Single-cell RNA sequencing in silent corticotroph tumors confirms impaired POMC processing and provides new insights into their invasive behavior

in European Journal of Endocrinology
View More View Less
  • 1 Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
  • | 2 Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California, USA
  • | 3 Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, California, USA
  • | 4 Department of Pathology and Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA

Correspondence should be addressed to A P Heaney; Email: aheaney@mednet.ucla.edu
Restricted access

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

Objective

Provide insights into the defective POMC processing and invasive behavior in silent pituitary corticotroph tumors.

Design and methods

Single-cell RNAseq was used to compare the cellular makeup and transcriptome of silent and active corticotroph tumors.

Results

A series of transcripts related to hormone processing peptidases and genes involved in the structural organization of secretory vesicles were reduced in silent compared to active corticotroph tumors. Most relevant to their invasive behavior, silent corticotroph tumors exhibited several features of epithelial-to-mesenchymal transition, with increased expression of mesenchymal genes along with the loss of transcripts that regulate hormonal biogenesis and secretion. Silent corticotroph tumor vascular smooth muscle cell and pericyte stromal cell populations also exhibited plasticity in their mesenchymal features.

Conclusions

Our findings provide novel insights into the mechanisms of impaired POMC processing and invasion in silent corticotroph tumors and suggest that a common transcriptional reprogramming mechanism simultaneously impairs POMC processing and activates tumor invasion.

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 84 84 84
Full Text Views 3 3 3
PDF Downloads 2 2 2
  • 1

    Alahmadi H, Lee D, Wilson JR, Hayhurst C, Mete O, Gentili F, Asa SL, Zadeh G. Clinical features of silent corticotroph adenomas. Acta Neurochirurgica 2012 154 14931498. (https://doi.org/10.1007/s00701-012-1378-1).

    • Search Google Scholar
    • Export Citation
  • 2

    Saeger W, Lüdecke DK, Buchfelder M, Fahlbusch R, Quabbe HJ, Petersenn S. Pathohistological classification of pituitary tumors: 10 years of experience with the German Pituitary Tumor Registry. European Journal of Endocrinology 2007 156 203216. (https://doi.org/10.1530/eje.1.02326)

    • Search Google Scholar
    • Export Citation
  • 3

    Drummond J, Roncaroli F, Grossman AB, Korbonits M. Clinical and pathological aspects of silent pituitary adenomas. Journal of Clinical Endocrinology and Metabolism 2019 104 24732489. (https://doi.org/10.1210/jc.2018-00688)

    • Search Google Scholar
    • Export Citation
  • 4

    Raverot G, Wierinckx A, Jouanneau E, Auger C, Borson-Chazot F, Lachuer J, Pugeat M, Trouillas J. Clinical, hormonal and molecular characterization of pituitary ACTH adenomas without (silent corticotroph adenomas) and with Cushing’s disease. European Journal of Endocrinology 2010 163 3543. (https://doi.org/10.1530/EJE-10-0076)

    • Search Google Scholar
    • Export Citation
  • 5

    Flores L, Sleightholm R, Neilsen B, Baine M, Drincic A, Thorell W, Shonka N, Oupicky D, Zhang C. Highly aggressive and radiation-resistant, ‘atypical’ and silent pituitary corticotrophic carcinoma: a case report and review of the literature. Case Reports in Oncology 2019 12 139146. (https://doi.org/10.1159/000496019)

    • Search Google Scholar
    • Export Citation
  • 6

    Shen Y, Heaney AP. Pathogenesis and treatment of aggressive corticotroph pituitary tumors. In The Hypothalamic-Pituitary-Adrenal Axis in Health and Disease: Cushing’s Syndrome and Beyond, pp. 93110. Ed Geer EB Cham: Springer International Publishing, 2017.

