Role of endogenous incretins in the regulation of postprandial lipoprotein metabolism

in European Journal of Endocrinology
View More View Less
  • 1 Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
  • | 2 Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
  • | 3 Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
  • | 4 HUS Medical Imaging Center, Radiology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
  • | 5 Proteomics Facility, University of Gothenburg, Gothenburg, Sweden
  • | 6 Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
  • | 7 School of Biomedical Sciences, Ulster University, Coleraine, UK
  • | 8 Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
  • | 9 Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
  • | 10 Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden

Correspondence should be addressed to J Borén; Email: jan.boren@wlab.gu.se

*(M-R Taskinen and N Matikainen contributed equally to this work)

(C J Packard and J Borén are joint senior authors)

Restricted access

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

Objective

Incretins are known to influence lipid metabolism in the intestine when administered as pharmacologic agents. The aggregate influence of endogenous incretins on chylomicron production and clearance is less clear, particularly in light of opposing effects of co-secreted hormones. Here, we tested the hypothesis that physiological levels of incretins may impact on production or clearances rates of chylomicrons and VLDL.

Design and methods

A group of 22 overweight/obese men was studied to determine associations between plasma levels of glucagon-like peptides 1 and 2 (GLP-1 and GLP-2) and glucose-dependent insulinotropic polypeptide (GIP) after a fat-rich meal and the production and clearance rates of apoB48- and apoB100-containing triglyceride-rich lipoproteins. Subjects were stratified by above- and below-median incretin response (area under the curve).

Results

Stratification yielded subgroups that differed about two-fold in incretin response. There were neither differences in apoB48 production rates in chylomicrons or VLDL fractions nor in apoB100 or triglyceride kinetics in VLDL between men with above- vs below-median incretin responses. The men with above-median GLP-1 and GLP-2 responses exhibited higher postprandial plasma and chylomicron triglyceride levels, but this could not be related to altered kinetic parameters. No differences were found between incretin response subgroups and particle clearance rates.

Conclusion

We found no evidence for a regulatory effect of endogenous incretins on contemporaneous chylomicron or VLDL metabolism following a standardised fat-rich meal. The actions of incretins at pharmacological doses may not be reflected at physiological levels of these hormones.

Supplementary Materials

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 72 72 72
Full Text Views 3 3 3
PDF Downloads 4 4 4
  • 1

    Packard CJ, Boren J, Taskinen MR. Causes and consequences of hypertriglyceridemia. Frontiers in Endocrinology 2020 11 252. (https://doi.org/10.3389/fendo.2020.00252)

    • Search Google Scholar
    • Export Citation
  • 2

    Dash S, Xiao C, Morgantini C, Lewis GF. New insights into the regulation of chylomicron production. Annual Review of Nutrition 2015 35 265294. (https://doi.org/10.1146/annurev-nutr-071714-034338)

    • Search Google Scholar
    • Export Citation
  • 3

    Xiao C, Dash S, Morgantini C, Adeli K, Lewis GF. Gut peptides are novel regulators of intestinal lipoprotein secretion: experimental and pharmacological manipulation of lipoprotein metabolism. Diabetes 2015 64 23102318. (https://doi.org/10.2337/db14-1706)

    • Search Google Scholar
    • Export Citation
  • 4

    Nauck MA, Meier JJ. Incretin hormones: their role in health and disease. Diabetes, Obesity and Metabolism 2018 20 (Supplement 1) 521. (https://doi.org/10.1111/dom.13129)

    • Search Google Scholar
    • Export Citation
  • 5

    Muller TD, Finan B, Bloom SR, D’Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ & Habener JF et al.Glucagon-like peptide 1 (GLP-1). Molecular Metabolism 2019 30 72130. (https://doi.org/10.1016/j.molmet.2019.09.010)

    • Search Google Scholar
    • Export Citation
  • 6

    Heimburger SM, Bergmann NC, Augustin R, Gasbjerg LS, Christensen MB, Knop FK. Glucose-dependent insulinotropic polypeptide (GIP) and cardiovascular disease. Peptides 2020 125 170174. (https://doi.org/10.1016/j.peptides.2019.170174)

