.2007-2397)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5

    Chen Z, Tao S, Gao Y, Zhang J, Hu Y, Mo L, Kim ST, Yang X, Tan A & Zhang H et al. Genome-wide association study of sex hormones, gonadotropins and sex hormone-binding protein in Chinese men. Journal of Medical Genetics 2013 50 794801. (https://doi.org/10.1136/jmedgenet-2013-101705)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6

    Eriksson AL, Perry JRB, Coviello AD, Delgado GE, Ferrucci L, Hoffman AR, Huhtaniemi IT, Ikram MA, Karlsson MK & Kleber ME et al. Genetic determinants of circulating estrogen levels and evidence of a causal effect of estradiol on bone density in men. Journal of Clinical Endocrinology and Metabolism 2018 103 9911004. (https://doi.org/10.1210/jc.2017-02060)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7

    Argoud T, Boutroy S, Claustrat B, Chapurlat R, Szulc P. Association between sex steroid levels and bone microarchitecture in men: the STRAMBO study. Journal of Clinical Endocrinology and Metabolism 2014 99 14001410. (https://doi.org/10.1210/jc.2013-3233)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8

    Vandenput L, Lorentzon M, Sundh D, Nilsson ME, Karlsson MK, Mellström D, Ohlsson C. Serum estradiol levels are inversely associated with cortical porosity in older men. Journal of Clinical Endocrinology and Metabolism 2014 99 E1322E1326. (https://doi.org/10.1210/jc.2014-1319)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9

    Woo J, Kwok T, Leung JCS, Ohlsson C, Vandenput L, Leung PC. Sex steroids and bone health in older Chinese men. Osteoporosis International 2012 23 15531562. (https://doi.org/10.1007/s00198-011-1552-y)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10

    Ward KA, Pye SR, Adams JE, Boonen S, Vanderschueren D, Borghs H, Gaytant J, Gielen E, Bartfai G & Casanueva FF et al. Influence of age and sex steroids on bone density and geometry in middle-aged and elderly European men. Osteoporosis International 2011 22 15131523. (https://doi.org/10.1007/s00198-010-1437-5)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11

    Cauley JA, Ewing SK, Taylor BC, Fink HA, Ensrud KE, Bauer DC, Barrett-Connor E, Marshall L, Orwoll ES & Osteoporotic Fractures in Men Study (MrOS) Research Group. Sex steroid hormones in older men: longitudinal associations with 4.5-year change in hip bone mineral density – the osteoporotic fractures in men study. Journal of Clinical Endocrinology and Metabolism 2010 95 43144323. (https://doi.org/10.1210/jc.2009-2635)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12

    Finkelstein JS, Lee H, Leder BZ, Burnett-Bowie SAM, Goldstein DW, Hahn CW, Hirsch SC, Linker A, Perros N & Servais AB et al. Gonadal steroid–dependent effects on bone turnover and bone mineral density in men. Journal of Clinical Investigation 2016 126 11141125. (https://doi.org/10.1172/JCI84137)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13

    Burnett-Bowie SAM, McKay EA, Lee H, Leder BZ. Effects of aromatase inhibition on bone mineral density and bone turnover in older men with low testosterone levels. Journal of Clinical Endocrinology and Metabolism 2009 94 47854792. (https://doi.org/10.1210/jc.2009-0739)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14

    Falahati-Nini A, Riggs BL, Atkinson EJ, O’Fallon WM, Eastell R, Khosla S. Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. Journal of Clinical Investigation 2000 106 15531560. (https://doi.org/10.1172/JCI10942)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15

    Ebeling PR, Nguyen HH, Aleksova J, Vincent AJ, Wong P, Milat F. Secondary osteoporosis. Endocrine Reviews 2022 43 240313. (https://doi.org/10.1210/endrev/bnab028)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16

    Smith MR, Morton RA, Barnette KG, Sieber PR, Malkowicz SB, Rodriguez D, Hancock ML, Steiner MS. Toremifene to reduce fracture risk in men receiving androgen deprivation therapy for prostate cancer. Journal of Urology 2013 189 (Supplement) S45S50. (https://doi.org/10.1016/j.juro.2012.11.016)

    • Search Google Scholar
    • Export Citation
  • 17

    Russell N, Hoermann R, Cheung AS, Ching M, Zajac JD, Handelsman DJ, Grossmann M. Short-term effects of transdermal estradiol in men undergoing androgen deprivation therapy for prostate cancer: a randomized placebo-controlled trial. European Journal of Endocrinology 2018 178 565576. (https://doi.org/10.1530/EJE-17-1072)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18

