Inheritance of a common androgen synthesis variant allele is associated with female COVID susceptibility in UK Biobank

in European Journal of Endocrinology
View More View Less
  • 1 Genitourinary Malignancies Research Center, Lerner Research Institute
  • | 2 Center for Clinical Genomics, Genomics Medicine Institute
  • | 3 Department of Hematology and Oncology, Taussig Cancer Institute
  • | 4 Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA

Correspondence should be addressed to N Sharifi; Email: sharifn@ccf.org
Restricted access

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

Context

A sex discordance in COVID exists, with males disproportionately affected. Although sex steroids may play a role in this discordance, no definitive genetic data exist to support androgen-mediated immune suppression neither for viral susceptibility nor for adrenally produced androgens.

Objective

The common adrenal-permissive missense-encoding variant HSD3B1(1245C) that enables androgen synthesis from adrenal precursors and that has been linked to suppression of inflammation in severe asthma was investigated in COVID susceptibility and outcomes reported in the UK Biobank.

Methods

The UK Biobank is a long-term study with detailed medical information and health outcomes for over 500 000 genotyped individuals. We obtained COVID test results, inpatient hospital records, and death records and tested for associations between COVID susceptibility or outcomes and HSD3B1(1245A/C) genotype. Primary analyses were performed on the UK Biobank Caucasian cohort. The outcomes were identification as a COVID case among all subjects, COVID positivity among COVID-tested subjects, and mortality among subjects identified as COVID cases.

Results

Adrenal-permissive HSD3B1(1245C) genotype was associated with identification as a COVID case (odds ratio (OR): 1.11 per C allele, 95% CI: 1.04–1.18, P  = 0.0013) and COVID-test positivity (OR: 1.09, 95% CI: 1.02–1.17, P  = 0.011) in older (≥70 years of age) women. In women identified as COVID cases, there was a positive linear relationship between age and 1245C allele frequency (P  < 0.0001). No associations were found between genotype and mortality or between genotype and circulating sex hormone levels.

Conclusion

Our study suggests that a common androgen synthesis variant regulates immune susceptibility to COVID infection in women, with increasingly strong effects as women age.

Supplementary Materials

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 83 83 83
Full Text Views 1 1 1
PDF Downloads 1 1 1
  • 1

    Scully EP, Haverfield J, Ursin RL, Tannenbaum C, Klein SL. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nature Reviews: Immunology 2020 20 442447. (https://doi.org/10.1038/s41577-020-0348-8)

    • Search Google Scholar
    • Export Citation
  • 2

    Palaiodimos L, Kokkinidis DG, Li W, Karamanis D, Ognibene J, Arora S, Southern WN, Mantzoros CS. Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism: Clinical and Experimental 2020 108 154262. (https://doi.org/10.1016/j.metabol.2020.154262)

    • Search Google Scholar
    • Export Citation
  • 3

    Michelozzi P, de’Donato F, Scortichini M, De Sario M, Noccioli F, Rossi P, Davoli M. Mortality impacts of the coronavirus disease (COVID-19) outbreak by sex and age: rapid mortality surveillance system, Italy, 1 February to 18 April 2020. Eurosurveillance 2020 25 2000620. (https://doi.org/10.2807/1560-7917.ES.2020.25.19.2000620)

    • Search Google Scholar
    • Export Citation
  • 4

    Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH & Nitsche A et al.SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020 181 271 .e8280.e8. (https://doi.org/10.1016/j.cell.2020.02.052)

    • Search Google Scholar
    • Export Citation
  • 5

    Mjaess G, Karam A, Aoun F, Albisinni S, Roumeguère T. COVID-19 and the male susceptibility: the role of ACE2, TMPRSS2 and the androgen receptor. Progres en Urologie 2020 30 484487. (https://doi.org/10.1016/j.purol.2020.05.007)

    • Search Google Scholar
    • Export Citation
  • 6

    Sharifi N, Ryan CJ. Androgen hazards with COVID-19. Endocrine-Related Cancer 2020 27 E1E3. (https://doi.org/10.1530/ERC-20-0133)

  • 7

    Song H, Seddighzadeh B, Cooperberg MR, Huang FW. Expression of ACE2, the SARS-CoV-2 receptor, and TMPRSS2 in prostate epithelial cells. European Urology 2020 78 296298. (https://doi.org/10.1016/j.eururo.2020.04.065)