    • Search Google Scholar
    • Export Citation
  • 7

    Baggio LL, Drucker DJ. Glucagon-like peptide-1 receptor co-agonists for treating metabolic disease. Molecular Metabolism 2021 46 101090. (https://doi.org/10.1016/j.molmet.2020.101090)

    • Search Google Scholar
    • Export Citation
  • 8

    Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006 368 16961705. (https://doi.org/10.1016/S0140-6736(0669705-5)

    • Search Google Scholar
    • Export Citation
  • 9

    Holst JJ The incretin system in healthy humans: the role of GIP and GLP-1. Metabolism: Clinical and Experimental 2019 96 4655. (https://doi.org/10.1016/j.metabol.2019.04.014)

    • Search Google Scholar
    • Export Citation
  • 10

    Stahel P, Xiao C, Nahmias A, Tian L, Lewis GF. Multi-organ coordination of lipoprotein secretion by hormones, nutrients and neural networks. Endocrine Reviews 2021 42 815838. (https://doi.org/10.1210/endrev/bnab008)

    • Search Google Scholar
    • Export Citation
  • 11

    Matikainen N, Bjornson E, Soderlund S, Boren C, Eliasson B, Pietilainen KH, Bogl LH, Hakkarainen A, Lundbom N & Rivellese A et al.Minor contribution of endogenous GLP-1 and GLP-2 to postprandial lipemia in obese men. PLoS ONE 2016 11 e0145890. (https://doi.org/10.1371/journal.pone.0145890)

    • Search Google Scholar
    • Export Citation
  • 12

    Higgins V, Asgari S, Hamilton JK, Wolska A, Remaley AT, Hartmann B, Holst JJ, Adeli K. Postprandial dyslipidemia, hyperinsulinemia, and impaired gut peptides/bile acids in adolescents with obesity. Journal of Clinical Endocrinology and Metabolism 2020 105 12281241. (https://doi.org/10.1210/clinem/dgz261)

    • Search Google Scholar
    • Export Citation
  • 13

    Stemmer K, Finan B, DiMarchi RD, Tschop MH, Muller TD. Insights into incretin-based therapies for treatment of diabetic dyslipidemia. Advanced Drug Delivery Reviews 2020 159 3453. (https://doi.org/10.1016/j.addr.2020.05.008)

    • Search Google Scholar
    • Export Citation
  • 14

    Berberich AJ, Hegele RA. Lipid effects of glucagon-like peptide 1 receptor analogs. Current Opinion in Lipidology 2021 32 191199. (https://doi.org/10.1097/MOL.0000000000000750)

    • Search Google Scholar
    • Export Citation
  • 15

    Xiao C, Bandsma RH, Dash S, Szeto L, Lewis GF. Exenatide, a glucagon-like peptide-1 receptor agonist, acutely inhibits intestinal lipoprotein production in healthy humans. Arteriosclerosis, Thrombosis, and Vascular Biology 2012 32 15131519. (https://doi.org/10.1161/ATVBAHA.112.246207)

    • Search Google Scholar
    • Export Citation
  • 16

    Hein GJ, Baker C, Hsieh J, Farr S, Adeli K. GLP-1 and GLP-2 as yin and yang of intestinal lipoprotein production: evidence for predominance of GLP-2-stimulated postprandial lipemia in normal and insulin-resistant states. Diabetes 2013 62 373381. (https://doi.org/10.2337/db12-0202)

    • Search Google Scholar
    • Export Citation
  • 17

    Hsieh J, Trajcevski KE, Farr SL, Baker CL, Lake EJ, Taher J, Iqbal J, Hussain MM, Adeli K. Glucagon-like peptide 2 (GLP-2) stimulates postprandial chylomicron production and postabsorptive release of intestinal triglyceride storage pools via induction of nitric oxide signaling in male hamsters and mice. Endocrinology 2015 156 35383547. (https://doi.org/10.1210/EN.2015-1110)

    • Search Google Scholar
    • Export Citation
  • 18

    Hermansen K, Baekdal TA, During M, Pietraszek A, Mortensen LS, Jorgensen H, Flint A. Liraglutide suppresses postprandial triglyceride and apolipoprotein B48 elevations after a fat-rich meal in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, cross-over trial. Diabetes, Obesity and Metabolism 2013 15 10401048. (https://doi.org/10.1111/dom.12133)

