Hypertriglyceridemia in young adults with a 22q11.2 microdeletion

in European Journal of Endocrinology
View More View Less
  • 1 Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
  • | 2 The Dalglish Family 22q Clinic, University Health Network, Toronto, Ontario, Canada
  • | 3 Departments of Medicine and Biochemistry, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
  • | 4 Department of Psychiatry, University of Toronto, Toronto General Hospital Research Institute, and Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada

Correspondence should be addressed to A Bassett; Email: anne.bassett@utoronto.ca
Restricted access

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

Objective

Mild to moderate hypertriglyceridemia is a condition often associated with obesity and diabetes, with as yet incomplete knowledge of underlying genetic architecture. The 22q11.2 microdeletion is associated with multimorbidity, including increased risk of obesity and diabetes. In this study, we sought to investigate whether the 22q11.2 microdeletion was associated with mild to moderate hypertriglyceridemia (1.7–10 mmol/L).

Design

This was a cohort study comparing 6793 population-based adults and 267 with a 22q11.2 microdeletion aged 17–69 years, excluding those with diabetes or on statins.

Methods

We used binomial logistic regression modeling to identify predictors of hypertriglyceridemia, accounting for the 22q11.2 microdeletion, male sex, BMI, ethnicity, age, and antipsychotic medications.

Results

The 22q11.2 microdeletion was a significant independent predictor of mild to moderate hypertriglyceridemia (odds ratio (OR): 2.35, 95% CI: 1.70–3.26). All other factors examined were also significant predictors (OR: 1.23–2.10), except for antipsychotic medication use. Within the 22q11.2 microdeletion subgroup, only male sex (OR: 3.10, 95% CI: 1.77–5.44) and BMI (OR: 1.63, 95% CI: 1.14–1.98) were significant predictors of hypertriglyceridemia, evident at mean age 31.2 years.

Conclusions

The 22q11.2 microdeletion is associated with hypertriglyceridemia even when accounting for other known risk factors for elevated triglycerides. This effect is seen in young adulthood (76.6% were <40 years), in the absence of diabetes, and irrespective of antipsychotics, suggesting that the 22q11.2 microdeletion may represent an unrecognized genetic risk factor for hypertriglyceridemia, providing novel opportunities for animal and cellular models. Early dyslipidemia screening and management strategies would appear prudent for individuals with 22q11.2 microdeletions.

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 72 72 72
Full Text Views 4 4 4
PDF Downloads 5 5 5
  • 1

    Pirillo A, Casula M, Olmastroni E, Norata GD, Catapano AL. Global epidemiology of dyslipidaemias. Nature Reviews: Cardiology 2021 18 689700. (https://doi.org/10.1038/s41569-021-00541-4)

    • Search Google Scholar
    • Export Citation
  • 2

    Gill PK, Dron JS, Hegele RA. Genetics of hypertriglyceridemia and atherosclerosis. Current Opinion in Cardiology 2021 36 264271. (https://doi.org/10.1097/HCO.0000000000000839)

    • Search Google Scholar
    • Export Citation
  • 3

    Van L, Heung T, Malecki SL, Fenn C, Tyrer A, Sanches M, Chow EWC, Boot E, Corral M & Dash S et al.22q11.2 microdeletion and increased risk for type 2 diabetes. EClinicalmedicine 2020 26 100528. (https://doi.org/10.1016/j.eclinm.2020.100528)

    • Search Google Scholar
    • Export Citation
  • 4

    Crawford K, Bracher-Smith M, Owen D, Kendall KM, Rees E, Pardiñas AF, Einon M, Escott-Price V, Walters JTR & O’Donovan MC et al.Medical consequences of pathogenic CNVs in adults: analysis of the UK Biobank. Journal of Medical Genetics 2019 56 131138. (https://doi.org/10.1136/jmedgenet-2018-105477)

    • Search Google Scholar
    • Export Citation
  • 5

    Blagojevic C, Heung T, Theriault M, Tomita-Mitchell A, Chakraborty P, Kernohan K, Bulman DE, Bassett AS. Estimate of the contemporary live-birth prevalence of recurrent 22q11.2 deletions: a cross-sectional analysis from population-based newborn screening. CMAJ Open 2021 9 E802E809. (https://doi.org/10.9778/cmajo.20200294)

    • Search Google Scholar
    • Export Citation
  • 6

    McDonald-McGinn DM, Sullivan KE, Marino B, Philip N, Swillen A, Vorstman JAS, Zackai EH, Emanuel BS, Vermeesch JR & Morrow BE et al.22q11.2 deletion syndrome. Nature Reviews: Disease Primers 2015 1 15071. (https://doi.org/10.1038/nrdp.2015.71)