    • Search Google Scholar
    • Export Citation
  • 8

    Baratchian M, McManus JM, Berk MP, Nakamura F, Mukhopadhyay S, Xu W, Erzurum S, Drazba J, Peterson J & Klein EA et al.Androgen regulation of pulmonary AR, TMPRSS2 and ACE2 with implications for sex-discordant COVID-19 outcomes. Scientific Reports 2021 11 1113011130. (https://doi.org/10.1038/s41598-021-90491-1)

    • Search Google Scholar
    • Export Citation
  • 9

    Bouman A, Heineman MJ, Faas MM. Sex hormones and the immune response in humans. Human Reproduction Update 2005 11 411423. (https://doi.org/10.1093/humupd/dmi008)

    • Search Google Scholar
    • Export Citation
  • 10

    Foo YZ, Nakagawa S, Rhodes G, Simmons LW. The effects of sex hormones on immune function: a meta-analysis. Biological Reviews of the Cambridge Philosophical Society 2017 92 551571. (https://doi.org/10.1111/brv.12243)

    • Search Google Scholar
    • Export Citation
  • 11

    Taneja V Sex hormones determine immune response. Frontiers in Immunology 2018 9 1931. (https://doi.org/10.3389/fimmu.2018.01931)

  • 12

    Fischer J, Jung N, Robinson N, Lehmann C. Sex differences in immune responses to infectious diseases. Infection 2015 43 399403. (https://doi.org/10.1007/s15010-015-0791-9)

    • Search Google Scholar
    • Export Citation
  • 13

    Klein SL, Flanagan KL. Sex differences in immune responses. Nature Reviews: Immunology 2016 16 626638. (https://doi.org/10.1038/nri.2016.90)

    • Search Google Scholar
    • Export Citation
  • 14

    Naelitz BD, Sharifi N. Through the looking-glass: reevaluating DHEA metabolism through HSD3B1 genetics. Trends in Endocrinology and Metabolism 2020 31 680690. (https://doi.org/10.1016/j.tem.2020.05.006)

    • Search Google Scholar
    • Export Citation
  • 15

    Hearn JWD, AbuAli G, Reichard CA, Reddy CA, Magi-Galluzzi C, Chang KH, Carlson R, Rangel L, Reagan K & Davis BJ et al.HSD3B1 and resistance to androgen-deprivation therapy in prostate cancer: a retrospective, multicohort study. Lancet: Oncology 2016 17 14351444. (https://doi.org/10.1016/S1470-2045(1630227-3)

    • Search Google Scholar
    • Export Citation
  • 16

    Agarwal N, Hahn AW, Gill DM, Farnham JM, Poole AI, Cannon-Albright L. Independent validation of effect of HSD3B1 genotype on response to androgen-deprivation therapy in prostate cancer. JAMA Oncology 2017 3 856857. (https://doi.org/10.1001/jamaoncol.2017.0147)

    • Search Google Scholar
    • Export Citation
  • 17

    Shiota M, Narita S, Akamatsu S, Fujimoto N, Sumiyoshi T, Fujiwara M, Uchiumi T, Habuchi T, Ogawa O, Eto M. Association of missense polymorphism in HSD3B1 with outcomes among men with prostate cancer treated with androgen-deprivation therapy or abiraterone. JAMA Network Open 2019 2 e190115. (https://doi.org/10.1001/jamanetworkopen.2019.0115)

    • Search Google Scholar
    • Export Citation
  • 18

    Garcia Gil S, Ramos Rodriguez R, Plata Bello A, Nazco Casariego GJ, Garcia Marrero R, Cruz Jurado J, Batista Lopez JN, Gonzalez Garcia J, Gutierrez Nicolas F. Relationship between mutations in the HSD3B1 gene and response time to androgen deprivation therapy in the treatment of prostate cancer. In European Society of Oncology Pharmacy. Nantes, France, 2018. (https://doi.org/10.1097/OP9.0000000000000004)

    • Search Google Scholar
    • Export Citation
  • 19

    Hearn JWD, Xie W, Nakabayashi M, Almassi N, Reichard CA, Pomerantz M, Kantoff PW, Sharifi N. Association of HSD3B1 genotype with response to androgen-deprivation therapy for biochemical recurrence after radiotherapy for localized prostate cancer. JAMA Oncology 2018 4 558562. (https://doi.org/10.1001/jamaoncol.2017.3164)

    • Search Google Scholar
    • Export Citation
  • 20

    Hearn JWD, Sweeney CJ, Almassi N, Reichard CA, Reddy CA, Li H, Hobbs B, Jarrard DF, Chen YH & Dreicer R et al.HSD3B1 genotype and clinical outcomes in metastatic castration-sensitive prostate cancer. JAMA Oncology 2020 6 e196496. (https://doi.org/10.1001/jamaoncol.2019.6496)