    • Search Google Scholar
    • Export Citation
  • 19

    Mulvihill EE Regulation of intestinal lipid and lipoprotein metabolism by the proglucagon-derived peptides glucagon like peptide 1 and glucagon like peptide 2. Current Opinion in Lipidology 2018 29 95103. (https://doi.org/10.1097/MOL.0000000000000495)

    • Search Google Scholar
    • Export Citation
  • 20

    Verges B, Duvillard L, Pais de Barros JP, Bouillet B, Baillot-Rudoni S, Rouland A, Sberna AL, Petit JM, Degrace P, Demizieux L. Liraglutide reduces postprandial hyperlipidemia by increasing ApoB48 (apolipoprotein B48) catabolism and by reducing ApoB48 production in patients with type 2 diabetes mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology 2018 38 21982206. (https://doi.org/10.1161/ATVBAHA.118.310990)

    • Search Google Scholar
    • Export Citation
  • 21

    Schwartz EA, Reaven PD. Lipolysis of triglyceride-rich lipoproteins, vascular inflammation, and atherosclerosis. Biochimica et Biophysica Acta 2012 1821 858866. (https://doi.org/10.1016/j.bbalip.2011.09.021)

    • Search Google Scholar
    • Export Citation
  • 22

    Higgins LJ, Rutledge JC. Inflammation associated with the postprandial lipolysis of triglyceride-rich lipoproteins by lipoprotein lipase. Current Atherosclerosis Reports 2009 11 199205. (https://doi.org/10.1007/s11883-009-0031-9)

    • Search Google Scholar
    • Export Citation
  • 23

    Drucker DJ Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metabolism 2018 27 740756. (https://doi.org/10.1016/j.cmet.2018.03.001)

    • Search Google Scholar
    • Export Citation
  • 24

    Nauck MA, Meier JJ, Cavender MA, Abd El Aziz M, Drucker DJ. Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Circulation 2017 136 849870. (https://doi.org/10.1161/CIRCULATIONAHA.117.028136)

    • Search Google Scholar
    • Export Citation
  • 25

    Lee MMY, Petrie MC, McMurray JJV, Sattar N. How do SGLT2 (sodium-glucose cotransporter 2) inhibitors and GLP-1 (glucagon-like peptide-1) receptor agonists reduce cardiovascular outcomes?: completed and ongoing mechanistic trials. Arteriosclerosis, Thrombosis, and Vascular Biology 2020 40 506522. (https://doi.org/10.1161/ATVBAHA.119.311904)

    • Search Google Scholar
    • Export Citation
  • 26

    Buse JB, Wexler DJ, Tsapas A, Rossing P, Mingrone G, Mathieu C, D’Alessio DA, Davies MJ. 2019 update to: management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2020 43 487493. (https://doi.org/10.2337/dci19-0066)

    • Search Google Scholar
    • Export Citation
  • 27

    Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, Federici M, Filippatos G, Grobbee DE & Hansen TB et al.2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. European Heart Journal 2020 41 255323. (https://doi.org/10.1093/eurheartj/ehz486)

    • Search Google Scholar
    • Export Citation
  • 28

    Marx N, Davies MJ, Grant PJ, Mathieu C, Petrie JR, Cosentino F, Buse JB. Guideline recommendations and the positioning of newer drugs in type 2 diabetes care. Lancet: Diabetes and Endocrinology 2021 9 4652. (https://doi.org/10.1016/S2213-8587(2030343-0)

    • Search Google Scholar
    • Export Citation
  • 29

    Taskinen MR, Bjornson E, Matikainen N, Soderlund S, Pietilainen KH, Ainola M, Hakkarainen A, Lundbom N, Fuchs J & Thorsell A et al.Effects of liraglutide on the metabolism of triglyceride-rich lipoproteins in type 2 diabetes. Diabetes, Obesity and Metabolism 2021 23 11911201. (https://doi.org/10.1111/dom.14328)