    • Search Google Scholar
    • Export Citation
  • 7

    Palmer LD, Butcher NJ, Boot E, Hodgkinson KA, Heung T, Chow EWC, Guna A, Crowley TB, Zackai E & McDonald-McGinn DM et al.Elucidating the diagnostic odyssey of 22q11.2 deletion syndrome. American Journal of Medical Genetics: Part A 2018 176 936944. (https://doi.org/10.1002/ajmg.a.38645)

    • Search Google Scholar
    • Export Citation
  • 8

    Malecki SL, Van Mil S, Graffi J, Breetvelt E, Corral M, Boot E, Chow EWC, Sanches M, Verma AA, Bassett AS. A genetic model for multimorbidity in young adults. Genetics in Medicine 2020 22 132141. (https://doi.org/10.1038/s41436-019-0603-1)

    • Search Google Scholar
    • Export Citation
  • 9

    Van L, Heung T, Graffi J, Ng E, Malecki S, Van Mil S, Boot E, Corral M, Chow EWC & Hodgkinson KA et al.All-cause mortality and survival in adults with 22q11.2 deletion syndrome. Genetics in Medicine 2019 21 23282335. (https://doi.org/10.1038/s41436-019-0509-y)

    • Search Google Scholar
    • Export Citation
  • 10

    Yuan G, Al-Shali KZ, Hegele RA. Hypertriglyceridemia: its etiology, effects and treatment. CMAJ 2007 176 11131120. (https://doi.org/10.1503/cmaj.060963)

    • Search Google Scholar
    • Export Citation
  • 11

    Voll SL, Boot E, Butcher NJ, Cooper S, Heung T, Chow EWC, Silversides CK, Bassett AS. Obesity in adults with 22q11.2 deletion syndrome. Genetics in Medicine 2017 19 204208. (https://doi.org/10.1038/gim.2016.98)

    • Search Google Scholar
    • Export Citation
  • 12

    Miller M, Stone NJ, Ballantyne C, Bittner V, Criqui MH, Ginsberg HN, Goldberg AC, Howard WJ, Jacobson MS & Kris-Etherton PM et al.Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 2011 123 22922333. (https://doi.org/10.1161/CIR.0b013e3182160726)

    • Search Google Scholar
    • Export Citation
  • 13

    Garg A, Garg V, Hegele RA, Lewis GF. Practical definitions of severe versus familial hypercholesterolaemia and hypertriglyceridaemia for adult clinical practice. Lancet: Diabetes and Endocrinology 2019 7 880886. (https://doi.org/10.1016/S2213-8587(1930156-1)

    • Search Google Scholar
    • Export Citation
  • 14

    Johansen CT, Kathiresan S, Hegele RA. Genetic determinants of plasma triglycerides. Journal of Lipid Research 2011 52 189206. (https://doi.org/10.1194/jlr.R009720)

    • Search Google Scholar
    • Export Citation
  • 15

    Diabetes Canada Clinical Practice Guidelines Expert Committee, Punthakee Z, Goldenberg R, Katz P. Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Canadian Journal of Diabetes 2018 42 (Supplement 1) S10S15. (https://doi.org/10.1016/j.jcjd.2017.10.003)

    • Search Google Scholar
    • Export Citation
  • 16

    Pearson GJ, Thanassoulis G, Anderson TJ, Barry AR, Couture P, Dayan N, Francis GA, Genest J, Grégoire J & Grover SA et al.2021 Canadian Cardiovascular Society Guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in adults. Canadian Journal of Cardiology 2021 37 11291150. (https://doi.org/10.1016/j.cjca.2021.03.016)

    • Search Google Scholar
    • Export Citation
  • 17

    Anderson TJ, Grégoire J, Pearson GJ, Barry AR, Couture P, Dawes M, Francis GA, Genest J, Grover S & Gupta M et al.2016 Canadian Cardiovascular Society Guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult. Canadian Journal of Cardiology 2016 32 12631282. (https://doi.org/10.1016/j.cjca.2016.07.510)

    • Search Google Scholar
    • Export Citation
  • 18

    Langsted A, Freiberg JJ, Nordestgaard BG. Fasting and nonfasting lipid levels: influence of normal food intake on lipids, lipoproteins, apolipoproteins, and cardiovascular risk prediction. Circulation 2008 118 20472056. (https://doi.org/10.1161/CIRCULATIONAHA.108.804146)

    • Search Google Scholar
    • Export Citation
  • 19

    Sidhu D, Naugler C. Fasting time and lipid levels in a community-based population: a cross-sectional study. Archives of Internal Medicine 2012 172 17071710. (https://doi.org/10.1001/archinternmed.2012.3708)