    • Search Google Scholar
    • Export Citation
  • 7

    Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq analysis: a tutorial. Molecular Systems Biology 2019 15 e8746. (https://doi.org/10.15252/msb.20188746)

    • Search Google Scholar
    • Export Citation
  • 8

    Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biology 2019 20 296. (https://doi.org/10.1186/s13059-019-1874-1)

    • Search Google Scholar
    • Export Citation
  • 9

    Ahlmann-Eltze C, Huber W. Transformation and preprocessing of single-cell RNA-Seq data. bioRxiv 2021 2021.06.24.449781. (https://doi.org/10.1101/2021.06.24.449781)

    • Search Google Scholar
    • Export Citation
  • 10

    Arzalluz-Luque Á, Devailly G, Mantsoki A, Joshi A. Delineating biological and technical variance in single cell expression data. International Journal of Biochemistry and Cell Biology 2017 90 161166. (https://doi.org/10.1016/j.biocel.2017.07.006)

    • Search Google Scholar
    • Export Citation
  • 11

    Zhang D, Hugo W, Redublo P, Miao H, Bergsneider M, Wang MB, Kim W, Yong WH, Heaney AP. A human ACTH-secreting corticotroph tumoroid model: novel human ACTH-secreting tumor cell in vitro model. EBiomedicine 2021 66 103294. (https://doi.org/10.1016/j.ebiom.2021.103294)

    • Search Google Scholar
    • Export Citation
  • 12

    Wolf Y, Anderson AC, Kuchroo VK. TIM3 comes of age as an inhibitory receptor. Nature Reviews: Immunology 2020 20 173185. (https://doi.org/10.1038/s41577-019-0224-6)

    • Search Google Scholar
    • Export Citation
  • 13

    Chen Q, Leshkowitz D, Blechman J, Levkowitz G. Single-cell molecular and cellular architecture of the mouse neurohypophysis. eNeuro 2020 7 ENEURO.0345-19.2019. (https://doi.org/10.1523/ENEURO.0345-19.2019)

    • Search Google Scholar
    • Export Citation
  • 14

    Adivitiya, Kaushik MS, Chakraborty S, Veleri S, Kateriya S. Mucociliary respiratory epithelium integrity in molecular defense and susceptibility to pulmonary viral infections. Biology 2021 10 95. (https://doi.org/10.3390/biology10020095)

    • Search Google Scholar
    • Export Citation
  • 15

    Fletcher PA, Smiljanic K, Maso Prévide R, Iben JR, Li T, Rokic MB, Sherman A, Coon SL, Stojilkovic SS. Cell type- and sex-dependent transcriptome profiles of rat anterior pituitary cells. Frontiers in Endocrinology 2019 10 623. (https://doi.org/10.3389/fendo.2019.00623)

    • Search Google Scholar
    • Export Citation
  • 16

    Vankelecom H, Chen J. Pituitary stem cells: where do we stand? Molecular and Cellular Endocrinology 2014 385 217. (https://doi.org/10.1016/j.mce.2013.08.018)

    • Search Google Scholar
    • Export Citation
  • 17

    Mulry E, Parham K. Inner ear proteins as potential biomarkers. Otology and Neurotology 2020 41 145152. (https://doi.org/10.1097/MAO.0000000000002466)

    • Search Google Scholar
    • Export Citation
  • 18

    Miwa JM, Anderson KR, Hoffman KM. Lynx prototoxins: roles of endogenous mammalian neurotoxin-like proteins in modulating nicotinic acetylcholine receptor function to influence complex biological processes. Frontiers in Pharmacology 2019 10 343. (https://doi.org/10.3389/fphar.2019.00343)

    • Search Google Scholar
    • Export Citation
  • 19

    Kolluri A, Ho M. The role of glypican-3 in regulating Wnt, YAP, and hedgehog in liver cancer. Frontiers in Oncology 2019 9 708. (https://doi.org/10.3389/fonc.2019.00708)