    Mottet N, Bellmunt J, Bolla M, Briers E, Cumberbatch MG, Santis MD, Fossati N, Gross T, Henry AM & Joniau S et al.EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. European Urology 2017 71 618629. (https://doi.org/10.1016/j.eururo.2016.08.003)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19

    Cornford P, Bellmunt J, Bolla M, Briers E, Santis MD, Gross T, Henry AM, Joniau S, Lam TB & Mason MD et al.EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer. European Urology 2017 71 630642. (https://doi.org/10.1016/j.eururo.2016.08.002)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20

    Smith MR, Egerdie B, Toriz NH, Feldman R, Tammela TLJ, Saad F, Heracek J, Szwedowski M, Ke C & Kupic A et al. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. New England Journal of Medicine 2009 361 745755. (https://doi.org/10.1056/NEJMoa0809003)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21

    Cheung AS, Hoermann R, Ghasem-Zadeh A, Tinson AJ, Ly V, Milevski SV, Joon DL, Zajac JD, Seeman E, Grossmann M. Differing effects of zoledronic acid on bone microarchitecture and bone mineral density in men receiving androgen deprivation therapy: a randomized controlled trial. Journal of Bone and Mineral Research 2020 35 18711880. (https://doi.org/10.1002/jbmr.4106)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22

    Russell N, Hoermann R, Cheung AS, Zajac JD, Handelsman DJ, Grossmann M. Effects of estradiol on fat in men undergoing androgen deprivation therapy: a randomized trial. European Journal of Endocrinology 2021 186 923. (https://doi.org/10.1530/EJE-21-0663)

    • Search Google Scholar
    • Export Citation
  • 23

    Russell N, Ghasem-Zadeh A, Hoermann R, Cheung AS, Zajac JD, Shore-Lorenti C, Ebeling PR, Handelsman DJ, Grossmann M. CONSORT checklist : effects of estradiol on bone in men undergoing androgen deprivation therapy: a randomised placebo-controlled trial. Figshare 2022. (https://doi.org/10.6084/m9.figshare.19350770.v1)

    • Search Google Scholar
    • Export Citation
  • 24

    NI H National Cancer Institute. Common terminology criteria for adverse events (CTCAE). Version 4.03, 2010. US Department of Health and Human Services, Available at (https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03/CTCAE_4.03_2010-06-14_QuickReference_8.5x11.pdf)

    • Search Google Scholar
    • Export Citation
  • 25

    Whittier DE, Boyd SK, Burghardt AJ, Paccou J, Ghasem-Zadeh A, Chapurlat R, Engelke K, Bouxsein ML. Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography. Osteoporosis International 2020 90 65086521. (https://doi.org/10.1007/s00198-020-05438-5)

    • Search Google Scholar
    • Export Citation
  • 26

    Laib A, Häuselmann HJ, Rüegsegger P. In vivo high resolution 3D-QCT of the human forearm. Technology and Health Care 1998 6 329337. (https://doi.org/10.3233/THC-1998-65-606)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27

    Zebaze R, Atkinson EJ, Peng Y, Bui M, Ghasem-Zadeh A, Khosla S, Seeman E. Increased cortical porosity and reduced trabecular density are not necessarily synonymous with bone loss and microstructural deterioration. JBMR Plus 2018 3 e10078-7. (https://doi.org/10.1002/jbm4.10078)

    • Search Google Scholar
    • Export Citation
  • 28

    Burghardt AJ, Buie HR, Laib A, Majumdar S, Boyd SK. Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone 2010 47 519528. (https://doi.org/10.1016/j.bone.2010.05.034)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29

    Buie HR, Campbell GM, Klinck RJ, MacNeil JA, Boyd SK. Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis. Bone 2007 41 505515. (https://doi.org/10.1016/j.bone.2007.07.007)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30

    Rietbergen van B, Weinans H, Huiskes R, Odgaard A. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. Journal of Biomechanics 1995 28 6981. (https://doi.org/10.1016/0021-9290(9580008-5)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31

    Pistoia W, Rietbergen van B, Lochmüller EM, Lill CA, Eckstein F, Rüegsegger P. Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 2002 30 842848. (https://doi.org/10.1016/s8756-3282(0200736-6)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32

    Samelson EJ, Broe KE, Xu H, Yang L, Boyd S, Biver E, Szulc P, Adachi J, Amin S & Atkinson E et al. Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): a prospective study. Lancet Diabetes and Endocrinology 2019 7 3443. (https://doi.org/10.1016/S2213-8587(1830308-5)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33

    Hamilton EJ, Ghasem-Zadeh A, Gianatti E, Joon DL, Bolton D, Zebaze R, Seeman E, Zajac JD, Grossmann M. Structural decay of bone microarchitecture in men with prostate cancer treated with androgen deprivation therapy. Journal of Clinical Endocrinology and Metabolism 2010 95 E456E463. (https://doi.org/10.1210/jc.2010-0902)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34

    Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 2015 67 148. (https://doi.org/10.18637/jss.v067.i01)

    • Search Google Scholar
    • Export Citation
  • 35

    Handelsman DJ, Ly LP. An accurate substitution method to minimize left censoring bias in serum steroid measurements. Endocrinology 2019 160 23952400. (https://doi.org/10.1210/en.2019-00340)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36

    R Core Tea m. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2021.