    • Search Google Scholar
    • Export Citation
  • 20

    Lamarche B, Rashid S, Lewis GF. HDL metabolism in hypertriglyceridemic states: an overview. Clinica Chimica Acta: International Journal of Clinical Chemistry 1999 286 145161. (https://doi.org/10.1016/s0009-8981(9900098-4)

    • Search Google Scholar
    • Export Citation
  • 21

    Palmisano BT, Zhu L, Eckel RH, Stafford JM. Sex differences in lipid and lipoprotein metabolism. Molecular Metabolism 2018 15 4555. (https://doi.org/10.1016/j.molmet.2018.05.008)

    • Search Google Scholar
    • Export Citation
  • 22

    Cleynen I, Engchuan W, Hestand MS, Heung T, Holleman AM, Johnston HR, Monfeuga T, McDonald-McGinn DM, Gur RE & Morrow BE et al.Genetic contributors to risk of schizophrenia in the presence of a 22q11.2 deletion. Molecular Psychiatry 2021 26 44964510. (https://doi.org/10.1038/s41380-020-0654-3)

    • Search Google Scholar
    • Export Citation
  • 23

    Iacocca MA, Dron JS, Hegele RA. Progress in finding pathogenic DNA copy number variations in dyslipidemia. Current Opinion in Lipidology 2019 30 6370. (https://doi.org/10.1097/MOL.0000000000000581)

    • Search Google Scholar
    • Export Citation
  • 24

    Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, Ganna A, Chen J, Buchkovich ML & Mora S et al.Discovery and refinement of loci associated with lipid levels. Nature Genetics 2013 45 12741283. (https://doi.org/10.1038/ng.2797)

    • Search Google Scholar
    • Export Citation
  • 25

    Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, Pirruccello JP, Ripatti S, Chasman DI & Willer CJ et al.Biological, clinical and population relevance of 95 loci for blood lipids. Nature 2010 466 707713. (https://doi.org/10.1038/nature09270)

    • Search Google Scholar
    • Export Citation
  • 26

    Dron JS, Wang J, McIntyre AD, Cao H, Hegele RA. The polygenic nature of mild-to-moderate hypertriglyceridemia. Journal of Clinical Lipidology 2020 14 28 .e234.e2. (https://doi.org/10.1016/j.jacl.2020.01.003)

    • Search Google Scholar
    • Export Citation
  • 27

    Dron JS, Wang J, Cao H, McIntyre AD, Iacocca MA, Menard JR, Movsesyan I, Malloy MJ, Pullinger CR & Kane JP et al.Severe hypertriglyceridemia is primarily polygenic. Journal of Clinical Lipidology 2019 13 8088. (https://doi.org/10.1016/j.jacl.2018.10.006)

    • Search Google Scholar
    • Export Citation
  • 28

    Palmer MK, Toth PP. Trends in lipids, obesity, metabolic syndrome, and diabetes mellitus in the United States: an NHANES analysis (2003–2004 to 2013–2014). Obesity 2019 27 309314. (https://doi.org/10.1002/oby.22370)

    • Search Google Scholar
    • Export Citation
  • 29

    Costanza MC, Cayanis E, Ross BM, Flaherty MS, Alvin GB, Das K, Morabia A. Relative contributions of genes, environment, and interactions to blood lipid concentrations in a general adult population. American Journal of Epidemiology 2005 161 714724. (https://doi.org/10.1093/aje/kwi103)

    • Search Google Scholar
    • Export Citation
  • 30

    Freedman DS, Otvos JD, Jeyarajah EJ, Shalaurova I, Cupples LA, Parise H, D’Agostino RB, Wilson PWF, Schaefer EJ. Sex and age differences in lipoprotein subclasses measured by nuclear magnetic resonance spectroscopy: the Framingham study. Clinical Chemistry 2004 50 11891200. (https://doi.org/10.1373/clinchem.2004.032763)

    • Search Google Scholar
    • Export Citation
  • 31

    Berberich AJ, Ouédraogo AM, Shariff SZ, Hegele RA, Clemens KK. Incidence, predictors and patterns of care of patients with very severe hypertriglyceridemia in Ontario, Canada: a population-based cohort study. Lipids in Health and Disease 2021 20 98. (https://doi.org/10.1186/s12944-021-01517-6)

    • Search Google Scholar
    • Export Citation
  • 32

    Goossens GH, Jocken JWE, Blaak EE. Sexual dimorphism in cardiometabolic health: the role of adipose tissue, muscle and liver. Nature Reviews: Endocrinology 2021 17 4766. (https://doi.org/10.1038/s41574-020-00431-8)