    • Search Google Scholar
    • Export Citation
  • 20

    Nogueira JF, de Sousa Lobo Ferreira Querido R, Gonçalves da Silva Leite J, Cabral da Costa T. Future of endoscopic ear surgery. Otolaryngologic Clinics of North America 2021 54 221231. (https://doi.org/10.1016/j.otc.2020.09.023)

    • Search Google Scholar
    • Export Citation
  • 21

    Kikuta K, Kubota D, Yoshida A, Qiao Z, Morioka H, Nakamura M, Matsumoto M, Chuman H, Kawai A, Kondo T. Discoidin, CUB and LCCL domain-containing protein 2 (DCBLD2) is a novel biomarker of myxofibrosarcoma invasion identified by global protein expression profiling. Biochimica et Biophysica Acta (BBA): Proteins and Proteomics 2017 1865 11601166. (https://doi.org/10.1016/j.bbapap.2017.06.023)

    • Search Google Scholar
    • Export Citation
  • 22

    Banerji CRS, Zammit PS. Pathomechanisms and biomarkers in facioscapulohumeral muscular dystrophy: roles of DUX4 and PAX7. EMBO Molecular Medicine 2021 13 e13695. (https://doi.org/10.15252/emmm.202013695)

    • Search Google Scholar
    • Export Citation
  • 23

    Fox MD, Carson VJ, Feng HZ, Lawlor MW, Gray JT, Brigatti KW, Jin JP, Strauss KA. TNNT1 nemaline myopathy: natural history and therapeutic frontier. Human Molecular Genetics 2018 27 32723282. (https://doi.org/10.1093/hmg/ddy233)

    • Search Google Scholar
    • Export Citation
  • 24

    Zhao L, Westerhoff M, Hornick JL, Krausz T, Antic T, Xiao SY, Hart J. Loss of microfibril-associated protein 5 (MFAP5) expression in colon cancer stroma. Virchows Archiv 2020 476 383390. (https://doi.org/10.1007/s00428-019-02649-y)

    • Search Google Scholar
    • Export Citation
  • 25

    Manigandan S, Mukherjee S, Yun JW. Loss of family with sequence similarity 107, member A (FAM107A) induces browning in 3T3-L1 adipocytes. Archives of Biochemistry and Biophysics 2021 704 108885. (https://doi.org/10.1016/j.abb.2021.108885)

    • Search Google Scholar
    • Export Citation
  • 26

    Zahedi K, Barone S, Soleimani M. Polyamine catabolism in acute kidney injury. International Journal of Molecular Sciences 2019 20 4790. (https://doi.org/10.3390/ijms20194790)

    • Search Google Scholar
    • Export Citation
  • 27

    Cawley NX, Li Z, Loh YP. 60 years OF POMC: biosynthesis, trafficking, and secretion of pro-opiomelanocortin-derived peptides. Journal of Molecular Endocrinology 2016 56 T77T97. (https://doi.org/10.1530/JME-15-0323)

    • Search Google Scholar
    • Export Citation
  • 28

    Nillni EA The cell biology neuropeptide hormones. In Textbook of Energy Balance, Neuropeptide Hormones, and Neuroendocrine Function, pp. 109139. Ed Nillni EA Cham: Springer International Publishing, 2018.

    • Search Google Scholar
    • Export Citation
  • 29

    Kim T, Gondré-Lewis MC, Arnaoutova I, Loh YP. Dense-core secretory granule biogenesis. Physiology 2006 21 124133. (https://doi.org/10.1152/physiol.00043.2005)

    • Search Google Scholar
    • Export Citation
  • 30

    Taupenot L, Harper KL, O’Connor DT. The chromogranin–secretogranin family. New England Journal of Medicine 2003 348 11341149. (https://doi.org/10.1056/NEJMra021405)