    • Search Google Scholar
    • Export Citation
  • 21

    Zein J, Gaston B, Bazeley P, DeBoer MD, Igo RP, Bleecker ER, Meyers D, Comhair S, Marozkina NV & Cotton C et al.HSD3B1 genotype identifies glucocorticoid responsiveness in severe asthma. PNAS 2020 117 21872193. (https://doi.org/10.1073/pnas.1918819117)

    • Search Google Scholar
    • Export Citation
  • 22

    Holgate ST, Wenzel S, Postma DS, Weiss ST, Renz H, Sly PD. Asthma. Nature Reviews: Disease Primers 2015 1 15025. (https://doi.org/10.1038/nrdp.2015.25)

  • 23

    Sabharwal N, Sharifi N. HSD3B1 genotypes conferring adrenal-restrictive and adrenal-permissive phenotypes in prostate cancer and beyond. Endocrinology 2019 160 21802188. (https://doi.org/10.1210/en.2019-00366)

    • Search Google Scholar
    • Export Citation
  • 24

    Chang KH, Li R, Kuri B, Lotan Y, Roehrborn CG, Liu J, Vessella R, Nelson PS, Kapur P & Guo X et al.A gain-of-function mutation in DHT synthesis in castration-resistant prostate cancer. Cell 2013 154 10741084. (https://doi.org/10.1016/j.cell.2013.07.029)

    • Search Google Scholar
    • Export Citation
  • 25

    Gubbels Bupp MR, Jorgensen TN. Androgen-induced immunosuppression. Frontiers in Immunology 2018 9 794. (https://doi.org/10.3389/fimmu.2018.00794)

    • Search Google Scholar
    • Export Citation
  • 26

    Viselli SM, Reese KR, Fan J, Kovacs WJ, Olsen NJ. Androgens alter B cell development in normal male mice. Cellular Immunology 1997 182 99104. (https://doi.org/10.1006/cimm.1997.1227)

    • Search Google Scholar
    • Export Citation
  • 27

    Drake CG, Doody AD, Mihalyo MA, Huang CT, Kelleher E, Ravi S, Hipkiss EL, Flies DB, Kennedy EP & Long M et al.Androgen ablation mitigates tolerance to a prostate/prostate cancer-restricted antigen. Cancer Cell 2005 7 239249. (https://doi.org/10.1016/j.ccr.2005.01.027)

    • Search Google Scholar
    • Export Citation
  • 28

    Zein JG, McManus JM, Sharifi N, Erzurum SC, Marozkina N, Lahm T, Giddings O, Davis MD, DeBoer MD & Comhair SA et al.Benefits of airway androgen receptor expression in human asthma. American Journal of Respiratory and Critical Care Medicine 2021 204 285293. (https://doi.org/10.1164/rccm.202009-3720OC)

    • Search Google Scholar
    • Export Citation
  • 29

    McManus J M, Gaston B, Zein J, & Sharifi N, Association Between Asthma and Reduced Androgen Receptor Expression in Airways. Journal of the Endocrine Society 2022 6 bvac047. (https://doi.org/10.1210/jendso/bvac047)

    • Search Google Scholar
    • Export Citation
  • 30

    Gaston B, Marozkina N, Newcomb DC, Sharifi N, Zein J. Asthma risk among individuals with androgen receptor deficiency. JAMA Pediatrics 2021 175 743745. (https://doi.org/10.1001/jamapediatrics.2021.0281)

    • Search Google Scholar
    • Export Citation
  • 31

    Laughlin GA, Barrett-Connor E. Sexual dimorphism in the influence of advanced aging on adrenal hormone levels: the Rancho Bernardo Study. Journal of Clinical Endocrinology and Metabolism 2000 85 35613568. (https://doi.org/10.1210/jcem.85.10.6861)

    • Search Google Scholar
    • Export Citation
  • 32

    Muller M, den Tonkelaar I, Thijssen JH, Grobbee DE, van der Schouw YT. Endogenous sex hormones in men aged 40–80 years. European Journal of Endocrinology 2003 149 583589. (https://doi.org/10.1530/eje.0.1490583)

    • Search Google Scholar
    • Export Citation
  • 33

    Horstman AM, Dillon EL, Urban RJ, Sheffield-Moore M. The role of androgens and estrogens on healthy aging and longevity. Journals of Gerontology: Series A, Biological Sciences and Medical Sciences 2012 67 11401152. (https://doi.org/10.1093/gerona/gls068)

    • Search Google Scholar
    • Export Citation
  • 34

    Du RH, Liang LR, Yang CQ, Wang W, Cao TZ, Li M, Guo GY, Du J, Zheng CL & Zhu Q et al.Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study. European Respiratory Journal 2020 55 2000524. (https://doi.org/10.1183/13993003.00524-2020)

    • Search Google Scholar
    • Export Citation
  • 35

    Data Field 22006 – UK Biobank. (available at: https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=22006). Accessed on 20 December 2021.