    • Search Google Scholar
    • Export Citation
  • 33

    Fan W, Philip S, Granowitz C, Toth PP, Wong ND. Hypertriglyceridemia in statin-treated US adults: the National Health and Nutrition Examination Survey. Journal of Clinical Lipidology 2019 13 100108. (https://doi.org/10.1016/j.jacl.2018.11.008)

    • Search Google Scholar
    • Export Citation
  • 34

    Caporaso NE, Jones RR, Stolzenberg-Solomon RZ, Medgyesi DN, Kahle LL, Graubard BI. Insulin resistance in healthy U.S. adults: findings from the National Health and Nutrition Examination Survey (NHANES). Cancer Epidemiology, Biomarkers and Prevention 2020 29 157168. (https://doi.org/10.1158/1055-9965.EPI-19-0206)

    • Search Google Scholar
    • Export Citation
  • 35

    Guna A, Butcher NJ, Bassett AS. Comparative mapping of the 22q11.2 deletion region and the potential of simple model organisms. Journal of Neurodevelopmental Disorders 2015 7 18. (https://doi.org/10.1186/s11689-015-9113-x)

    • Search Google Scholar
    • Export Citation
  • 36

    Ninomiya JK, L’Italien G, Criqui MH, Whyte JL, Gamst A, Chen RS. Association of the metabolic syndrome with history of myocardial infarction and stroke in the third National Health and Nutrition Examination Survey. Circulation 2004 109 4246. (https://doi.org/10.1161/01.CIR.0000108926.04022.0C)

    • Search Google Scholar
    • Export Citation
  • 37

    Madsen CM, Varbo A, Nordestgaard BG. Unmet need for primary prevention in individuals with hypertriglyceridaemia not eligible for statin therapy according to European Society of Cardiology/European Atherosclerosis Society guidelines: a contemporary population-based study. European Heart Journal 2018 39 610619. (https://doi.org/10.1093/eurheartj/ehx659)

    • Search Google Scholar
    • Export Citation
  • 38

    Ripatti P, Rämö JT, Mars NJ, Fu Y, Lin J, Söderlund S, Benner C, Surakka I, Kiiskinen T & Havulinna AS et al.Polygenic hyperlipidemias and coronary artery disease risk. Circulation: Genomic and Precision Medicine 2020 13 e002725. (https://doi.org/10.1161/CIRCGEN.119.002725)

    • Search Google Scholar
    • Export Citation
  • 39

    Johansen CT, Dubé JB, Loyzer MN, MacDonald A, Carter DE, McIntyre AD, Cao H, Wang J, Robinson JF, Hegele RA. LipidSeq: a next-generation clinical resequencing panel for monogenic dyslipidemias. Journal of Lipid Research 2014 55 765772. (https://doi.org/10.1194/jlr.D045963)

    • Search Google Scholar
    • Export Citation
  • 40

    Marmontel O, Rollat-Farnier PA, Wozny AS, Charrière S, Vanhoye X, Simonet T, Chatron N, Collin-Chavagnac D, Nony S & Dumont S et al.Development of a new expanded next-generation sequencing panel for genetic diseases involved in dyslipidemia. Clinical Genetics 2020 98 589594. (https://doi.org/10.1111/cge.13832)

    • Search Google Scholar
    • Export Citation
  • 41

    Vingerhoets C, van Oudenaren MJF, Bloemen OJN, Boot E, van Duin EDA, Evers LJM, Fiksinski AM, Breetvelt EJ, Palmer LD & Vergaelen E et al.Low prevalence of substance use in people with 22q11.2 deletion syndrome. British Journal of Psychiatry 2019 215 661667. (https://doi.org/10.1192/bjp.2018.258)

    • Search Google Scholar
    • Export Citation
  • 42

    Nordmann AJ, Nordmann A, Briel M, Keller U, Yancy Jr WS, Brehm BJ, Bucher HC. Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: a meta-analysis of randomized controlled trials. Archives of Internal Medicine 2006 166 285293. (https://doi.org/10.1001/archinte.166.3.285)

    • Search Google Scholar
    • Export Citation
  • 43

    Wang Y, Shen L, Xu D. Aerobic exercise reduces triglycerides by targeting apolipoprotein C3 in patients with coronary heart disease. Clinical Cardiology 2019 42 5661. (https://doi.org/10.1002/clc.23104)

    • Search Google Scholar
    • Export Citation
  • 44

    Cullinane E, Siconolfi S, Saritelli A, Thompson PD. Acute decrease in serum triglycerides with exercise: is there a threshold for an exercise effect? Metabolism: Clinical and Experimental 1982 31 844847. (https://doi.org/10.1016/0026-0495(8290085-3)

    • Search Google Scholar
    • Export Citation