    • Search Google Scholar
    • Export Citation
  • 31

    Darchen F, Senyshyn J, Brondyk WH, Taatjes DJ, Holz RW, Henry JP, Denizot JP, Macara IG. The GTPase Rab3a is associated with large dense core vesicles in bovine chromaffin cells and rat PC12 cells. Journal of Cell Science 1995 108 16391649. (https://doi.org/10.1242/jcs.108.4.1639)

    • Search Google Scholar
    • Export Citation
  • 32

    Streit L, Brunaud L, Vitale N, Ory S, Gasman S. Hormones secretion and rho GTPases in neuroendocrine tumors. Cancers 2020 12 1859. (https://doi.org/10.3390/cancers12071859)

    • Search Google Scholar
    • Export Citation
  • 33

    Anderson JM, Van Itallie CM. Tight junctions. Current Biology 2008 18 R941R943. (https://doi.org/10.1016/j.cub.2008.07.083)

  • 34

    Meda P Gap junction proteins are key drivers of endocrine function. Biochimica et Biophysica Acta (BBA): Biomembranes 2018 1 860 124140.

  • 35

    Terry S, Nie M, Matter K, Balda MS. Rho signaling and tight junction functions. Physiology 2010 25 1626. (https://doi.org/10.1152/physiol.00034.2009)

    • Search Google Scholar
    • Export Citation
  • 36

    Eieland AK, Normann KR, Sundaram AYM, Nyman TA, Øystese KAB, Lekva T, Berg JP, Bollerslev J, Olarescu NC. Distinct pattern of endoplasmic reticulum protein processing and extracellular matrix proteins in functioning and silent corticotroph pituitary adenomas. Cancers 2020 12 2980. (https://doi.org/10.3390/cancers12102980)

    • Search Google Scholar
    • Export Citation
  • 37

    Matsuno A, Okazaki R, Oki Y, Nagashima T. Secretion of high-molecular-weight adrenocorticotropic hormone from a pituitary adenoma in a patient without Cushing stigmata. Case report. Journal of Neurosurgery 2004 101 874877. (https://doi.org/10.3171/jns.2004.101.5.0874)

    • Search Google Scholar
    • Export Citation
  • 38

    Hay ED An overview of epithelio-mesenchymal transformation. Acta Anatomica 1995 154 820. (https://doi.org/10.1159/000147748)

  • 39

    Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. Journal of Clinical Investigation 2009 119 14201428. (https://doi.org/10.1172/JCI39104)

    • Search Google Scholar
    • Export Citation
  • 40

    Gil J, Jordà M, Soldevila B, Puig-Domingo M. Epithelial–mesenchymal transition in the resistance to somatostatin receptor ligands in acromegaly. Frontiers in Endocrinology 2021 12 646210. (https://doi.org/10.3389/fendo.2021.646210)

    • Search Google Scholar
    • Export Citation
  • 41

    Martinez M, Torres VI, Vio CP, Inestrosa NC. Canonical Wnt signaling modulates the expression of pre- and postsynaptic components in different temporal patterns. Molecular Neurobiology 2020 57 13891404. (https://doi.org/10.1007/s12035-019-01785-5)

    • Search Google Scholar
    • Export Citation
  • 42

    Cummings CT, Deryckere D, Earp HS, Graham DK. Molecular pathways: MERTK signaling in cancer. Clinical Cancer Research 2013 19 52755280. (https://doi.org/10.1158/1078-0432.CCR-12-1451)

    • Search Google Scholar
    • Export Citation
  • 43

    Luciani A, Festa BP, Chen Z, Devuyst O. Defective autophagy degradation and abnormal tight junction-associated signaling drive epithelial dysfunction in cystinosis. Autophagy 2018 14 11571159. (https://doi.org/10.1080/15548627.2018.1446625)

    • Search Google Scholar
    • Export Citation
  • 44

    Schwayer C, Shamipour S, Pranjic-Ferscha K, Schauer A, Balda M, Tada M, Matter K, Heisenberg CP. Mechanosensation of tight junctions depends on ZO-1 phase separation and flow. Cell 2019 179 937 .e18952.e18. (https://doi.org/10.1016/j.cell.2019.10.006)