    • Search Google Scholar
    • Export Citation
  • 36

    Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic D, Delaneau O & O’Connell J et al.The UK biobank resource with deep phenotyping and genomic data. Nature 2018 562 203209. (https://doi.org/10.1038/s41586-018-0579-z)

    • Search Google Scholar
    • Export Citation
  • 37

    Hale T, Angrist N, Goldszmidt R, Kira B, Petherick A, Phillips T, Webster S, Cameron-Blake E, Hallas L & Majumdar S et al.A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nature Human Behaviour 2021 5 529538. (https://doi.org/10.1038/s41562-021-01079-8)

    • Search Google Scholar
    • Export Citation
  • 38

    Labrie F, Cusan L, Gomez JL, Martel C, Bérubé R, Bélanger P, Bélanger A, Vandenput L, Mellström D, Ohlsson C. Comparable amounts of sex steroids are made outside the gonads in men and women: strong lesson for hormone therapy of prostate and breast cancer. Journal of Steroid Biochemistry and Molecular Biology 2009 113 5256. (https://doi.org/10.1016/j.jsbmb.2008.11.004)

    • Search Google Scholar
    • Export Citation
  • 39

    Labrie F, Bélanger A, Pelletier G, Martel C, Archer DF, Utian WH. Science of intracrinology in postmenopausal women. Menopause 2017 24 702712. (https://doi.org/10.1097/GME.0000000000000808)

    • Search Google Scholar
    • Export Citation
  • 40

    Orentreich N, Brind JL, Rizer RL, Vogelman JH. Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. Journal of Clinical Endocrinology and Metabolism 1984 59 551555. (https://doi.org/10.1210/jcem-59-3-551)

    • Search Google Scholar
    • Export Citation
  • 41

    Eisenhofer G, Peitzsch M, Kaden D, Langton K, Pamporaki C, Masjkur J, Tsatsaronis G, Mangelis A, Williams TA & Reincke M et al.Reference intervals for plasma concentrations of adrenal steroids measured by LC-MS/MS: impact of gender, age, oral contraceptives, body mass index and blood pressure status. Clinica Chimica Acta: International Journal of Clinical Chemistry 2017 470 115124. (https://doi.org/10.1016/j.cca.2017.05.002)

    • Search Google Scholar
    • Export Citation
  • 42

    Griffith GJ, Morris TT, Tudball MJ, Herbert A, Mancano G, Pike L, Sharp GC, Sterne J, Palmer TM & Davey Smith G et al.Collider bias undermines our understanding of COVID-19 disease risk and severity. Nature Communications 2020 11 5749. (https://doi.org/10.1038/s41467-020-19478-2)

    • Search Google Scholar
    • Export Citation
  • 43

    Fry A, Littlejohns TJ, Sudlow C, Doherty N, Adamska L, Sprosen T, Collins R, Allen NE. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. American Journal of Epidemiology 2017 186 10261034. (https://doi.org/10.1093/aje/kwx246)

    • Search Google Scholar
    • Export Citation
  • 44

    Yaghootkar H, Bancks MP, Jones SE, McDaid A, Beaumont R, Donnelly L, Wood AR, Campbell A, Tyrrell J & Hocking LJ et al.Quantifying the extent to which index event biases influence large genetic association studies. Human Molecular Genetics 2017 26 10181030. (https://doi.org/10.1093/hmg/ddw433)

    • Search Google Scholar
    • Export Citation
  • 45

    Smit RAJ, Trompet S, Dekkers OM, Jukema JW, le Cessie S. Survival bias in Mendelian randomization studies: a threat to causal inference. Epidemiology 2019 30 813816. (https://doi.org/10.1097/EDE.0000000000001072)

    • Search Google Scholar
    • Export Citation
  • 46

    Thomas L, Sharifi N, Germline HSD. Germline HSD3B1 genetics and prostate cancer outcomes. Urology 2020 145 1321. (https://doi.org/10.1016/j.urology.2020.08.028)

    • Search Google Scholar
    • Export Citation
  • 47

    Kruse ML, Patel M, McManus J, Chung YM, Li X, Wei W, Bazeley PS, Nakamura F, Hardaway A & Downs E et al.Adrenal-permissive HSD3B1 genetic inheritance and risk of estrogen-driven postmenopausal breast cancer. JCI Insight 2021 6 e150403. (https://doi.org/10.1172/jci.insight.150403)