  • 37

    Fox J, Weisberg S. Visualizing fit and lack of fit in complex regression models with predictor effect plots and partial residuals. Journal of Statistical Software 2018 87 127. (https://doi.org/10.18637/jss.v087.i09)

    • Search Google Scholar
    • Export Citation
  • 38

    Cheung WH, Hung VW, Cheuk KY, Chau WW, Tsoi KK, Wong RM, Chow SK, Lam TP, Yung PS & Law SW et al. Best performance parameters of HR-pQCT to predict fragility fracture – systematic review and meta-analysis. Journal of Bone and Mineral Research 2021 36 23812398. (https://doi.org/10.1002/jbmr.4449)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39

    Khosla S New insights into androgen and estrogen receptor regulation of the male skeleton. Journal of Bone and Mineral Research 2015 30 11341137. (https://doi.org/10.1002/jbmr.2529)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40

    Wadhwa VK, Weston R, Mistry R, Parr NJ. Long-term changes in bone mineral density and predicted fracture risk in patients receiving androgen-deprivation therapy for prostate cancer, with stratification of treatment based on presenting values. BJU International 2009 104 800805. (https://doi.org/10.1111/j.1464-410X.2009.08483.x)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41

    Langley RE, Kynaston HG, Alhasso AA, Duong T, Paez EM, Jovic G, Scrase CD, Robertson A, Cafferty F & Welland A et al. A randomised comparison evaluating changes in bone mineral density in advanced prostate cancer: luteinising hormone-releasing hormone agonists versus transdermal oestradiol. European Urology 2016 69 10161025. (https://doi.org/10.1016/j.eururo.2015.11.030)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42

    Khastgir G, Studd JW, Fox SW, Jones J, Alaghband-Zadeh J, Chow JW. A longitudinal study of the effect of subcutaneous estrogen replacement on bone in young women with Turner’s syndrome. Journal of Bone and Mineral Research 2003 18 925932. (https://doi.org/10.1359/jbmr.2003.18.5.925)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43

    Greenspan SL, Coates P, Sereika SM, Nelson JB, Trump DL, Resnick NM. Bone loss after initiation of androgen deprivation therapy in patients with prostate cancer. Journal of Clinical Endocrinology and Metabolism 2005 90 64106417. (https://doi.org/10.1210/jc.2005-0183)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44

    Alibhai SMH, Mohamedali HZ, Gulamhusein H, Panju AH, Breunis H, Timilshina N, Fleshner N, Krahn MD, Naglie G & Tannock IF et al. Changes in bone mineral density in men starting androgen deprivation therapy and the protective role of vitamin D. Osteoporosis International 2013 24 25712579. (https://doi.org/10.1007/s00198-013-2343-4)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45

    Morote J, Orsola A, Abascal JM, Planas J, Trilla E, Raventos CX, Cecchini L, Encabo G, Reventos J. Bone mineral density changes in patients with prostate cancer during the first 2 years of androgen suppression. Journal of Urology 2006 1679168 3; discussion 1683. (https://doi.org/10.1016/S0022-5347(0500999-7)

    • Search Google Scholar
    • Export Citation
  • 46

    Shahinian VB, Kuo YF, Freeman JL, Goodwin JS. Risk of fracture after androgen deprivation for prostate cancer. New England Journal of Medicine 2005 352 154164. (https://doi.org/10.1056/NEJMoa041943)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47

    The International Society for Clinical Densito metry. Precision assessment calculator FAQs, 2019. (available at: https://iscd.org/knowledge-base/precision-assessment-calculator-faqs/). Accessed on 15th March 2022.

    • Search Google Scholar
    • Export Citation
  • 48

    Handelsman DJ, Yeap B, Flicker L, Martin S, Wittert GA, Ly LP. Age-specific population centiles for androgen status in men. European Journal of Endocrinology 2015 173 809817. (https://doi.org/10.1530/EJE-15-0380)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49

    Russell N, Cheung A, Grossmann M. Estradiol for the mitigation of adverse effects of androgen deprivation therapy. Endocrine-Related Cancer 2017 24 R297R313. (https://doi.org/10.1530/ERC-17-0153)

    • Crossref
    • Search Google Scholar
    • Export Citation