    • Search Google Scholar
    • Export Citation
  • 45

    Attar MA, Salem JC, Pursel HS, Santy LC. CNK3 and IPCEF1 produce a single protein that is required for HGF dependent Arf6 activation and migration. Experimental Cell Research 2012 318 228237. (https://doi.org/10.1016/j.yexcr.2011.10.018)

    • Search Google Scholar
    • Export Citation
  • 46

    Sagara J, Arata T, Taniguchi S. Scapinin, the protein phosphatase 1 binding protein, enhances cell spreading and motility by interacting with the actin cytoskeleton. PLoS ONE 2009 4 e4247. (https://doi.org/10.1371/journal.pone.0004247)

    • Search Google Scholar
    • Export Citation
  • 47

    Ghatnatti V, Vastrad B, Patil S, Vastrad C, Kotturshetti I. Identification of potential and novel target genes in pituitary prolactinoma by bioinformatics analysis. AIMS Neuroscience 2021 8 254283. (https://doi.org/10.3934/Neuroscience.2021014)

    • Search Google Scholar
    • Export Citation
  • 48

    Michibata H, Okuno T, Konishi N, Kyono K, Wakimoto K, Aoki K, Kondo Y, Takata K, Kitamura Y & Taniguchi T et al.Human GPM6A is associated with differentiation and neuronal migration of neurons derived from human embryonic stem cells. Stem Cells and Development 2009 18 629639. (https://doi.org/10.1089/scd.2008.0215)

    • Search Google Scholar
    • Export Citation
  • 49

    Falch CM, Sundaram AYM, Øystese KA, Normann KR, Lekva T, Silamikelis I, Eieland AK, Andersen M, Bollerslev J, Olarescu NC. Gene expression profiling of fast- and slow-growing non-functioning gonadotroph pituitary adenomas. European Journal of Endocrinology 2018 178 295307. (https://doi.org/10.1530/EJE-17-0702)

    • Search Google Scholar
    • Export Citation
  • 50

    Requena T, Cabrera S, Martín-Sierra C, Price SD, Lysakowski A, Lopez-Escamez JA. Identification of two novel mutations in FAM136A and DTNA genes in autosomal-dominant familial Meniere’s disease. Human Molecular Genetics 2015 24 11191126. (https://doi.org/10.1093/hmg/ddu524)

    • Search Google Scholar
    • Export Citation
  • 51

    Hafner A, Obermajer N, Kos J. Gamma-1-syntrophin mediates trafficking of gamma-enolase towards the plasma membrane and enhances its neurotrophic activity. Neurosignals 2010 18 246258. (https://doi.org/10.1159/000324292)

    • Search Google Scholar
    • Export Citation
  • 52

    Suen PM, Zou C, Zhang YA, Lau TK, Chan J, Yao KM, Leung PS. PDZ-domain containing-2 (PDZD2) is a novel factor that affects the growth and differentiation of human fetal pancreatic progenitor cells. International Journal of Biochemistry and Cell Biology 2008 40 789803. (https://doi.org/10.1016/j.biocel.2007.10.020)

    • Search Google Scholar
    • Export Citation
  • 53

    Yanagawa T, Sumiyoshi H, Higashi K, Nakao S, Higashiyama R, Fukumitsu H, Minakawa K, Chiba Y, Suzuki Y & Sumida K et al.Identification of a novel bone marrow cell-derived accelerator of fibrotic liver regeneration through mobilization of hepatic progenitor cells in mice. Stem Cells 2019 37 89101. (https://doi.org/10.1002/stem.2916)

    • Search Google Scholar
    • Export Citation
  • 54

    Outwin EA, Irmisch A, Murray JM, O’Connell MJ. Smc5-Smc6-dependent removal of cohesin from mitotic chromosomes. Molecular and Cellular Biology 2009 29 43634375. (https://doi.org/10.1128/MCB.00377-09)