    • Search Google Scholar
    • Export Citation
  • 48

    Peckham H, de Gruijter NM, Raine C, Radziszewska A, Ciurtin C, Wedderburn LR, Rosser EC, Webb K, Deakin CT. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nature Communications 2020 11 6317. (https://doi.org/10.1038/s41467-020-19741-6)

    • Search Google Scholar
    • Export Citation
  • 49

    The sex, gender, and COVID-19 project. (available at: https://globalhealth5050.org/the-sex-gender-and-covid-19-project/). Accessed on 13 April 2021.

    • Search Google Scholar
    • Export Citation
  • 50

    Sobotka T, Brzozowska Z, Muttarak R, Zeman K, di Lego V. Age, gender and COVID-19 infections. medRxiv 2020 2020.2005.2024.20111765. (https://doi.org/10.1101/2020.05.24.20111765)

    • Search Google Scholar
    • Export Citation
  • 51

    Bassi F, Arbia G, Falorsi PD. Observed and estimated prevalence of Covid-19 in Italy: how to estimate the total cases from medical swabs data. Science of the Total Environment 2021 764 142799. (https://doi.org/10.1016/j.scitotenv.2020.142799)

    • Search Google Scholar
    • Export Citation
  • 52

    O’Brien J, Du KY, Peng C. Incidence, clinical features, and outcomes of COVID-19 in Canada: impact of sex and age. Journal of Ovarian Research 2020 13 137. (https://doi.org/10.1186/s13048-020-00734-4)

    • Search Google Scholar
    • Export Citation
  • 53

    Haischer MH, Beilfuss R, Hart MR, Opielinski L, Wrucke D, Zirgaitis G, Uhrich TD, Hunter SK. Who is wearing a mask? Gender-, age-, and location-related differences during the COVID-19 pandemic. PLoS ONE 2020 15 e0240785. (https://doi.org/10.1371/journal.pone.0240785)

    • Search Google Scholar
    • Export Citation
  • 54

    Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, Staplin N, Brightling C, Ustianowski A & Elmahi E et al.Dexamethasone in hospitalized patients with Covid-19. New England Journal of Medicine 2021 384 693 - 704. (https://doi.org/10.1056/NEJMoa2021436)

    • Search Google Scholar
    • Export Citation
  • 55

    Channappanavar R, Fett C, Mack M, Ten Eyck PP, Meyerholz DK, Perlman S. Sex-based differences in susceptibility to severe acute respiratory syndrome coronavirus infection. Journal of Immunology 2017 198 40464053. (https://doi.org/10.4049/jimmunol.1601896)

    • Search Google Scholar
    • Export Citation
  • 56

    COVID-19 Host Genetics Initiative, Karjalainen J, Liao RG, Neale BM, Daly M, Ganna A, Pathak GA, Andrews SJ, Kanai M, Veerapen K. Mapping the human genetic architecture of COVID-19. Nature 2021 600 472477. (https://doi.org/10.1038/s41586-021-03767-x)

    • Search Google Scholar
    • Export Citation
  • 57

    Thibord F, Chan MV, Chen M-H, Johnson AD. A year of COVID-19 GWAS results from the GRASP portal reveals potential SARS-CoV-2 modifiers. medRxiv 2021 2021.2006.2008.21258507. (https://doi.org/10.1101/2021.06.08.21258507)

    • Search Google Scholar
    • Export Citation
  • 58

    Stanczyk FZ, Mathews BW, Sherman ME. Relationships of sex steroid hormone levels in benign and cancerous breast tissue and blood: a critical appraisal of current science. Steroids 2015 99 91102. (https://doi.org/10.1016/j.steroids.2014.12.011)

    • Search Google Scholar
    • Export Citation
  • 59

    Neuzillet Y, Raynaud JP, Radulescu C, Fiet J, Giton F, Dreyfus JF, Ghoneim TP, Lebret T, Botto H. Sexual steroids in serum and prostatic tissue of human non-cancerous prostate (STERPROSER trial). Prostate 2017 77 15121519. (https://doi.org/10.1002/pros.23429)

    • Search Google Scholar
    • Export Citation
  • 60

    McManus JM, Bohn K, Alyamani M, Chung YM, Klein EA, Sharifi N. Rapid and structure-specific cellular uptake of selected steroids. PLoS ONE 2019 14 e0224081. (https://doi.org/10.1371/journal.pone.0224081)

    • Search Google Scholar
    • Export Citation