    • Search Google Scholar
    • Export Citation
  • 30

    Matikainen N, Soderlund S, Bjornson E, Pietilainen K, Hakkarainen A, Lundbom N, Taskinen MR, Boren J. Liraglutide treatment improves postprandial lipid metabolism and cardiometabolic risk factors in humans with adequately controlled type 2 diabetes: a single-centre randomized controlled study. Diabetes, Obesity and Metabolism 2019 21 8494. (https://doi.org/10.1111/dom.13487)

    • Search Google Scholar
    • Export Citation
  • 31

    Verges B, Duvillard L, Pais de Barros JP, Bouillet B, Baillot-Rudoni S, Rouland A, Petit JM, Degrace P, Demizieux L. Liraglutide increases the catabolism of apolipoprotein B100-containing lipoproteins in patients with type 2 diabetes and reduces proprotein convertase subtilisin/kexin type 9 expression. Diabetes Care 2021 44 10271037. (https://doi.org/10.2337/dc20-1843)

    • Search Google Scholar
    • Export Citation
  • 32

    Whyte MB, Shojaee-Moradie F, Sharaf SE, Jackson NC, Fielding B, Hovorka R, Mendis J, Russell-Jones D, Umpleby AM. Lixisenatide reduces chylomicron triacylglycerol by increased clearance. Journal of Clinical Endocrinology and Metabolism 2019 104 359368. (https://doi.org/10.1210/jc.2018-01176)

    • Search Google Scholar
    • Export Citation
  • 33

    Bjornson E, Packard CJ, Adiels M, Andersson L, Matikainen N, Soderlund S, Kahri J, Hakkarainen A, Lundbom N & Lundbom J et al.Apolipoprotein B48 metabolism in chylomicrons and very low-density lipoproteins and its role in triglyceride transport in normo- and hypertriglyceridemic human subjects. Journal of Internal Medicine 2020 288 422438. (https://doi.org/10.1111/joim.13017)

    • Search Google Scholar
    • Export Citation
  • 34

    Bjornson E, Packard CJ, Adiels M, Andersson L, Matikainen N, Soderlund S, Kahri J, Sihlbom C, Thorsell A & Zhou H et al.Investigation of human apoB48 metabolism using a new, integrated non-steady-state model of apoB48 and apoB100 kinetics. Journal of Internal Medicine 2019 285 562577. (https://doi.org/10.1111/joim.12877)

    • Search Google Scholar
    • Export Citation
  • 35

    Taskinen MR, Soderlund S, Bogl LH, Hakkarainen A, Matikainen N, Pietilainen KH, Rasanen S, Lundbom N, Bjornson E & Eliasson B et al.Adverse effects of fructose on cardiometabolic risk factors and hepatic lipid metabolism in subjects with abdominal obesity. Journal of Internal Medicine 2017 282 187201. (https://doi.org/10.1111/joim.12632)

    • Search Google Scholar
    • Export Citation
  • 36

    Matikainen N, Soderlund S, Bjornson E, Bogl LH, Pietilainen KH, Hakkarainen A, Lundbom N, Eliasson B, Rasanen SM & Rivellese A et al.Fructose intervention for 12 weeks does not impair glycemic control or incretin hormone responses during oral glucose or mixed meal tests in obese men. Nutrition, Metabolism, and Cardiovascular Diseases 2017 27 534542. (https://doi.org/10.1016/j.numecd.2017.03.003)

    • Search Google Scholar
    • Export Citation
  • 37

    Lundbom J, Hakkarainen A, Soderlund S, Westerbacka J, Lundbom N, Taskinen MR, Long TE. Long-TE 1H MRS suggests that liver fat is more saturated than subcutaneous and visceral fat. NMR in Biomedicine 2011 24 238245. (https://doi.org/10.1002/nbm.1580)

    • Search Google Scholar
    • Export Citation
  • 38

    Ryysy L, Hakkinen AM, Goto T, Vehkavaara S, Westerbacka J, Halavaara J, Yki-Jarvinen H. Hepatic fat content and insulin action on free fatty acids and glucose metabolism rather than insulin absorption are associated with insulin requirements during insulin therapy in type 2 diabetic patients. Diabetes 2000 49 749758. (https://doi.org/10.2337/diabetes.49.5.749)