    • Search Google Scholar
    • Export Citation
  • 55

    Jeon BN, Kim MK, Yoon JH, Kim MY, An H, Noh HJ, Choi WI, Koh DI, Hur MW. Two ZNF509 (ZBTB49) isoforms induce cell-cycle arrest by activating transcription of p21/CDKN1A and RB upon exposure to genotoxic stress. Nucleic Acids Research 2014 42 1144711461. (https://doi.org/10.1093/nar/gku857)

    • Search Google Scholar
    • Export Citation
  • 56

    Daddacha W, Koyen AE, Bastien AJ, Head PE, Dhere VR, Nabeta GN, Connolly EC, Werner E, Madden MZ & Daly MB et al.SAMHD1 promotes DNA end resection to facilitate DNA repair by homologous recombination. Cell Reports 2017 20 19211935. (https://doi.org/10.1016/j.celrep.2017.08.008)

    • Search Google Scholar
    • Export Citation
  • 57

    Tapias A, Zhou ZW, Shi Y, Chong Z, Wang P, Groth M, Platzer M, Huttner W, Herceg Z & Yang YG et al.Trrap-dependent histone acetylation specifically regulates cell-cycle gene transcription to control neural progenitor fate decisions. Cell Stem Cell 2014 14 632643. (https://doi.org/10.1016/j.stem.2014.04.001)

    • Search Google Scholar
    • Export Citation
  • 58

    Kendall RT, Feghali-Bostwick CA. Fibroblasts in fibrosis: novel roles and mediators. Frontiers in Pharmacology 2014 5 123. (https://doi.org/10.3389/fphar.2014.00123)

    • Search Google Scholar
    • Export Citation
  • 59

    Negm IM The vascular blood supply of the pituitary and its development. Acta Anatomica 1971 80 604619. (https://doi.org/10.1159/000143716)

    • Search Google Scholar
    • Export Citation
  • 60

    Daniel PM The blood supply of the hypothalamus and pituitary gland. British Medical Bulletin 1966 22 202208. (https://doi.org/10.1093/oxfordjournals.bmb.a070474)

    • Search Google Scholar
    • Export Citation
  • 61

    Cironi KA, Decater T, Iwanaga J, Dumont AS, Tubbs RS. Arterial supply to the pituitary gland: a comprehensive review. World Neurosurgery 2020 142 206211. (https://doi.org/10.1016/j.wneu.2020.06.221)

    • Search Google Scholar
    • Export Citation
  • 62

    Hill J, Rom S, Ramirez SH, Persidsky Y. Emerging roles of pericytes in the regulation of the neurovascular unit in health and disease. Journal of Neuroimmune Pharmacology 2014 9 591605. (https://doi.org/10.1007/s11481-014-9557-x)

    • Search Google Scholar
    • Export Citation
  • 63

    Lu J, Shenoy AK. Epithelial-to-pericyte transition in cancer. Cancers 2017 9 77. (https://doi.org/10.3390/cancers9070077)

  • 64

    Horvath E, Kovacs K. Folliculo-stellate cells of the human pituitary: a type of adult stem cell? Ultrastructural Pathology 2002 26 219228. (https://doi.org/10.1080/01913120290104476)

    • Search Google Scholar
    • Export Citation
  • 65

    Roche J The epithelial-to-mesenchymal transition in cancer. Cancers 2018 10 52. (https://doi.org/10.3390/cancers10020052)

  • 66

    Shenoy AK, Jin Y, Luo H, Tang M, Pampo C, Shao R, Siemann DW, Wu L, Heldermon CD & Law BK et al.Epithelial-to-mesenchymal transition confers pericyte properties on cancer cells. Journal of Clinical Investigation 2016 126 41744186. (https://doi.org/10.1172/JCI86623)

    • Search Google Scholar
    • Export Citation