    • Search Google Scholar
    • Export Citation
  • 39

    Barrett PH, Bell BM, Cobelli C, Golde H, Schumitzky A, Vicini P, Foster DM. SAAM II: simulation, analysis, and modeling software for tracer and pharmacokinetic studies. Metabolism: Clinical and Experimental 1998 47 484492. (https://doi.org/10.1016/s0026-0495(9890064-6)

    • Search Google Scholar
    • Export Citation
  • 40

    Matikainen N, Manttari S, Schweizer A, Ulvestad A, Mills D, Dunning BE, Foley JE, Taskinen MR. Vildagliptin therapy reduces postprandial intestinal triglyceride-rich lipoprotein particles in patients with type 2 diabetes. Diabetologia 2006 49 20492057. (https://doi.org/10.1007/s00125-006-0340-2)

    • Search Google Scholar
    • Export Citation
  • 41

    Deacon CF, Holst JJ. Immunoassays for the incretin hormones GIP and GLP-1. Best Practice and Research: Clinical Endocrinology and Metabolism 2009 23 425432. (https://doi.org/10.1016/j.beem.2009.03.006)

    • Search Google Scholar
    • Export Citation
  • 42

    Hartmann B, Johnsen AH, Orskov C, Adelhorst K, Thim L, Holst JJ. Structure, measurement, and secretion of human glucagon-like peptide-2. Peptides 2000 21 7380. (https://doi.org/10.1016/s0196-9781(9900176-x)

    • Search Google Scholar
    • Export Citation
  • 43

    Taskinen MR, Bjornson E, Kahri J, Soderlund S, Matikainen N, Porthan K, Ainola M, Hakkarainen A, Lundbom N & Fermanelli V et al.Effects of evolocumab on the postprandial kinetics of apo (apolipoprotein) B100- and B48-containing lipoproteins in subjects with type 2 diabetes. Arteriosclerosis, Thrombosis, and Vascular Biology 2021 41 962975. (https://doi.org/10.1161/ATVBAHA.120.315446)

    • Search Google Scholar
    • Export Citation
  • 44

    Samms RJ, Coghlan MP, Sloop KW. How may GIP enhance the therapeutic efficacy of GLP-1? Trends in Endocrinology and Metabolism 2020 31 410421. (https://doi.org/10.1016/j.tem.2020.02.006)

    • Search Google Scholar
    • Export Citation
  • 45

    Alvares D, Hoffman S, Stankovic B, Adeli K. Gut peptide and neuroendocrine regulation of hepatic lipid and lipoprotein metabolism in health and disease. Biochimica et Biophysica Acta: Molecular and Cell Biology of Lipids 2019 1864 326334. (https://doi.org/10.1016/j.bbalip.2018.12.010)

    • Search Google Scholar
    • Export Citation
  • 46

    Beaudry JL, Drucker DJ. Proglucagon-derived peptides, glucose-dependent insulinotropic polypeptide, and dipeptidyl peptidase-4-mechanisms of action in adipose tissue. Endocrinology 2020 161 bqz029. (https://doi.org/10.1210/endocr/bqz029)

    • Search Google Scholar
    • Export Citation
  • 47

    Bunck MC, Corner A, Eliasson B, Heine RJ, Shaginian RM, Wu Y, Yan P, Smith U, Yki-Jarvinen H & Diamant M et al.One-year treatment with exenatide vs. insulin glargine: effects on postprandial glycemia, lipid profiles, and oxidative stress. Atherosclerosis 2010 212 223229. (https://doi.org/10.1016/j.atherosclerosis.2010.04.024)

    • Search Google Scholar
    • Export Citation
  • 48

    Meier JJ, Gethmann A, Gotze O, Gallwitz B, Holst JJ, Schmidt WE, Nauck MA. Glucagon-like peptide 1 abolishes the postprandial rise in triglyceride concentrations and lowers levels of non-esterified fatty acids in humans. Diabetologia 2006 49 452458. (https://doi.org/10.1007/s00125-005-0126-y)

    • Search Google Scholar
    • Export Citation
  • 49

    Ariel D, Kim SH, Abbasi F, Lamendola CA, Liu A, Reaven GM. Effect of liraglutide administration and a calorie-restricted diet on lipoprotein profile in overweight/obese persons with prediabetes. Nutrition, Metabolism, and Cardiovascular Diseases 2014 24 13171322. (https://doi.org/10.1016/j.numecd.2014.06.010)

    • Search Google Scholar
    • Export Citation
  • 50

    Hjerpsted JB, Flint A, Brooks A, Axelsen MB, Kvist T, Blundell J. Semaglutide improves postprandial glucose and lipid metabolism, and delays first-hour gastric emptying in subjects with obesity. Diabetes, Obesity and Metabolism 2018 20 610619. (https://doi.org/10.1111/dom.13120)

    • Search Google Scholar
    • Export Citation
  • 51

    Boer GA, Holst JJ. Incretin hormones and type 2 diabetes-mechanistic insights and therapeutic approaches. Biology 2020 9 473. (https://doi.org/10.3390/biology9120473)

    • Search Google Scholar
    • Export Citation
  • 52

    Campbell JE Targeting the GIPR for obesity: to agonize or antagonize? Potential mechanisms. Molecular Metabolism 2021 46 101139. (https://doi.org/10.1016/j.molmet.2020.101139)

    • Search Google Scholar
    • Export Citation
  • 53

    Borg MJ, Xie C, Rayner CK, Horowitz M, Jones KL, Wu T. Potential for gut peptide-based therapy in postprandial hypotension. Nutrients 2021 13 2826. (https://doi.org/10.3390/nu13082826)

    • Search Google Scholar
    • Export Citation
  • 54

    Chubb B, Gupta P, Gupta J, Nuhoho S, Kallenbach K, Orme M. Once-daily oral semaglutide versus injectable GLP-1 RAs in people with type 2 diabetes inadequately controlled on basal insulin: systematic review and network meta-analysis. Diabetes Therapy 2021 12 13251339. (https://doi.org/10.1007/s13300-021-01034-w)

    • Search Google Scholar
    • Export Citation
  • 55

    Amori RE, Lau J, Pittas AG. Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis. JAMA 2007 298 194206. (https://doi.org/10.1001/jama.298.2.194)

    • Search Google Scholar
    • Export Citation
  • 56

    Stahel P, Xiao C, Davis X, Tso P, Lewis GF. Glucose and GLP-2 (glucagon-like peptide-2) mobilize intestinal triglyceride by distinct mechanisms. Arteriosclerosis, Thrombosis, and Vascular Biology 2019 39 15651573. (https://doi.org/10.1161/ATVBAHA.119.313011)

    • Search Google Scholar
    • Export Citation
  • 57

    Nahmias A, Stahel P, Tian L, Xiao C, Lewis GF. GLP-1 (glucagon-like peptide-1) is physiologically relevant for chylomicron secretion beyond its known pharmacological role. Arteriosclerosis, Thrombosis, and Vascular Biology 2021 41 18931900. (https://doi.org/10.1161/ATVBAHA.121.316311)

    • Search Google Scholar
    • Export Citation
  • 58

    Asmar M, Simonsen L, Madsbad S, Stallknecht B, Holst JJ, Bulow J. Glucose-dependent insulinotropic polypeptide may enhance fatty acid re-esterification in subcutaneous abdominal adipose tissue in lean humans. Diabetes 2010 59 21602163. (https://doi.org/10.2337/db10-0098)

    • Search Google Scholar
    • Export Citation
  • 59

    Asmar M, Asmar A, Simonsen L, Gasbjerg LS, Sparre-Ulrich AH, Rosenkilde MM, Hartmann B, Dela F, Holst JJ, Bulow J. The gluco- and liporegulatory and vasodilatory effects of glucose-dependent insulinotropic polypeptide (GIP) are abolished by an antagonist of the human GIP receptor. Diabetes 2017 66 23632371. (https://doi.org/10.2337/db17-0480)

    • Search Google Scholar
    • Export Citation
  • 60

    Asmar M, Tangaa W, Madsbad S, Hare K, Astrup A, Flint A, Bulow J, Holst JJ. On the role of glucose-dependent insulintropic polypeptide in postprandial metabolism in humans. American Journal of Physiology: Endocrinology and Metabolism 2010 298 E614E621. (https://doi.org/10.1152/ajpendo.00639.2009)

    • Search Google Scholar
    • Export Citation